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A new integral equation theory is proposed, which enables us to efficiently compute conformational
distribution of a polyatomic molecule in solution phase. The solvation effect on the intramolecular
correlation function is evaluated through a self-consistent procedure. In addition, the analytical
expression of solvation free energy is derived, explicitly taking into account the molecular structural
fluctuation. The derived equation establishes a direct route between the structural fluctuation and
free energy of the molecule. The method was successfully applied to a series of n-alkanes in
aqueous solutions to demonstrate the superiority of the proposed theory. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4923038]

I. INTRODUCTION

Structural fluctuation is one of the fundamental aspects
of a molecule. A flexible macromolecule possesses many
different conformers, and the thermal fluctuation among them
often plays an important role in many chemical and biological
processes.1,2 In computational approaches, molecular simula-
tion like molecular dynamics is a straightforward and most
widely used method3–6 to deal with the fluctuation. However,
in general, consideration of the full conformational space
is infeasible, especially for large size molecules. Although
many efficient algorithms have been proposed so far, essential
understanding of the conformational space, namely, exploring
the most stable conformation and accurate computation of the
conformational distribution, is still very challenging even for
single molecule. Computation of the molecular conformations
in solution system is further time-consuming, especially for
a molecule consisting of a few tens of heterogeneous atoms
due to complicated intermolecular interaction from numerous
surrounding molecules.

Integral equation theory (IET) is an alternative approach
to tackle this difficulty.7,8 In this theory, a closed-form equa-
tion of correlation functions is derived to characterize molec-
ular system. For example, reference interaction site model
(RISM),8 a statistical mechanical theory for molecular liquids,
is commonly utilized to deal with solvation effects. Thanks to
its analytical nature, adequate statistical ensemble is expected
to be obtained. While a simplified approach was adopted to
describe polymer solutions,9–12 the intramolecular correlation
functions have been discussed so far to characterize the struc-
ture of polyatomic molecules.13–22 Among them, Yokogawa
et al. proposed a new IET,22 in which the correlation func-
tion was divided into two parts; reference (ωref) and residual
(∆ω) parts. While the former was computed from Monte Carlo

a)hirofumi@moleng.kyoto-u.ac.jp

simulation on an isolated molecule, the latter part representing
a change of intramolecular correlation functions attributed to
many body effect in the liquid is obtained based on a new
IET. Because difficulties in solution-phase computation are
mainly attributed to this many body effect, so-called “sampling
problem” can be largely avoided once a sufficient accuracy
is achieved in the preparation of ωref. However, the theory is
applicable only to pure liquid system consisting of a single
component.

Here, we present a new integral equation theory to effi-
ciently compute conformational distribution of a molecule
immersed into solvent: the formula enables us to treat an
infinitely dilute solution system. Although several approaches
based on effective Hamiltonian have been proposed by utiliz-
ing Monte Carlo simulation,18,19 atomistic level of theory
for solute-solvent system has not been available. Another
strong point of the present work is an analytical expression
of solvation free energy including the effect of the structural
fluctuation of the solute molecule. Unlike other works,23–26

intramolecular correlation function is explicitly treated. The
proposed method was applied to a series of n-alkanes in
aqueous solutions to demonstrate the superiority of the present
theory.

II. THEORY

A. Intramolecular correlation function

An infinitely dilute solution system is considered, where
a poly-atomic, solute molecule is immersed into solvent. The
intramolecular correlation function of the solute molecule is
defined by

ωab(r; λ) =


drudrvδ(|ra − rb | − r)e−βVλ
4πr2Zλ

, (1)
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where β = 1/kBT , kB is Boltzmann constant. ru and rv are,
respectively, solute (u) and solvent (v) coordinates, subscripts
a and b denote atomic sites in the solute molecule. Zλ is
configuration integral of the system,

Zλ =


drudrve−βVλ, (2)

where Vλ is potential function of the system with coupling
parameter λ (0 ≤ λ ≤ 1),

Vλ(ru,rv; λ) = V uu(ru) + V uv(ru,rv; λ) + V vv(rv). (3)

V uu is intramolecular potential of the solute molecule, and
V vv is intermolecular interaction between solvent molecules.
V uv(λ) is solute-solvent interaction, which is a function of λ,
changing from λ = 0 (without interaction) to λ = 1 (“perfect”
interaction). The effective (mean) solvation potential W solv is

then introduced,13,18,27–29

Zλ =


drue−βV
uu


drve−β(V
uv(λ)+V vv)

=


drue−β(V

uu+W solv(λ))Zv, (4)

where

W solv(ru; λ) = −β−1 ln


drve−β(V uv(λ)+V vv)

Zv

= −β−1
 λ

0
dλ′

d
dλ′

ln


drve−β(V
uv(λ′)+V vv).

(5)

Zv is configuration integral of the pure solvent system. When
the V uv and V vv are site-pairwise and additive, the integra-
tion over λ′ of Eq. (5) is analytically performed based on
RISM/HNC (hypernetted chain) theory,8,13,18,27,28

W solv(ru; λ) = −(2β)−1

a,b


SS′

ρv


dr


dr′cuv
aS(|ra − r|; λ)χvv

SS′(|r − r′|)cuv
bS′(|r′ − rb|; λ)

− β−1

a,S

ρv


dr{cuv
aS(r; λ) − 1

2
(huv

aS(r; λ))2} (6)

=
1
2


a,b

υab(rab; λ) − β−1

a,S

ρv


dr{cuv
aS(r; λ) − 1

2
(huv

aS(r; λ))2}. (7)

huv and cuv are the total and direct correlation functions between solute and solvent with the number density, ρv. Subscript “S”
denotes an atomic site in the solvent molecule, χvv

SS′ is density-density correlation function of the pure solvent,

χvv
SS′ = ωv

SS′ + ρvhvv
SS′, (8)

where hvv
SS′ and ωv

SS′ are total and intramolecular correlation functions of the pure solvent. While the second term of Eq. (7)
represents the solute-solvent interaction, the first term (υab) describes the solvent-mediated interactions between two sites (a and
b) in the solute molecule, namely, solvent induced self-consistent pair interaction.28 Based on these equations and the relation
υab = υba, Eq. (1) is rewritten as follows:

ωab(r; λ) = ωab(r; 0)e−βυab(r ;λ)−βξab(r ;λ). (9)

Here, ξab is introduced to represent the indirect contribution,

ξab(r; λ) = −β−1 ln
ωab(r; λ)
ωab(r; 0) − υab(r; λ). (10)

Because of complicated many-body effect, the explicit form of this function is unknown. Alternatively, the function is expanded
with respect to {ωab}, corresponding to a HNC approximation,4,7,24–26

ξA(r; λ) ≈

B


dr ′

δξA(r; λ)
δωB(r ′; λ)

�����λ=0
[ωB(r ′; λ) − ωB(r ′; 0)]

=

B


dr ′


−β−1 δ(r − r ′)

ωB(r; 0) δAB −
δυA(r; λ)
δωB(r ′; λ)

�����λ=0


[ωB(r ′; λ) − ωB(r ′; 0)]

= −β−1

ωA(r; λ)
ωA(r; 0) − 1


−


B


dr ′

δυA(r; λ)
δωB(r ′; λ)

�����λ=0
[ωB(r ′; λ) − ωB(r ′; 0)]

= −β−1

ωA(r; λ)
ωA(r; 0) − 1


+ β−1


B


dr ′

χ−1
A,B(r,r ′; 0)

4πr2 [ωB(r ′; λ) − ωB(r ′; 0)]

= −β−1

ωA(r; λ)
ωA(r; 0) − 1


+ β−1γA(r; λ). (11)
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Here, capitals (A and B) are used to denote a pair of atomic
sites in the solute molecule a, b (a , b) to make the following
derivation clear. Please note that only halves of pairs a,b (a
< b) should be considered for A, B because of the symmetry,
ωab = ωba, ξab = ξba, and so on. χA,B is the intramolecular
density-density correlation function defined by

χA,B(r,r ′′; λ) = 1
4πr ′′ 2

δωA(r; λ)
δ(−βυB(r ′′; λ))

=


δ(rA − r)δ(rB − r ′′)
(4πr2)(4πr ′′ 2)


λ

−

δ(rA − r)

4πr2


λ


δ(rB − r ′′)

4πr ′′ 2


λ

, (12)

where ⟨. . . ⟩λ denotes an ensemble average at a given value of
λ and 

C


dr ′′χA,C(r,r ′′; λ)χ−1

C,B(r ′′,r ′; λ)

=

C


dr ′′

δωA(r; λ)
δυC(r ′′; λ)

δυC(r ′′; λ)
δωB(r ′; λ)

= δABδ(r − r ′). (13)

In the last equation in Eq. (11), the function γA is intro-
duced, which has a similar role to direct correlation function

in the standard framework of integral equation theory. From
Eqs. (10), (11), (13), OZ-type equation (14) and HNC-like
closure equation (15) for the intramolecular correlation func-
tions are, respectively, obtained,

ωab(r; 0)∆ωab(r) = 1
2


c,d


dr′γcd(r ′; 1)χcd,ab(r ′,r; 0),

(14)

γab(r; 1) =∆ωab(r) − ln

∆ωab(r) + 1


− βυab(r; 1),

(15)

where

∆ωab(r) = ∆ωab(r)
ωab(r; 0) ,

∆ωab(r) = ωab(r; 1) − ωab(r; 0).
(16)

Here, the indices of atomic-sites pair are put back, and we used
the relations, χab,cd(r,r ′) = χcd,ab(r ′,r), γcd = γdc, χcd,ab

= χdc,ab, and χcc,ad = 0. Note that the same equations are
derived using variational procedure (see Appendix A).

The partial linearized HNC (PLHNC) approximation is
also derived from Eq. (15),

γab(r; 1) =



∆ωab(r) − ln

∆ωab(r) + 1


− βυab(r) for ∆ωab(r) ≤ 0,

−βυab(r) for ∆ωab(r) > 0.
(17)

In this study, we used this closure equation. In practice, ωab(r; 0) and χab,cd(r,r ′; 0) were obtained using Monte Carlo simulation
of an isolated solute molecule, and these equations are iteratively solved to obtain the intramolecular correlation functionωab(r; 1).
One might think if the splitting of ω into the reference and residual parts is always possible or not. The present procedure utilizes
a self-consistent treatment, which is expected to be more robust than the perturbative approach. Actually, the procedure works
well in all the present systems, and adequate solutions are always obtained in our experience.30

B. Expression of free energy

Based on these equations, solvation free energy∆F involving the effects of solute structural fluctuation is analytically derived.
∆F is defined as the difference between the free energy of the solute-solvent system (Fλ=1) and that without solute-solvent
interaction (Fλ=0). The “charging formula”23 is employed,

∆F = Fλ=1 − Fλ=0

= −β−1
 1

0
dλ

d ln Zλ
dλ

=

 1

0
dλ


dW solv(λ)

dλ


λ

=
1
2


a,b

 1

0
dλ


dr

dυ
ab
(r; λ)

dλ
ωab(r; λ) − β−1


a,S

ρv


dr
 1

0
dλ

d
dλ


cuv
aS(r; λ) − 1

2
(huv

aS(r; λ))2

. (18)

Using the following relationship derived from Eq. (10) in the first term,

dυ
ab
(r; λ)

dλ
ωab(r; λ) = −β−1 dωab(r; λ)

dλ
− ωab(r; λ)dξab(r; λ)

dλ
, (19)

the integration over λ is carried out using Eq. (15) or Eq. (17). If we choose the former, the following HNC-like expression is
obtained:

∆FHNC = (2β)−1

a,b


drωab(r; 0)


1
2
∆ωab

2(r) − γab(r; 1) − 1
2
∆ωab(r)γab(r; 1)



−β−1

a,S

ρv


dr


cuv
aS(r; 1) − 1

2
(huv

aS(r; 1))2

. (20)
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Similarly, PLHNC-like expression is obtained,

∆FPLHNC = (2β)−1

a,b


drωab(r; 0)


1
2
∆ωab

2(r)Θ(−∆ωab) − γab(r; 1) − 1
2
∆ωab(r)γab(r; 1)



−β−1

a,S

ρv


dr


cuv
aS(r; 1) − 1

2
(huv

aS(r; 1))2

, (21)

where Θ is the Heaviside step function, i.e., Θ(x) = 1 (x ≥ 0)
or Θ(x) = 0 (x < 0). These analytical expressions allow us to
readily calculate ∆F.

III. COMPUTATIONAL DETAILS

A. Models for n-alkanes in aqueous solutions

In this study, three models are employed for n-butane.
One is a model which modified CHARMM9631,32 (denoted
as Model 1) and the second is OPLS-AA33 (Model 2). In
these all-atom type models, bond lengths of C–H and C–C are,
respectively, fixed at 1.09 and 1.53 Å. Bond angles of H–C–H,
C–C–H, and C–C–C are all fixed at 109.5◦, and the torsional
part in V uu is described with the potential V Torsion for dihedral
angle φ of C–C–C–C,

V Torsion(φ) = V0 +

5
n=1

Vn[1 − (−1)n cos(nφ)], (22)

where the parameter sets, V0 = 0.000, V1 = 2.348, V2=−1.568,
V3 = 2.535, V4 = −0.784, V5 = 0.470 kcal mol−1, which corre-
spond to Scott Scheraga potential,34 are employed for “Model
1,” and OPLS-UA torsional potential35 is used for “Model 2.”
The third model (Model 3) is OPLS-UA (united atom).35 The
bond length of C–C is fixed at 1.53 Å, and the bond angle
C–C–C is fixed at 112.0◦. For other n-alkanes, from pentane
to decane, Model 3 (OPLS-UA) is used. Pentane and heptane
are also treated with Model 2 (OPLS-AA). TIP3P-type water
model is chosen as a solvent. All the Lennard Jones param-
eters and atomic charges are taken from the literature31–33,35

and listed in Table I. Non-bonded interaction between groups
separated by more than three bonds was added into the in-
tramolecular interaction potential.

B. Computational procedures

Procedures of the present method are shown in Scheme 1.
First of all, ωab(r; 0) and χab,cd(r,r ′; 0) are prepared using
the Monte Carlo simulation of an isolated solute molecule.
ωab(r; 0) is used as input for solving the RISM/HNC equations
to obtain huv and cuv, which represent the solvation struc-
ture. All of huv, cuv, and χab,cd(r,r ′; 0) are input to compute
ωab(r; 1). The obtained function is then used for evaluating
new huv and cuv, and ωab(r; 1) is also updated. This procedure
is repeated until the converged ωab(r; 1) is obtained.

In the RISM/HNC calculation, the number of grid points
and the grid width are 4096 and 0.010 bohr, respectively. In

the calculation of the integral equations for ωλ=1, the number
of grid points and the grid width are 1024 and 0.016 bohr
for Model 1. 2048 and 0.016 bohr are employed in Model 3
(OPLS-UA) and 512 and 0.032 bohr in Model 2 (OPLS-AA).
The details of grid parameters are discussed in the supplemen-
tary material.36

IV. RESULTS AND DISCUSSION

A. Conformational equilibria of n-alkanes

First, we examined n-butane in aqueous solutions. Be-
cause the molecule has only one conformational degree of
freedom, the hydration effects on n-butane have been inves-
tigated by many researchers.15,31,37–43

Fig. 1 displays the intramolecular correlation functions
between terminal carbon atoms. Results of the three different
models for an isolated molecule and aqueous solutions are
shown. (The same functions are plotted with respect to the
dihedral angle. Please see the supplementary material.36) The
temperature is set at 298.15 K with a standard density of
solvent water (1.00 g cm−3). In each model, two peaks are
found around 3.0 and 3.8 Å. The former corresponds to the
gauche conformer and the latter to the trans. The gauche peak
is broader than the trans, meaning that the structural fluctua-
tion of the gauche conformer is larger. In aqueous solutions,
the gauche peak becomes higher, which is consistent with a
conventional picture of hydrophobic interactions.

TABLE I. Lennard-Jones parameters of each atom.31–33,35

Site σ/Å ϵ/kcal mol−1 Z /e

Model 1
C(CH3) 2.001 0.078 −0.249
H(CH3) 0.835 0.024 0.066
C(CH2) 2.001 0.056 −0.121
H(CH2) 0.835 0.028 0.086

Model 2
C(CH3) 3.500 0.066 −0.180
C(CH2) 3.500 0.066 −0.120
H 2.500 0.030 0.060

Model 3
CH3 3.905 0.175 0.000
CH2 3.905 0.118 0.000

TIP3P-type water
O 3.150 0.152 −0.834
H 0.400 0.046 0.417
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SCHEME 1.

Equilibrium constant for the trans-gauche isomerization
(K = xgauche/xtrans) is estimated from the populations of gauche
(xgauche) and trans (xtrans). The results are listed in Table II
together with previous works.15,31,39–46 This molecule has been
used as a typical example to study the solvation effects on the
structural fluctuation. Though numerous potential parameters
are available, the equilibrium constants of isolated molecule
evaluated are similar, and the population of the trans conformer
is about twice as that of the gauche form. In aqueous environ-
ment, the equilibrium constant is increased in almost all the
studies. In the present calculation, both of the all atom models
(Model 1 and 2) show the similar degree of hydration effects
on K value, while the result of united atom model (Model 3)
becomes further large. As shown in the table, the computed K’s
are scattered from 0.5 to 4, and the present results fall within
these values in previous studies. The interaction potential of
Model 1 is the same as that in the work by Cui and Smith31

demonstrating the reliability of the present theory.
The intramolecular correlation functions between two ter-

minal carbon atoms in longer-chain molecules are plotted in
Fig. 2. The temperature is set at 298.15 K with a standard
density of solvent water (1.00 g cm−3). As the number of
carbon atoms is increased from n-pentane to n-decane, the
distribution becomes broader and shifts to longer. This is quan-

FIG. 1. Intramolecular correlation function between terminal carbon atoms
of n-butane.

titatively evaluated using a mean distance between terminal
carbon atoms (Table III),

⟨r⟩ =


drrω(r). (23)

The mean distances of Model 3 and 2 are, respectively, 4.72
and 4.58 Å (n-pentane), 5.74 and 5.57 Å (n-heptane). Although
former model gives slightly longer distance, both of the united-
and all-atom models exhibit the similar trend. The hydration ef-
fects shrink the solute structure, and ⟨r⟩’s are slightly decreased
in aqueous solutions. The difference due to solvation looks
to follow a regular curve with a minimum at octane-nonane
except for butane (Model 3). The gap between butane and other
alkanes may be explained in terms of pentane effect, which
does not exist only in butane. A conformation with the shortest
end-to-end distance, which is allowed geometrically, can be
taken in the case of butane. But the pentane effect prohibits
longer alkanes to take such conformations in reality. In solution
phase, butane is surrounded by solvent molecules, which is
significantly different from isolated butane. For other alkanes,
their (effective) conformational space is reduced by pentane

TABLE II. Equilibrium constants for the trans-gauche isomerization of n-butane at ambient condition.

K = xgauche/xtrans

Method Model Isolated Aqueous Reference

MD United 0.54 0.54 Tobias and Brooks40

All 0.59 0.85 Tobias and Brooks40

MC United 0.54 2.3 Rosenberg et al.41

RISM/HNC All 0.54 2.08 Cui and Smith31

RISM/HNC United 0.54 ∼4a Zichi and Rossky15

IETb United 0.50 1.2 Pratt and Chandler39

MC United 0.47 1.0 Jorgensen42

MC United 0.47 0.79 Jorgensen and Buckner43

This work
All 0.52 0.96 Model 1
All 0.48 0.90 Model 2
United 0.48 2.03 Model 3

Exp. 0.40-0.50 44–46

aReference 40, estimated from Figure 2 of Reference 15.
bTheory based on an integral equation for the pair correlation functions.
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FIG. 2. Intramolecular correlation functions between terminal carbon atoms
of n-alkanes from pentane to decane. Thick and thin lines denote Models 3
and 2, respectively.

effect, even in the isolated molecule. By closely looking at the
individual intramolecular correlation functions, gauche popu-
lations of each dihedral angle are almost unchanged by hydra-
tion except for both ends. The change of the distribution in the
figure is mainly attributed to the terminus carbons. A recent
replica exchange molecular dynamics, REMD, simulation by
Ferguson et al. shows that a water-induced chain collapse is not
observed for n-alkanes smaller than n-eicosane.6 The present
calculations up to n-decane are in qualitative agreement with
this simulation. The results of potential of mean force plots,
root-mean-square end to end distance,30

⟨r2⟩, and conforma-
tional population, 4πr2∆ω(r), of n-alkanes are also discussed
in the supplementary material.36

B. Hydration free energy

The hydration free energy of the n-butane is fundamental
interest from the viewpoint of hydrophobic effects. We calcu-
lated the ∆F (Eq. (21)) of n-butane in aqueous solutions at the
four thermodynamic conditions, for which experimental data
are available.37,38 The temperature and solvent density of these
conditions are follows: (I) 283.15 K and 0.9997 g cm−3, (II)
298.15 K and 0.9970 g cm−3, (III) 313.15 K and 0.9922 g cm−3,
and (IV) 328.15 K and 0.9875 g cm−3. The results are listed in
Table IV, where the condition I is chosen as a reference point
(∆∆F). The calculated ∆∆F using three models resembles the
experimental data. As described in Sec. IV A, computed K
depends sensitively on the model of n-butane, but the agree-

TABLE III. Mean distance between terminal carbon atoms of n-alkane,
⟨r ⟩/Å.

Model 3 Model 2

Solute Isolated Aqueous Diff. Isolated Aqueous Diff.

n-butane 3.63 3.34 −0.29 3.56 3.41 −0.15
n-pentane 4.72 4.54 −0.18 4.58 4.45 −0.13
n-hexane 5.74 5.51 −0.23 5.57 5.44 −0.13
n-heptane 6.71 6.47 −0.24
n-octane 7.66 7.39 −0.27
n-nonane 8.54 8.27 −0.27
n-decane 9.36 9.12 −0.24

TABLE IV. Hydration free energy of n-butane.

∆∆F/kcal mol−1

Model 1 Model 2 Model 3 Cui and Smith31 Expt.a

Ib 0.000 0.000 0.000 0.000 0.000
II 0.675 1.313 0.898 0.689 0.424
III 1.266 2.410 1.617 1.293 0.781
IV 1.837 3.478 2.315 1.821 1.073

aExperimental data are taken from References 31, 37, and 38.
bCondition I is chosen as a reference point, so the values equal to zero.

ment in ∆∆F is semi-quantitative. As shown in Appendix B,
the contributions from effective solvation potential (W solv) are
dominant in ∆F (Eq. (B4)). In the end, we note that the hydra-
tion free energy of n-alkanes becomes increasing as the chain
length becomes longer. However, in order to more accurately
evaluate ∆F, we have to use the repulsive bridge correction47

for RISM/HNC theory, which is beyond the scope of this paper.

V. CONCLUSION

In the present study, we developed a new theory to effi-
ciently calculate molecular structural fluctuation in solute-
solvent system at an infinite dilution. In the methodology,
the molecular structural fluctuation is described by a set of
the intramolecular correlation functions. Monte Carlo method
is employed to evaluate the fluctuation in an isolated solute
molecule, and then the solvation part is calculated based on
a new integral equation theory. An analytical expression of the
corresponding solvation free energy is also derived.

We applied the theory to a series of n-alkanes in the
aqueous solutions and examined the structural fluctuations.
The distribution of n-butane was computed, where the struc-
tural fluctuation of gauche conformer is larger than that of
trans, and the population of gauche becomes larger by hydra-
tion. The thermodynamic dependence of hydration free energy
of n-butane semi-quantitatively reproduces the experimental
value. The contributions of effective solvation potential are
dominant due to the compensation of other terms. The confor-
mations of n-alkanes up to n-decane in aqueous solutions
are also examined. The distribution of compact structures is
slightly populated due to hydration.
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APPENDIX A: VARIATIONAL PRINCIPLE

The same set of equations can be derived based on the variational principle. The procedure is very similar to that for the
standard RISM/HNC equations and begun with the trial function, L,

βL = −1
2


a,b


drωab(r; 0){e−βυab(r ;1)−βξab(r ;1) − 1 + βξab(r; 1) + β∆ωab(r)ξab(r; 1)

+
1
2
∆ωab

2(r)} − 1
8


a,b,c,d


dr


dr′γab(r; 1)χab,cd(r,r ′; 0)γcd(r ′; 1)

− 1
2


a,b


drωab(r; 0){−∆ωab(r)γab(r; 1)}

−

a,S

ρv


dr{e−βU
LJ+ES
aS

(r )+taS(r ) − 1 − taS(r) − huv
aS(r; 1)taS(r) + 1

2
(huv

aS(r; 1))2}

−

a,S

ρv


dr{−huv
aS(r; 1)cuv

aS(r; 1)}, (A1)

υab(r; 1) = −β−1

S,S′

ρv


dr′′


dr′cuv
aS(|r − r′′|; 1)χvv

SS′(|r′′ − r′|)cuv
bS′(|r′|; 1). (A2)

Here, tab = huv
aS
− cuv

aS
, ULJ+ES

aS
is the bare solute-solvent interaction potential. It is noted that, although the formal expression is

the same as that in ∆F (Eq. (20)), all (variable) functions appearing in L are freely chosen. In other words, L can be regarded as
a functional of the correlation functions ξab,∆ωab, γab, taS, huv

aS
, and cuv

aS
.

Now, variations with respect to these functions yield

δ(βL) = β

2


a,b


drωab(r; 0){e−βυab(r ;1)−βξab(r ;1) − 1 −∆ωab(r)}δξab(r; 1)

− 1
2


a,b


drωab(r; 0){βξab(r; 1) − γab(r; 1) +∆ωab(r)}δ∆ωab(r)

− 1
2


a,b


dr{1

2


c,d


dr′γcd(r ′; 1)χcd,ab(r ′,r; 0) − ωab(r; 0)∆ωab(r)}δγab(r; 1)

−

a,S

ρv


dr{e−βU
LJ+ES
aS

(r )+taS(r ) − 1 − huv
aS(r; 1)}δtaS(r)

−

a,S

ρv


dr{

b,S′


dr′′ωab(|r′′|; 1)


dr′cuv

bS′(|r′′ − r′|; 1)χvv
S′S(|r′ − r|)

− huv
aS(r; 1)}δcuv

aS(r; 1)
−


a,S

ρv


dr{−taS(r) − cuv
aS(r; 1) + huv

aS(r; 1)}δhuv
aS(r; 1). (A3)

The curly brackets in the first and second terms give the HNC-like closure for the intramolecular correlation functions (Eq. (15)).
The third one is the OZ-type equation (Eq. (14)). The fourth and fifth ones give the HNC closure and the RISM equation for the
solute-solvent intermolecular correlation functions, respectively. Finally, the sixth one defines taS.

In the present methodology, these closed equations for the correlation functions, ξab, ∆ωab, γab, taS, huv
aS

, and cuv
aS

are
iteratively solved to attain mutual convergence; namely, the converged correlation functions are consistent to each other.

APPENDIX B: COMPONENTS IN FREE ENERGY

In this section, we will consider the compensation relation between energy and entropy terms in free energy change (∆F).48

Energy part (∆E) and entropy part (T∆S) are, respectively, defined by

∆E =
(
∂(β∆F)

∂ β

)
N,V

, T∆S = β

(
∂∆F
∂ β

)
N,V

. (B1)

Using Eq. (18) for the expression of ∆F, ∆E is rewritten as follows:

∆E =

∂(βW solv(1))

∂ β


λ=1
+ β

 1

0
dλ


dW solv(λ)

dλ


λ

⟨V uu⟩λ −


dW solv(λ)
dλ

V uu

λ


. (B2)
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This is essentially a similar to the well-known expression, but the effective solvation potential (W solv) also depends on temperature,
β. T∆S is also rewritten as follows:

T∆S = β

 1

0
dλ

∂

∂ β


dW solv(λ)

dλ


λ

= β

 1

0
dλ


d
dλ

∂W solv(λ)
∂ β


λ

−


dW solv(λ)
dλ

(V uu +W solv(λ))

λ

− β


dW solv(λ)

dλ
· ∂W solv(λ)

∂ β


λ

+


dW solv(λ)

dλ


λ


V uu +W solv(λ) + β

∂W solv(λ)
∂ β


λ


. (B3)

Thus, the last two terms in Eq. (B2) are exactly canceled out in T∆S and do not contribute to the total free energy change,
∆F = ∆E − T∆S. Consequently, ∆F is written as contributions from W solv,

∆F =


W solv(1)�

λ=1

−β
 1

0
dλ


dW solv(λ)

dλ


λ



W solv(λ)�

λ
−


dW solv(λ)

dλ
·W solv(λ)


λ


. (B4)
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