京都大学瀬戸臨海実験所で観測された降水の安定同位体比の変動 特性

Characteristics of stable isotopes in precipitation observed at the Seto Marine Biological Laboratory, Kyoto University

田上雅浩¹·一柳錦平²·望月佑一^{3,4}·宮﨑勝己⁴ Masahiro Tanoue¹, Kimpei Ichiyanagi², Yuichi Mochizuki^{3,4} & Katsumi Miyazaki⁴

1 東京大学大学院工学系研究科(〒113-8656 東京都文京区弥生 2-11-16)

2 熊本大学大学院自然科学研究科(〒860-8555 熊本市中央区黒髪 2-39-1)

3一般財団法人 九州環境管理協会(〒813-0004 福岡市東区松香台 1-10-1)

4 京都大学フィールド科学教育研究センター瀬戸臨海実験所(〒649-2211 和歌山県西牟 婁郡白浜町 459)

はじめに

降水は水文現象のインプットであり、降水の安 定同位体比や動的分別の指標である d-excess (δ D-8×δ¹⁸O で定義される(Dansgaard, 1964)。ただ し、δDは水素の、δ¹⁸Oは酸素の安定同位体比で ある。)は、水文学や地球化学などの分野で天水の 起源・流動・混合のトレーサーとして広く利用さ れている。そのため、全国各地で降水の安定同位 体比の観測が行われてきた。全国的な研究として、 田上ほか(2013)は観測期間の異なる過去の研究 を収集し、降水中のδ¹⁸O および d-excess の季節 変動と空間分布を初めて明らかにした。しかしな がら、この研究では異なった期間で観測されたデ ータを用いているため、日本全国における降水の 安定同位体比の時間空間変動が十分に明らかにさ れたとは言い難い。そこで日本水文科学会の同位体 マッピングワーキンググループ (Isotope Mapping Working Group: IMWG) では、2013年に日本全国 を対象として降水の安定同位体比の集中観測を行 った(一柳, 2013, 2014)。京都大学瀬戸臨海実験 所でも IMWG の一環として観測が行われた。本報 告では、これにより観測された降水の安定同位体 比の解析結果について報告する。

研究方法

降水の安定同位体比の観測は、蒸発防止構造を 含んだ採水器を用いて 2012 年 12 月 23 日から 2013 年 12 月 20 日まで、平均採水間隔は 11.1 日 (標準偏差 3.5 日)で行った。降水サンプルの回収 後、採水量を漏斗面積で除して降水量を求めた。 気温は、京都大学瀬戸臨海実験所で観測された日 平均値を使用した。ただし、2013 年 2 月 1 日から 10 日までの気温データが欠損していたため、この 期間については気象庁の南紀白浜地点のデータを 用いた。気温データの地点間の違いを小さくする ため、この期間における気温データは京都大学瀬 戸臨海実験所と気象庁観測地点との回帰式を用い て補正した。

瀬戸臨海実験所で観測された降水の安定同位体

比の特性を調べるため、気象庁の季節内予報区分 によって分類された西日本・太平洋側に位置する 観測地点の領域平均値と比較した。観測地点によ り採水頻度が異なるため、比較は月単位で行った。 降水中のる¹⁸O は緯度によって変化するため、降水 量で重み付けした年加重平均値からの偏差を用い て比較した。降水中の d-excess は緯度による変化 が小さいため、月ごとの絶対値を用いて比較した。 領域平均値の算定は、西日本・太平洋側に属する 全20 地点におけるる¹⁸O の月偏差または d-excess の月加重平均値を算術平均して求めた。

採水された降水サンプルは100 mlのプラスチッ ク製のボトルに封入し、暗所にて分析まで保管し た。安定同位体比の分析は熊本大学大学院自然科 学研究科のガス同位体比質量分析計(Delta-V, Thermo Fisher Scientific 社製)により行った。 $\delta^{18}O$ は水-二酸化炭素平衡法により同位体平衡 となった二酸化炭素ガスを、 δD は白金触媒を用 いて同位体平衡となった水素ガスを質量分析に導 入して測定を行った。測定誤差は、 $\delta^{18}O$ で± 0.05‰、 δD で±0.5‰程度である。本報告では、 便宜上、各観測期間に ID をつけた。得られたデー タを表1に示す。

結果と考察

気象要素および降水の安定同位比の季節変動

期間平均した日降水量と日平均気温の季節変 化、および降水中のδ¹⁸Oとd-excessの季節変化 を図1に示す。日平均気温は7.1℃(N-02)~28.3℃ (N-20)であり、1月下旬(N-02,7.1℃)から7 月下旬(N-21,28.3℃)まで上昇し、8月下旬(N-23, 28.0℃)から12月上旬(N-32,10.9℃)まで低下 した。日降水量は0.64 mm/day(N-30)~29.16 mm/day(N-16)であり、6月および9月から10 月にかけて10 mm以上の期間が見られた。

降水中のδ¹⁸O は-20.4‰ (N-02) ~-2.3‰ (N-14) であり、最小値を示した N-02 を除くと、 6 月から 9 月では-7‰程度と低く、それ以外では -3‰程度と高い傾向が見られた。N-02 のδ¹⁸O が 特に低いのは、1 月 14 日~15 日に発達した南岸低 気圧が原因であり、東京都荒川区でもこの期間に おける降水中のδ¹⁸O は-23‰より低かった。 降水中の d-excess は 0.2‰ (N-15) ~31.2‰ (N-29) であり、冬季には約 30‰と高く、夏季に は約 5‰と低い傾向が見られた。田上ほか (2013) は、冬の日本海側における降水中の d-excess は 30‰となるが、それ以外の地域では 25‰より低い ことを報告している。太平洋側に位置する和歌山 でも、d-excess が 30‰に達する降水が観測された のは非常に興味深い。

 δ^{18} OをX軸に δ DをY軸にした δ -ダイアグラ ムを図2に示す。ほとんどのサンプルは、グロー バルな天水線(δ D=8×δ¹⁸O+10)付近に分布して いた。本地点で採水されたサンプルのローカルな 天水線は、δD=8.83×δ¹⁸O +18.99 (R=0.968, N=31)であった。この天水線は、琵琶湖のδD= 8.03×δ¹⁸O+15.63 (中山ほか, 2002) や京都盆地 の $\delta D = 8.39 \times \delta^{18}O + 15.48$ (薮崎・河野, 2012) と比較して傾きも切片も高かった。本地点で観測 された降水の安定同位体比の変動特性を調べるた め、IMWG の集中観測によって得られた西日本・ 太平洋側における領域平均値と比較した。図3に 瀬戸臨海実験所と西日本・太平洋側における降水 中の δ^{18} Oと d-excess の月平均値を示す。その結 果、本地点で観測されたδ180の季節変動パターン は西日本・太平洋側とよく一致しており、相関係 数は 0.75 と統計的に有意であった。ただし、12 月 では 4‰以上の大きな差が見られた。同様の結果 は、d-excess の季節変動にも見られ、12 月の d-excessの領域平均値は25‰以下だが、本地点で は30‰と大きかった。

同位体効果

気象要素と降水の安定同位体比との関係を調べ るため、降水の安定同位比を期間平均した日平均 気温および日降水量と比較した(図3)。図中の相 関係数および回帰式は、南岸低気圧のため明らか に低い N-02 を除外して求めた。その結果、日平均 気温との間に有意な相関関係が認められなかった が、日降水量とは統計的に有意な相関関係が認めら れた。日降水量との回帰式はδ¹⁸O=−0.24×P−4.57、 相関係数は-0.698 であった。この関係は降水量効 果と呼ばれ、主に熱帯域で見られる。Araguás-Araguás et al. (1998) は東アジアでは北緯 35 度以南の地域 で降水量効果が卓越することを報告しており、北 緯33度である本地点でも降水量効果が認められた ことは興味深い。今後は、他地点でも同様の解析 を行い、ローカルな天水線や同位体効果について まとめていきたい。

謝辞

IMWG に協力いただき、降水サンプリングを行っ ていただいた皆さまに感謝いたします。日本水文科 学会より 2012 年度から 2014 年度まで研究グルー プ助成を受けた。また、本研究は JSPS 科研費(基 盤 C: 24510256)の一部を使用した。

引用文献

- Araguás-Araguás, L., Froehlich, K. & Rozanski, K. 1998. Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research, 103, 28721, doi: 10.1029/98JD02582.
- Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus, 16: 436–468.
- 一柳錦平. 2013. 日本水文科学会同位体マッピングワーキンググループ (Isotope Mapping Working Group; JAHS-IMWG) 2012 年度活動報告. 日本水文科学会誌, 43(1): 31–32.
- ー柳錦平. 2014. 日本水文科学会同位体マッピン グワーキンググループ (Isotope Mapping Working Group; JAHS-IMWG) 2013 年度活 動報告. 日本水文科学会誌, 44(3): 1–3.
- 田上雅浩・一柳錦平・嶋田純. 2013. 日本における 降水の安定同位体比の季節変動と空間分布. 日本水文科学会誌, 43(4): 73-91.
- 中山友栄・谷口真人・嶋田純. 2000. 琵琶湖流域に おける降水と地下水の安定同位体比特性. 陸 水学雑誌, 61: 119–128.
- 薮崎志穂・河野忠. 2012. 京都盆地で採取した標高 別降水の安定同位体比特性. 地球環境研究, 14: 23–30.

表1.降水中の安定同位比、	および期間平均した日
降水量と日平均気温。	

ID	<u>a</u> , ,	12 1	S D	\$ 180	1	р	m
ID	Start	End	0 D	0 10	a-excess	P	(%)
Mat	2012/12/22	0010/01/00	(%)	(%)	(%)	(mm/d)	(0)
N-01	2012/12/23	2013/01/08	-32.1	-6.5	19.9	3.19	7.2
N-02	2013/01/08	2013/01/20	-158.9	-20.4	4.2	2.05	7.1
N-03	2013/01/20	2013/02/01	-2.8	-4.2	31.0	2.20	7.6
N-04	2013/02/01	2013/02/10	-23.2	-5.5	20.8	3.06	9.2
N-05	2013/02/10	2013/02/20	-24.1	-5.8	22.4	5.14	7.2
N-06	2013/02/20	2013/03/01	-32.4	-6.4	19.0	6.37	8.0
-	2013/03/01	2013/03/10	-	-	-	-	11.6
N-07	2013/03/10	2013/03/19	-17.2	-3.8	13.3	2.36	13.0
N-08	2013/03/19	2013/04/01	-4.2	-3.2	21.0	1.03	12.4
N-09	2013/04/01	2013/04/10	-45.9	-6.6	7.0	4.19	14.9
N-10	2013/04/10	2013/04/18	-13.6	-4.0	18.7	0.67	14.5
N-11	2013/04/18	2013/05/07	-5.4	-2.9	18.0	2.59	15.6
N-12	2013/05/07	2013/05/17	-29.4	-5.1	11.6	6.39	19.0
N-13	2013/05/17	2013/05/27	-35.9	-5.7	9.3	3.30	21.4
N-14	2013/05/27	2013/06/01	-12.1	-2.3	5.9	1.57	22.3
N-15	2013/06/01	2013/06/12	-27.4	-3.5	0.2	0.72	22.1
N-16	2013/06/12	2013/06/22	-72.3	-10.4	11.2	29.16	23.9
N-17	2013/06/22	2013/07/01	-62.4	-8.7	7.1	12.05	23.0
N-18	2013/07/01	2013/07/12	-42.7	-6.4	8.3	4.50	26.2
N-19	2013/07/12	2013/07/23	-46.5	-6.5	5.7	0.71	27.1
N-20	2013/07/23	2013/08/01	-42.1	-6.4	9.1	0.96	28.3
N-21	2013/08/01	2013/08/10	-50.5	-7.3	7.8	0.87	28.1
N-22	2013/08/10	2013/09/01	-58.7	-8.3	7.9	1.64	28.0
N-23	2013/09/01	2013/09/10	-37.3	-6.3	12.9	9.43	25.2
N-24	2013/09/10	2013/10/01	-48.2	-7.2	9.3	14.93	24.5
N-25	2013/10/01	2013/10/12	-10.7	-2.6	9.8	1.21	25.0
N-26	2013/10/12	2013/10/21	-72.2	-10.0	7.7	16.16	19.9
N-27	2013/10/21	2013/11/01	-21.1	-4.8	17.2	2.50	18.9
N-28	2013/11/01	2013/11/11	-52.5	-7.8	9.6	6.52	17.8
N-29	2013/11/11	2013/11/21	-13.0	-5.5	31.2	1.81	12.6
N-30	2013/11/21	2013/12/01	-1.6	-3.0	22.3	0.64	13.0
N-31	2013/12/01	2013/12/12	-13.4	-5.4	30.0	1.14	10.9

図 1. (上段) 瀬戸臨海実験所における降水中のδ¹⁸O (青線) と d-excess(赤線)の季節変化。(下段) 同実験所における採水期間中の日降水量(青線)と 日平均気温(赤線)。

図2. 瀬戸臨海実験所における降水のδ-ダイアグラム。黒線はグローバルな天水線(δD=8×δ¹⁸O+10)、 青の点線は瀬戸臨海実験所におけるローカルな天 水線を示す。

図 3. 瀬戸臨海実験所と IMWG によって得られた 西日本・太平洋側(20地点)における降水中の $\delta^{18}O$ (上段)と d-excess(下段)の季節変化。

図 4. 瀬戸臨海実験所における降水中のδ¹⁸O と期 間平均した日降水量、または日平均気温との関係。 回帰直線とその式、決定係数を示す。回帰直線の計 算には、N-02のサンプルは除外した。