Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S[1] state.

Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Hayashi, Masato; Hasegawa, Hirokazu; Ohshima, Yasuhiro

Citation:

ISSUE DATE:
2015-12-28

URL:
http://hdl.handle.net/2433/207682

RIGHT:
© 2015 AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article may be found at http://scitation.aip.org/content/aip/journal/jcp/143/24/10.1063/1.4937950.
Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S1 state

Sachi Kunishige, Toshiharu Katori, Masaaki Baba, Masato Hayashi, Hirokazu Hasegawa, and Yasuhiro Ohshima

Citation: The Journal of Chemical Physics 143, 244303 (2015); doi: 10.1063/1.4937950
View online: http://dx.doi.org/10.1063/1.4937950
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/143/24?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Spectroscopic study on deuterated benzenes. III. Vibronic structure and dynamics in the S1 state

Excitonic splitting and vibronic coupling in 1,2-diphenoxyethane: Conformation-specific effects in the weak coupling limit

A femtosecond velocity map imaging study on B-band predissociation in CH3I. II. The 2 0 1 and 3 0 1 vibronic levels

Torsional vibrational structure of the propene radical cation studied by high-resolution photoelectron spectroscopy

Rotational analysis and tunnel splittings of the intermolecular vibrations of the phenol–water complex by high resolution UV spectroscopy
Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S_1 state

Sachi Kunishige,1 Toshiharu Katori,1 Masaaki Baba,1,a) Masato Hayashi,2 Hirokazu Hasegawa,3 and Yasuhiro Oshima2,4

1Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
2Institute for Molecular Science, National Institute of Natural Science, Myodaiji, Okazaki 444-8585, Japan
3Department of Basic Science, Graduated School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
4Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152-8551, Japan

(Received 14 September 2015; accepted 2 December 2015; published online 23 December 2015)

High-resolution spectra of the $S_1 \leftarrow S_0$ transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S_1 state. The degenerate 6^1 levels of C_6H_6 or C_6D_6 are split into $6a^1$ and $6b^1$ in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between $6a$ and $6b$ because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937950]

I. INTRODUCTION

The electronic excited states of benzene are of great interest and extensive studies using various spectroscopic methods have been performed.1–4 In Paper I, we showed that the benzene molecule was a planar regular hexagon (D_{6h}) and the structure was not changed by deuterium substitution.5 In the electronic excited state, the mean molecular structure is easily varied with adiabatic and non-adiabatic interactions. High-resolution spectroscopy is powerful for investigating such interactions and excited-state dynamics. In Paper II, we discuss the vibrational and rotational level structures of deuterated benzenes. In particular, we focus on the degenerate v_6 (e_{2g}) mode of C_6H_6 which splits into v_{6a} and v_{6b} for deuterated benzenes of lower symmetry. The degenerate 6^1 levels split into two levels of different symmetries, $6a^1$ and $6b^1$, in some isotopomers. It is very important to investigate systematically the vibrational and rotational structures because they vary depending on the isotopomer. The rotational structures of C_6H_6 and C_6D_6 have been completely analyzed by Sieber et al.6 and Okruss et al.7 by high-resolution laser spectroscopy. As for the partially substituted isotopomers, there has been no report other than the work on C_6H_5D by Riedle et al.8

C_6H_6 is a planar regular hexagon (D_{6h}) and possesses 10 types of degenerate vibrations.9,10 Although the $S_1^2B^2u \leftarrow S_0^2A^1g$ transition is forbidden, the vibronic bands are observed by intensity-borrowing from other electronic states.11 Ultrahigh-resolution spectra ($\Delta \omega = 0.0001$ cm$^{-1}$) of the $S_1^2S_0$ vibronic bands were already observed for C_6H_6 and C_6D_6, and the rotational constants and Coriolis parameter were accurately determined using a least-squares fit of a large number of spectral lines.6,7,12–14 For deuterated benzenes, we performed high-resolution spectroscopy with narrow-band pulsed laser light ($\Delta \omega = 0.005$ cm$^{-1}$), which was obtained by pulse dye amplification of single-mode cw laser light. We identified the 6^1_0 (or $6a^1_0$ and $6b^1_0$) bands of every H/D isotopomer, and determined the rigid-rotor rotational constants in the excited state. Coriolis interaction shifts the rotational levels of these degenerate or near-degenerate vibrational levels. We discuss the Coriolis parameter determined by a least-squares fit of observed spectral lines.

II. EXPERIMENTAL

The mixed sample of deuterated benzenes is the same as that used in Paper I.5 Here, we briefly describe the experimental setup because the details were described previously.15,16 We generated a supersonic jet with He gas at the stagnation pressure of 70 atm. The rotational temperature was estimated to be about 1 K. The jet was collimated using a conical skimmer and crossed with a laser beam at right angles in an ionization chamber. As a source of exciting light, we used a cw single-mode Ti:sapphire laser (Spectra Physics, Matisse TROB2-W, $\Delta \omega = 0.0001$ cm$^{-1}$) pumped by a Nd$^{3+}$:YVO$_4$ laser (Spectra Physics, Millennia 10sJs). The output was pulse dye amplified using a pulsed laser (Spectra Physics LAB-190-10, 532 nm, $\Delta t = 5$ ns). The third harmonics was generated to excite the deuterated benzene molecules. In addition, we used a pulsed dye laser (Continuum ND6000JST, $\Delta \omega = 0.3$ cm$^{-1}$) pumped by a pulsed Nd$^{3+}$:YAG laser (Continuum, SureliteII-10, 355 nm) to ionize the excited molecules. The $C_6H_{6-N}D_N^-$ ion was detected by a microchannel plate (MCP) detector (Galileo) through a time-of-flight tube. The transient MCP…

a)Author to whom correspondence should be addressed. Electronic mail: baba@kuchem.kyoto-u.ac.jp

Translated by A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp
signal output was recorded by changing the wavelength of exciting laser light. The mass-selective resonance enhanced multiphoton ionization (REMPI) excitation spectrum was obtained by gating the signal at an appropriate flight time. The absolute wavelength of the exciting laser light was calibrated using a wavemeter (High Finesse WS-7).

III. RESULTS AND DISCUSSION

A. Spectral analysis

1. C₆H₅D

The top of Fig. 1 illustrates a REMPI excitation spectrum detected at the mass-to-charge ratio \(m/e = 79 \). Two bands were separately observed with the split of approximately 3 cm⁻¹. These are two components of the degenerate vibrational levels of \(\nu_6(e_u) = 1 \) in C₆H₅D, which are split because symmetry is reduced in C₆H₅D. Similar spectra were already reported by Riedle et al. Only a small number of rotational lines are seen because the rotational temperature is very low in this setup. However, it is difficult to accurately determine the high-order terms such as centrifugal distortion constants. We, therefore, analyzed the spectra using the following Hamiltonian of a vibrating-rotating molecule with a harmonic vibrator, rigid-rotor, and vibrational angular momentum terms:

\[
H = \frac{(J_x - P_r)^2}{2I_x} + \frac{(J_y - P_r)^2}{2I_y} + \frac{(J_z - P_r)^2}{2I_z} + \frac{1}{2} \sum_r (P_r^2 + \lambda_r Q_r^2).
\]

Here \(Q_r \) and \(P_r \) are a typical normal coordinate and its conjugate momentum, respectively. \(\lambda_r \) is the force constant. Eq. (1) includes Coriolis interaction, which will be discussed in detail in Section III C. Although C₆H₅D is an asymmetric top (rigid rotor rotational constants \(A \neq B \neq C \)), the spectral feature is similar to that of an oblate symmetric top \((A = B > C) \).

The rotational transition is represented by \(\Delta K_c = \pm (J'' \rightarrow J') \), where \(J \) and \(K_c \) are the quantum numbers of total angular momentum and its \(c \)-axis component, respectively. \(c \) is the principal axis, which is perpendicular to the molecular plane of benzene. The \(\pi \pi^* \) transition moment is perpendicular to this \(c \) axis, and the selection rules are \(\Delta J = 0, \pm 1 \) and \(\Delta K_c = \pm 1 \).

As shown at the bottom of Fig. 1, the main lines are assigned to \(^1R_{K_c}(J''), \ ^2R_{K_c}(J'') \), \(^1Q_{K_c}(J''), \ ^2Q_{K_c}(J'') \), \(^1P_{K_c}(J'') \), and \(^2P_{K_c}(J'') \).

The rotational constants in the ground state were accurately determined by Oldani and Bauder. Although we also determined these values using the mean molecular structure, which is given in Paper I, our values were almost identical to their values. In this spectral analysis, we used our values and determined the rotational constants at the 6a and 6b vibrational levels in the \(S_1 \) state by a least-squares fit using the PGOPHER program. The resultant values are tabulated in Table I. The rotational constants were found to be slightly different between 6a and 6b. The normal coordinates are illustrated in Fig. 2. The mean molecular structures are expected to be different in these two levels because the mean bond lengths are generally larger than the equilibrium bond lengths because of anharmonicity.

It is difficult to accurately estimate the molecular structure and vibrational energies of 6a and 6b. We therefore identified these bands referring to the results of theoretical calculations using the Gaussian 09 program package. For all isotopomers, we calculated vibrational energies of \(\nu_6 \) by TDDFT(B3LYP)/6-31++G(d,p) without considering anharmonicity. The resultant energies are scaled by 0.983. The calculations indicated that the 6a vibrational energy was about 3 cm⁻¹ smaller than 6b.

2. C₆H₄D₂

The high-resolution spectra of C₆H₄D₂ \((m/e = 80)\) are shown in Fig. 3. We found three series of 6a and 6b bands with the splits of about 2.2 and 5 cm⁻¹, respectively. There are three isotopomers for C₆H₄D₂, which are expressed as ortho, meta, and para (Fig. 2). The results of theoretical calculations for band splitting were 2.0, 2.0, and 5.3 cm⁻¹, respectively. The band observed in the higher energy region around 38 669 cm⁻¹ is easily identified to originate from \(p-C_6H_4D_2 \). Two other series are mostly overlapped in the same energy region. We assigned their rotational lines by referring to the calculated rotational constants for \(o-C_6H_4D_2 \) and \(m-C_6H_4D_2 \). Part of the expanded spectrum is shown with the assignments at the bottom of Fig. 3. The selection rules...
The simulation shown in Fig. 6 is in good agreement with intensities of rotational lines assuming a temperature of 3 K.

Upper levels, about 1.0 cm$^{-1}$ results from the energy shift by Coriolis interaction in the typical perpendicular band of an oblate symmetric top that is attributed to their different mean molecular structures, which depend on the change in bond lengths that results from anharmonicity in the potential energy.20

TABLE I. Rotational constants (cm$^{-1}$) in the 61 (or 6a^1 and 6b^1) levels of the S_1 states of deuterated isotopomers.

<table>
<thead>
<tr>
<th></th>
<th>6a^1</th>
<th>6b^1</th>
<th>6a^1</th>
<th>6b^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_6H_6</td>
<td>0.181 790 7(3)</td>
<td>0.181 790 7(3)</td>
<td>0.090 870 33(13)</td>
<td>0.105 130 2(3)</td>
</tr>
<tr>
<td>C_6H_5D</td>
<td>0.181 89(4)</td>
<td>0.170 01(4)</td>
<td>0.087 91(1)</td>
<td>0.170 45(3)</td>
</tr>
<tr>
<td>ν_0-$C_6H_5D_2$</td>
<td>0.176 05(9)</td>
<td>0.165 37(9)</td>
<td>0.085 08(2)</td>
<td>0.165 10(8)</td>
</tr>
<tr>
<td>m-$C_6H_5D_2$</td>
<td>0.175 77(6)</td>
<td>0.165 33(6)</td>
<td>0.085 02(2)</td>
<td>0.165 12(5)</td>
</tr>
<tr>
<td>ρ-$C_6H_5D_2$</td>
<td>0.181 80(9)</td>
<td>0.160 9(1)</td>
<td>0.085 88(2)</td>
<td>0.159 88(6)</td>
</tr>
<tr>
<td>1,3,5-$C_6H_5D_3$</td>
<td>0.165 46(4)</td>
<td>0.164 46(4)</td>
<td>0.082 43(2)</td>
<td>0.082 43(2)</td>
</tr>
<tr>
<td>1,2,3-$C_6H_5D_3$</td>
<td>0.165 7(3)</td>
<td>0.165 3(3)</td>
<td>0.081 8(4)</td>
<td>0.081 8(4)</td>
</tr>
<tr>
<td>1,2,4-$C_6H_5D_3$</td>
<td>0.174 4(1)</td>
<td>0.166 82(7)</td>
<td>0.082 46(2)</td>
<td>0.082 46(2)</td>
</tr>
<tr>
<td>ν_0-$C_6H_5D_3$</td>
<td>0.165 4(9)</td>
<td>0.155 2(2)</td>
<td>0.080 13(4)</td>
<td>0.080 13(4)</td>
</tr>
<tr>
<td>m-$C_6H_5D_3$</td>
<td>0.165 82(9)</td>
<td>0.155 9(1)</td>
<td>0.080 09(3)</td>
<td>0.080 09(3)</td>
</tr>
<tr>
<td>ρ-$C_6H_5D_3$</td>
<td>0.169 9(2)</td>
<td>0.151 2(2)</td>
<td>0.079 98(3)</td>
<td>0.079 98(3)</td>
</tr>
<tr>
<td>$C_6H_6D_4$</td>
<td>0.160 32(2)</td>
<td>0.151 31(2)</td>
<td>0.077 59(5)</td>
<td>0.077 59(5)</td>
</tr>
<tr>
<td>C_6D_6</td>
<td>0.151 107 2(2)</td>
<td>0.151 107 2(2)</td>
<td>0.075 412 24(10)</td>
<td>0.075 412 24(10)</td>
</tr>
</tbody>
</table>

$\Delta T_0 (\text{cm}^{-1}) = T_0^0 - T_0^0 (\text{C}_6\text{H}_3) = T_0^0 - 38 606.1025$. Here, $T_0^0 (\text{C}_6\text{H}_3)$ is the rotationless origin of 61_0 band of C_6H_6, and T_0^0 represents the rotationless band origin of each band.

\begin{align}
\Delta T_0 (\text{cm}^{-1}) = T_0^0 - T_0^0 (\text{C}_6\text{H}_3) = T_0^0 - 38 606.1025 & \nonumber \\
\end{align}

$\Delta T_0 (\text{cm}^{-1}) = T_0^0 - T_0^0 (\text{C}_6\text{H}_3) = T_0^0 - 38 606.1025$. Here, $T_0^0 (\text{C}_6\text{H}_3)$ is the rotationless origin of 61_0 band of C_6H_6, and T_0^0 represents the rotationless band origin of each band.

B. Band origins and rotational constants

Because the spectral features of $C_6H_5D_4$ and $C_6H_5D_3$ were analogous to those of $C_6H_5D_2$ and $C_6H_5D_2$, respectively, we did not describe the analysis procedure in detail. We can determine the band origins of $S_1 \leftarrow S_0$ 6a^1_0 and 6b^1_0 bands, rigid-rotor rotational constants, and Coriolis parameters for deuterated benzene isotopomers. The results are listed in Table I.

The degenerate 61_0 vibration levels of C_6H_6 split into two different energy levels because of reduced symmetry that results from deuteration substitution. We express them as 6a and 2b, of which the energy difference ΔE_{a-b} is 2.5 cm$^{-1}$. We define 6a and 2b by the normal coordinates, as shown in Fig. 2. The relative energies depend on the isotopomers. The rotational constants are appreciably different between the 6a and 6b levels. This is attributed to their different mean molecular structures, which depend on the change in bond lengths that results from anharmonicity in the potential energy.20

C. Coriolis parameters

Coriolis interactions about the z axis (out of plane) occur on the rotational levels of degenerate ν_6 vibrations or nearly-degenerate ν_{2a} and ν_{2b} vibrations. We consider an approximate treatment of the experimental results.17 The vibrational angular momentum about the z axis is generally given by

\begin{align}
P_z = - \sum_n \hbar \left[x_n \left(\frac{\partial}{\partial y_n} \right) - y_n \left(\frac{\partial}{\partial z_n} \right) \right].
\end{align}

where x_n and y_n are the mass-adjusted Cartesian displacement coordinates of the atom n. They are defined by

\begin{align}
x_n = \sqrt{m_n} X_n, \quad y_n = \sqrt{m_n} Y_n,
\end{align}

where m_n is the atomic mass. X_n and Y_n are dimensionless parameters, which are the atomic displacement coordinates divided by normal vibrational coordinates. The vibrational
FIG. 2. Normal coordinates of 6a and 6b vibrations of C\(_6\)H\(_5\)D and three C\(_6\)H\(_4\)D\(_2\) isotopomers.

angular momentum is also expressed in terms of the normal coordinates of \(r\) and \(s\) modes,

\[
P_z = \sum_r \sum_s \xi_{r,s}^z [Q_r P_s - Q_s P_r].
\]

(4)

Although the sums are generally taken over all possible combinations of \(Q_r\) and \(Q_s\), only the sums for the combination of \(Q_{6a}\) and \(Q_{6b}\) were used. The Coriolis zeta constant is defined by

\[
\xi_{r,s}^z = \sum_n \left[\left(\frac{\partial x_n}{\partial Q_r} \right) \left(\frac{\partial y_n}{\partial Q_s} \right) - \left(\frac{\partial x_n}{\partial Q_s} \right) \left(\frac{\partial y_n}{\partial Q_r} \right) \right].
\]

(5)

The sign of \(\xi_{r,s}^z\) depends on the choice of sense of \(Q_r\) and \(Q_s\), and the order of \(r\) and \(s\).

For a pair of normal coordinate of degenerate or near-degenerate vibrational modes 6a and 6b, the Coriolis zeta constant is given by

\[
\xi_{6a,6b}^z = \sum_n \left[\left(\frac{\partial x_n}{\partial Q_{6a}} \right) \left(\frac{\partial y_n}{\partial Q_{6b}} \right) - \left(\frac{\partial x_n}{\partial Q_{6b}} \right) \left(\frac{\partial y_n}{\partial Q_{6a}} \right) \right].
\]

(6)

The Hamiltonian (Eq. (1)) consists of three terms

\[
H = H_n + H_r + H'.
\]

(7)
H_r is the term on a rigid rotor and is expressed as

\[H_r = \frac{J_x^2}{2I_x} + \frac{J_y^2}{2I_y} + \frac{J_z^2}{2I_z}, \]

(8)

where \(J_x, J_y, \) and \(J_z \) are the components of total angular momentum, and \(I_x, I_y, \) and \(I_z \) are the moments of inertia. It is also expressed using the rotational constants

\[H_r = AJ_x^2 + BJ_y^2 + CJ_z^2 \]

\[= \frac{1}{2}(A + B)J^2 + \left[C - \frac{1}{2}(A + B) \right] J_z^2 \]

\[+ \frac{1}{4}(A - B)(J_x^2 + J_y^2). \]

(9)

The relationship between the molecular axes \(x, y, z \) and the rotational principal axes \(a, b, c \) is complicated and depends on the symmetry.

\(H_v \) is the term of harmonic vibrations. \(H' \) is the term of perturbation involving the vibrational angular momentum and is given by

\[H' = -\frac{P_x}{I_x} J_x + \frac{P_y}{I_y} J_y + \frac{P_z^2}{2I_z} + \frac{P_y^2}{2I_y} + \frac{P_z^2}{2I_z}. \]

(10)

The Coriolis interaction between 6a and 6b arises from the \(P_z \) terms. Assuming that the \(P_z^2 \) term is negligibly small, we obtain

\[H' = -\frac{P_z}{I_z} J_z = -2C \xi_{6a,6b} \Omega \]

(11)

The experimental Coriolis parameter \(\xi_{6a,6b} \) for level energy shifts is defined by

\[\xi_{6a,6b} = [2C \xi_{6a,6b} \Omega]. \]

(12)

\(\Omega \) is given by

\[\Omega = \frac{1}{2} \left(\sqrt{\frac{\nu_{6a}}{\nu_{6b}}} + \sqrt{\frac{\nu_{6b}}{\nu_{6a}}} \right) \]

(13)

and the value can be estimated to be equal to one.

First we obtained the \(\xi_{6a,6b} \) value using a least-squares fit of the transition wavenumbers of observed spectral lines for the 6a\(_0^1\) and 6b\(_0^1\) bands of deuterated benzenes. In this case, the selection rules of Coriolis interaction about the \(c \) axis are \(\Delta J = 0, \Delta K_c = 0 \). The level energies are obtained by diagonalizing the matrix.
changes with the number of D atoms (N_{D}) approximately presented by

$$
\xi^\ast_{6a,6b} = \frac{m_n}{(\mu_{6a})^{1/2}(\mu_{6b})^{1/2}} (X_{6a,n}Y_{6b,n} - Y_{6a,n}X_{6b,n}),
$$

(15)

where μ_{6a} and μ_{6b} are the reduced masses for normal vibrations of $6a$ and $6b$, respectively. If we assume that the displacements and reduced mass are identical for all H/D isotopomers, the difference of $\xi^\ast_{6a,6b}$ between C_6H_6 and an isotopomer is approximately presented by

$$
\xi_{6a,6b}^\ast - \xi_{6a,6b}'' = \frac{1}{(\mu_{6a})^{1/2}(\mu_{6b})^{1/2}} \times \sum_{n'} [\Delta m_{n'} (X_{6a,n}Y_{6b,n'} - Y_{6a,n'}X_{6b,n'})].
$$

(16)

Here, $\xi_{6a,6b}^\ast$ and $\xi_{6a,6b}''$ are the Coriolis zeta constants of a substituted molecule and of C_6H_6, respectively. n' represents the deuterated nuclei, and $\Delta m_{n'}$ is the change of nuclear mass of n' in the substitution. This indicates that the change in $\xi_{6a,6b}^\ast$ by isotopomers is proportional to N_{D}. The $\xi_{6a,6b}^\ast$ value is therefore expected to depend on the square of N_{D}. The change in C and $\xi_{6a,6b}$, however, is very small compared with their own values. It is therefore concluded that $\xi_{6a,6b}$ is approximately proportional to N_{D}. We could obtain the atomic coordinates and displacements for $6a$ and $6b$ by the vibrational calculation, explained in Section III A 1, and finally estimated the $\xi_{6a,6b}^\ast$ values of all isotopomers. The results are also shown in Fig. 7. These calculated values are in good agreement with the experimental ones. It should be noted that the changes in normal coordinates with isotopomers possibly affect the $\xi_{6a,6b}^\ast$ value. The change in the calculated values using only the normal coordinate of C_6H_6 was significantly smaller than that using each individual normal coordinate of deuterated benzenes. Even so, it has been shown that $\xi_{6a,6b}$ decreases proportionally with N_{D}.

The linear dependence of the Coriolis parameter on the N_{D}, however, is not always valid. According to the calculation using Gaussian 09, the displacement and reduced mass of $6a$ and $6b$ do not vary much by deuterium substitution. This is because the displacements of $6a$ and $6b$ consist mainly of ring deformation and do not change much by deuterium substitution. On the other hand, if we calculate the modes which contain sufficient H/D nuclei displacements, the reduced mass and displacement will be quite different by substitution and Eq. (16) does not hold.

IV. CONCLUSIONS

For all deuterated benzenes, we analyzed the vibrational and rotational structures of the $6a^1$ and $6b^1$ vibrational levels in the S_1 state. Although the two levels are degenerate in C_6H_6, C_6D_6, and $1,3,5-C_6H_2D_3$, they are split by 2-5 cm$^{-1}$ in other isotopomers. The results of theoretical calculation are in good agreement with our observations, and are useful to identify the observed spectral bands. The rotational constants were shown to be appreciably different between the $6a^1$ and $6b^1$ vibrational levels. We suggest that the mean molecular structures in these levels depend on their normal coordinates and anharmonicity in the potential energy. The rotational levels are shifted by Coriolis interaction between these two levels.

Spectral analysis showed that the Coriolis parameter $\xi_{6a,6b}^c$ decreased with N_{D}. This tendency was understood by theoretical consideration and was verified by model calculations based on the molecular structure and normal coordinates of $6a$ and $6b$ modes. The Coriolis zeta constant delicately varies with the normal coordinates.

ACKNOWLEDGMENTS

This work was supported by the Joint studies Program (2012-2014) of the Institute for Molecular Science.

APPENDIX: NUCLEAR SPIN STATISTICS

The intensity of each rotational line is proportional to the multiplicity of nuclear spin levels. H and D nuclei possess nuclear spins of $I = 1/2$ and $I = 1$, respectively, so that the multiplicity depends on the number of D atoms and substituted positions. We represent the nuclear wave function of a molecule as

$$
\Psi_{\text{nuc}} = \Psi_v \Psi_r \Psi_I.
$$

(A1)

Here, Ψ_v, Ψ_r, and Ψ_I are the vibrational, rotational and nuclear spin parts, respectively. An H nucleus is a fermion.
whose wave function is anti-symmetric (changes the sign with respect to exchange of the particle), while a D nucleus is a boson that has a symmetric wave function. If we consider the zero-vibrational level in the electronic ground state, Ψ_s is symmetric. The symmetry of Ψ_s, therefore, depends on Ψ_f. In Table II, the symmetries (irreducible representations) of Ψ_f and Ψ_{nuc} are listed for all deuterated benzenes. We ignore the parity here because the σ_h operation never exchanges the particles in a planar molecule. $ee\varepsilon_0o\varepsilon_0o\varepsilon_0o$ represents the ratio of nuclear spin state multiplicity for the odd or even K_cK_c rotational levels. The total number of the nuclear spin states is 2^{N_6-N}, where N is the number of H atoms.

For the symmetric-top molecules such as C$_6$H$_6$, 1,3,5-C$_6$H$_3$D$_3$, and C$_6$D$_6$, the nuclear spin statistics are somewhat complicated because Ψ_s includes E symmetry (second-order irreducible representation). The nuclear spin state multiplicity S_{J,K_c} for the three isotopomers is presented in Table III. The line intensity strongly depends on the rotational quantum numbers J and K_c.

<table>
<thead>
<tr>
<th>Isotopomer</th>
<th>K_c</th>
<th>J</th>
<th>Ψ_f</th>
<th>Ψ_{nuc}</th>
<th>S_{J,K_c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_6$H$_6$</td>
<td>6p</td>
<td>$A_1 + A_2$</td>
<td>$B_1 + B_2$</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$6p-5, 6p-1$</td>
<td>E_1</td>
<td>E_1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$6p-4, 6p-2$</td>
<td>E_2</td>
<td>E_2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$6p-3$</td>
<td>$B_1 + B_2$</td>
<td>$A_1 + A_2$</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>$J = even$</td>
<td>A_1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$J = odd$</td>
<td>A_2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1,3,5-C$_6$H$_3$D$_3$</td>
<td>3p</td>
<td>$A_1 + A_2$</td>
<td>$A_2 + A_1$</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$3p-1, 3p-2$</td>
<td>E_1</td>
<td>E_1</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>$J = even$</td>
<td>A_1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$J = odd$</td>
<td>A_2</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>C$_6$D$_6$</td>
<td>6p</td>
<td>$A_1 + A_2$</td>
<td>$A_1 + A_2$</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$6p-5, 6p-1$</td>
<td>E_1</td>
<td>E_1</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$6p-4, 6p-2$</td>
<td>E_2</td>
<td>E_2</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$6p-3$</td>
<td>$B_1 + B_2$</td>
<td>$B_1 + B_2$</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>$J = even$</td>
<td>A_1</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$J = odd$</td>
<td>A_2</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

