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Abstract 23 

The reintroduction of ex situ conserved individuals is an important approach for conserving 24 

threatened plants and reducing extinction risk. In this study, we elucidated the effects on the genetic 25 

diversity of wild populations of Vincetoxicum pycnostelma Kitag. [= Cynanchum paniculatum 26 

(Bunge) Kitag.] by modelling the genetic consequences of reintroducing plants using the germinated 27 

seeds of herbarium specimens. This semi-natural grassland herb is threatened in Japan. First, we 28 

tested the germinability of seeds from herbarium specimens collected from nine sites in Kinki and 29 

Tokai districts, Japan (one specimen per site, total 206 seeds). Next, we analysed the genetic 30 

diversity and structure of germinated seedlings and the current wild individuals using nine 31 

polymorphic microsatellite markers. Germination was observed for 38 seeds (18.4%) from four 32 

specimens collected 3–18 years prior to the study. Although the genetic diversity of the specimens’ 33 

seeds was lower than that of the wild population because of the small sample size, the seedlings from 34 

specimens taken from three sites had unique alleles that did not exist in the wild populations. 35 

Consequently, viable herbarium specimens’ seeds with unique alleles could be useful resources for 36 

recovering the genetic diversity in threatened wild plant populations.  37 

 38 
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reintroduction 40 
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Introduction 42 

Many species worldwide face an extinction crisis because of the destruction and fragmentation of 43 

habitats as a result of human activities (Ceballos and Ehrlich 2002; Hooper et al. 2005; Aguilar et al. 44 

2006). To conserve the populations of threatened species, it is crucial to maintain not only population 45 

size and habitat but also genetic diversity for preventing the decline in reproductive success owing to 46 

inbreeding depression, which would escalate the extinction risk (Keller and Waller 2002; Mattila et 47 

al. 2012; Palomares et al. 2012). Furthermore, a loss of genetic diversity would compromise their 48 

adaptive potential, particularly in the face of concerns pertaining to climate change (Blows and 49 

Hoffmann 2005; Willi et al. 2006). 50 

   Although the conservation of natural habitat is critical for conserving ecological interactions, in 51 

situ and ex situ conservation is also appropriate for safeguarding individual species against 52 

extinction in the wild. For example, use of soil seed bank is an in situ natural resource for the 53 

reproduction of plants that is effective for the restoration of genetic diversity (Uesugi et al. 2007; 54 

Zaghloul et al. 2013). On the other hand, the primary purpose of ex situ conservation is to maintain 55 

wild species outside their natural habitat so that species recovery and reintroduction can be 56 

attempted if the wild populations severely decline or become extinct. It is well known that preserved 57 

seeds are useful as ex situ populations (Honnay et al. 2008; Frankham et al. 2009; Hoban and 58 

Schlarbaum 2014). The reintroduction of many individuals germinated from preserved seeds also 59 

allows the recovery of population size and genetic diversity (Honnay et al. 2008; Guerrant et al. 60 

2014; Hoban and Schlarbaum 2014). Thus, projects to preserve the seeds of many plants are used 61 

worldwide and comprise an efficient method for plant reintroduction and conservation (Schoen and 62 

Brown 2001; Guerrant et al. 2014; Hoban and Schlarbaum 2014). For example, the ‘Millennium 63 
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Seed Bank Project’ of the Royal Botanic Gardens, Kew, the ‘Svalbard Global Seed Vault’ and many 64 

other botanical gardens store wild and cultivated plant seeds as a resource for future use in 65 

conservation translocations and crop development (Schoen and Brown 2001; Van Slageren 2003; 66 

Qvenild 2008; Alsos et al. 2013).  67 

   However, re-establishment of the seeds collected in the past has risks pertaining to inbreeding 68 

and inbreeding depression if the sources are restricted or population size is small (Frankel and Soulé 69 

1981; Schoen and Brown 2001). In addition, reintroduced individuals collected from remote habitats 70 

would also have reduced fitness because of local adaptation (Becker et al. 2006; Leimu and Fischer 71 

2008; Hereford 2009). Furthermore, reintroduced individuals that are genetically distinct from a wild 72 

population would not only have a risk of outbreeding depression (Montalvo and Ellstrand 2001; Huff 73 

et al. 2011), but would also lead to the loss of the local genetic identity of the native population 74 

(Gottelli et al. 1994; Milián-García et al. 2014). Accordingly, to conserve threatened plants by 75 

reintroducing individuals from preserved seeds, it is very important to collect many seeds from 76 

widely dispersed populations (Falk and Holsinger 1991; Hoban and Schlarbaum 2014). However, 77 

collecting seed resources of threatened or locally extinct species from wild populations may be 78 

difficult, although seed banking projects throughout the world have been recently constructed and 79 

followed the protocols to ensure the maintenance of genetic diversity (León-Lobos et al. 2012; 80 

Guerrant et al. 2014; Hoban and Schlarbaum, 2014). Herbarium specimens in museums can retain 81 

viable and germinable diaspores (Windham et al. 1986; Bowles et al. 1993; Lledó et al. 1996; 82 

Magrini et al. 2010; Magrini 2011; Bewley et al. 2013; Shiga 2013); therefore, they have potential as 83 

a reintroduction resource. Furthermore, the viable diaspores in herbaria specimens are also useful for 84 

the conservation of threatened local populations in each plant species because presumably the 85 
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specimens are collected from these populations. Despite the potential use of herbarium specimens’ 86 

seeds, the effect of reintroduced seeds on the restoration of genetic diversity has not been studied, 87 

and it is unknown whether genetic diversity now lost in wild populations can be found in herbarium 88 

collections. 89 

Vincetoxicum pycnostelma Kitag. [= Cynanchum paniculatum (Bunge) Kitag.] (Fig. 1a), subfamily 90 

Asclepiadoideae of Apocynaceae, is a perennial herb that grows in semi-natural grasslands in Japan, 91 

Korea, China, Mongolia and Russia (Yamazaki 1993; Wu and Raven 1995; Flora of Korea Editorial 92 

Committee 2007). Although this species was common a few decades ago, its populations have 93 

rapidly declined because of land-use changes in semi-natural grasslands in Japan (Environment 94 

Agency of Japan 2000; Uematsu et al. 2010). It is estimated that the extinction probability after 100 95 

years is 96% (Environment Agency of Japan 2000). The species is categorized as ‘near threatened’ in 96 

the Japanese Red List (Ministry of the Environment Government of Japan 2012). Many other native 97 

herbaceous plants have also experienced a rapid decline in semi-natural grasslands (Koyanagi and 98 

Furukawa 2013); hence V. pycnostelma is a prime example of these rare and threatened species. 99 

In this study, we examined the germinability of seeds from herbarium specimens of V. pycnostelma 100 

and we assessed the effect on the genetic diversity and structure of the wild populations by 101 

modelling the reintroduction of germinated seeds. We also discuss suitable methods for collecting 102 

and managing herbarium specimens’ seeds at museums that are to be used for conserving not only 103 

threatened plants but also the local populations in each species. 104 

 105 

Materials and methods 106 

Selection of herbarium specimens 107 
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Seeds were collected from the herbarium of the Osaka Museum of Natural History, Japan (Figs. 1a, 108 

b). The museum was established in 1974, and the herbarium preserves more than 270,000 vascular 109 

plant specimens (Osaka Museum of Natural History 2012). In this herbarium, insect control involved 110 

naphthalene application and fumigation with carbon disulphide; the room temperature was not 111 

controlled until 2000. However, since 2001, integrated insect control has been performed by 112 

applying naphthalene and freezing treatments and the room conditions have been controlled at 20°C 113 

and 50% humidity. In the herbarium, 206 seeds from nine specimens with mature fruits (one 114 

specimen per site) from Kinki and Tokai districts, Japan, had been collected (Fig. 2). The ages of the 115 

nine stored specimens were from 4 to 62 years (Table 1). Seeds were collected from only one fruit 116 

per specimen. After the germination test, specimens of the seedlings or seeds were mounted and 117 

donated to the Osaka Museum of Natural History with annotation cards. 118 

 119 

Germination test of herbarium specimens’ seeds 120 

Germination of the herbarium specimens’ seeds was tested using the screening test system 121 

(Washitani 1987) under a 12/12-h photoperiod and two temperature regimes: 1) a gradually 122 

increasing temperature regime from 4°C to 36°C at intervals of 4°C (IT) and 2) a gradually 123 

decreasing temperature regime from 36°C to 4°C at intervals of 4°C (DT). The two treatments were 124 

conducted because the preservation condition in the herbarium may have affected the dormancy of 125 

the specimens’ seeds, and it was predicted that a cold stratification treatment would be required to 126 

break the seed dormancy of V. pycnotelma (Zhou et al. 2003). Considering that growth rate increases 127 

with temperature, the duration of the higher temperature treatment was less than the duration of the 128 

lower temperature treatment (Table S1). After reaching the final temperature in each regime, these 129 
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seeds were incubated at 25°C (DT, 5 days) or treated at alternating temperatures of 12°C and 25°C at 130 

24-h intervals (IT, total 5 days). The number of germinated seedlings was counted when the 131 

temperatures were changed, and the seedlings were moved to an incubator at 25°C to determine 132 

whether they would grow normally. For microsatellite analysis, we selected well-growing plants 133 

among 32 samples of 38 seedlings obtained from four specimen sheets. The germination test was 134 

conducted in June 2012 (Site i) and May 2013 (Sites a–h; Table 1).  135 

   The ungerminated seeds were tested using tetrazolium (2,3,5-triphenyl tetrazolium chloride) to 136 

examine their viability (Cottrell 1947; Elias et al. 2012). The seeds were cut and stained for 48 h in 137 

the dark with 1% tetrazolium solution, and seeds that stained red were defined as viable. 138 

 139 

Sampling and microsatellite analysis 140 

In 2012 and 2013, leaf samples from 131 adult individuals were collected from sites same as those 141 

from where the herbarium specimens had been collected (Figs. 1c and 2). The samples were used to 142 

estimate the genetic diversity among the extant populations (Table 2). At all sites, we 143 

comprehensively collected samples from each entire patch. Because V. pycnotelma at Site e was 144 

locally extinct, we collected leaf samples from a neighbouring population located one kilometre 145 

away. The number of individuals was counted at each site. 146 

   Genomic DNA was extracted using a modified cetyltrimethylammonium bromide method 147 

(Milligan 1992). The genotypes of each individual, including wild populations and specimens’ 148 

seedlings, were characterized at nine microsatellite loci. Seven of the nine loci were characterized by 149 

Nakahama et al. (2012): Vpy002, Vpy006, Vpy012, Vpy013, Vpy16, Vpy018 and Vpy022. Two of the 150 

nine loci were developed by Nakahama et al. (unpublished data): Vpy025 (GenBank accession 151 
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number: AB948217) and Vpy031 (GenBank accession number: AB948218). Polymerase chain 152 

reaction (PCR) amplifications, except for those of Vpy025 and Vpy031, were performed following 153 

the standard protocol of the Qiagen Multiplex PCR kit (Qiagen) with a final reaction volume of 5 μL, 154 

which contained 16 ng extracted DNA, 2.5 μL of 2× Multiplex Master Mix and 0.2 μM of each 155 

multiplexed primer. For Vpy025 and Vpy031, the forward primer was synthesized with the M13 tag 156 

sequence (Vpy025 5′-CACGACGTTGTAAAACGAC-3′, Vpy031 5′-TGTGGAATTGTGAGCGG-3′; 157 

Boutin–Ganache et al. 2001). The PCR mixtures of Vpy025 and Vpy031 had a final volume of 5 μL, 158 

which included 16 ng extracted DNA, 2.5 μL of Multiplex PCR Master Mix, 0.01 μM forward 159 

primer, 0.2 μM reverse primer and 0.1 μM M13 fluorescent primer. The PCR amplifications of all 160 

loci were carried out using a GeneAmp PCR System 2700 thermal cycler (Applied Biosystems, 161 

Tokyo, Japan) using the following conditions: initial denaturation at 95°C for 15 min, followed by 162 

25 cycles of 30 s at 94°C, 1.5 min at 57°C and 1 min at 72°C, and a final extension for 30 min at 163 

60°C. The PCR product size was measured using an ABI PRISM 3130 Genetic Analyzer (Applied 164 

Biosystems) and GeneMapper ver. 4.1 (Applied Biosystems). 165 

 166 

Statistical analysis of the genetic diversity and structure 167 

Genetic diversity was evaluated for the specimens’ seedlings, the wild populations and the 168 

hypothetical mixed populations, which comprised a hypothetical mixing of the specimens’ seedlings 169 

and each corresponding wild population. The genetic diversity was evaluated in terms of the 170 

following: average number of alleles per locus, allelic richness (El Mousadik and Petit 1996), 171 

summed number of rare alleles with frequencies less than 5% among the total population, expected 172 

heterozygosity, observed heterozygosity and inbreeding coefficient. We also evaluated the summed 173 
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number of unique alleles that were only present in specimens’ seedlings from each site. All of these 174 

parameters, except allelic richness summed number of rare and unique alleles, were calculated using 175 

GenAlEx version 6.41 (Peakall and Smouse 2006). Allelic richness, deviation from Hardy–Weinberg 176 

equilibrium and the linkage disequilibrium between loci were also determined using FSTAT ver. 177 

2.9.3 software (Goudet 2001). The significances of the heterozygosity excess and deficit values were 178 

tested by comparison with the 95% confidence intervals derived from 108,000 randomizations. 179 

We evaluated the genetic relationships between the wild populations at all sites using Bayesian 180 

clustering with STRUCTURE ver. 2.3.4. (Pritchard et al. 2010), which assigns individuals into K 181 

clusters. The population structure was simulated with the values of K = 1–8 under an admixture 182 

model and the correlated allele frequency model (Hubisz et al. 2009). All runs involved one million 183 

Markov chain Monte Carlo iterations after a burn-in period of one million iterations. Twenty runs 184 

were performed for each value of K. The F value, the estimated amount of genetic drift between each 185 

cluster and a common ancestral population and the expected heterozygosity were calculated. The 186 

number of clusters was determined by comparing the mean values and the variability of log 187 

likelihoods for each run. To select the optimal value of K, STRUCTURE HARVESTER was used 188 

(Earl and vonHoldt 2012). We also evaluated genetic relationships between the wild populations and 189 

specimens’ seedlings at each site by the same method. 190 

   To evaluate genetic differentiation between specimens’ seedlings and wild populations for each 191 

site at the individual level, we calculated pairwise co-dominant genotypic distances (Smouse and 192 

Peakall 1999) between all specimens’ seedlings and wild individuals from all sites. We also 193 

performed principal co-ordinates analysis (PCoA) using GenAlEx version 6.41 (Peakall and Smouse 194 

2006).  195 
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 196 

Results 197 

Germination and viability of herbarium specimens’ seeds 198 

A total of 38 seeds, representing four herbarium specimens, were germinated out of a total of 206 199 

seeds (Fig. 1d and Table 1). The germination percentage for seeds from each specimen ranged from 200 

0% to 56.5%, with an average of 18.4%. The oldest germinated specimens’ seeds were collected 18 201 

years prior to the study. Under the IT and DT conditions, seed germination from two and four 202 

specimens were observed, respectively. Each 18.4% of the seeds germinated in both conditions. 203 

Furthermore, 3.0% of ungerminated seeds were confirmed to be viable according to the tetrazolium 204 

dye test (Table 1). The viable seeds were collected from three herbarium specimens, which were 205 

collected 9 to 18 years prior to the study. The ungerminated viable seeds were confirmed only in the 206 

IT condition.  207 

 208 

Genetic diversity of seedlings from herbarium specimens, wild populations and hypothetical mixed 209 

populations 210 

There was no evidence for large allele dropouts or null alleles in the data set. The numbers of alleles, 211 

the allelic richness and the expected heterozygosity of herbarium specimens’ seedlings was 212 

considerably lower than those of the wild populations because their allele frequencies were 213 

dominated by a few alleles, although the observed heterozygosity of the seedlings was similar 214 

between wild populations and specimens seedlings at all sites. At Sites e, g and i, the number of 215 

alleles of hypothetical mixed populations were higher than those of the wild populations because one 216 

to three unique alleles existed only in the seedlings. The allelic richness of the hypothetical mixed 217 
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populations was higher than that of the wild populations only at Site e. Although rare alleles were 218 

much more common in the wild populations than in the seedlings at all sites, the seedlings had some 219 

rare alleles at all sites. Unique alleles in the specimens’ seedlings were found at the three sites except 220 

Site d. At Sites e and i, the expected heterozygosity of the hypothetical mixed populations was more 221 

than that of the wild populations. The inbreeding coefficient of the seedlings ranged from −0.767 to 222 

−0.205, whereas that of the seedlings at Site i indicated significant heterozygosity excess (Table 2). 223 

On the other hand, no wild populations exhibited significant heterozygosity excesses. Significant 224 

linkage disequilibrium occurred at Site g for only one pair of loci (Vpy002/Vpy013; P < 0.05). 225 

 226 

Genetic differentiation and structure of herbarium specimens’ seedlings and wild populations 227 

The STRUCTURE analysis indicates that the wild populations were divided into distinct genetic 228 

clusters (Fig. 3a). The ΔK value representing the hierarchical approach for the STRUCTURE 229 

analysis was clearly the highest at K = 2 (Fig. S1a). In addition, the variance of log likelihood 230 

between runs was low and the ΔK value was high at K = 3 (Fig. S1a). Therefore, K = 3 also yielded 231 

meaningful results. Thus, the results obtained with K = 2 and K = 3 are shown (Fig. 3a). When K = 2, 232 

the individuals were divided into two clusters. The wild populations at Sites d, e and i were assigned 233 

to cluster I, and the wild population at Site g was assigned to cluster II. The F value of cluster I was 234 

higher than that of cluster II, and the expected heterozygosity of clusters I and II were 0.780 and 235 

0.747, respectively (Fig. 3a). When K = 3, cluster I from the K = 2 analysis was divided into two 236 

clusters. The wild population at Site g was assigned to cluster II and those at Sites e and i were 237 

assigned to cluster III. The F value of cluster III was lower than that of cluster I and II, and the 238 

expected heterozygosity of cluster I, II and III were 0.743, 0.742 and 0.781, respectively (Fig. 3a). 239 
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The wild populations and specimens’ seedlings were also divided into distinct genetic clusters (Fig. 240 

3b). The ΔK value representing the hierarchical approach for the STRUCTURE analysis was clearly 241 

highest at K = 3 (Fig. S1b). Thus, K = 3 was the uppermost hierarchical level of the genetic structure. 242 

In addition, the variance of log likelihood between runs was low and the ΔK value was high at K = 4 243 

(Fig. S1b). Therefore, K = 4 also yielded meaningful results. Thus, the results obtained with K = 3 244 

and K = 4 are shown (Fig. 3b). When K = 3, the individuals were clearly divided into three clusters. 245 

The wild population and herbarium specimens’ seedlings at Site d and the seedlings at Site e were 246 

assigned to cluster I. The wild populations at Sites e, g and i were assigned to cluster II. The 247 

seedlings at Sites g and i were assigned to cluster III. The F values of cluster I and III were higher 248 

than that of cluster II, and the expected heterozygosity of clusters I, II and III were 0.672, 0.787 and 249 

0.584, respectively (Fig. 3b). When K = 4, cluster II from the K = 3 analysis was divided into two 250 

clusters. The wild population at Site g was assigned to cluster II and the wild populations at Sites e 251 

and i were assigned to cluster III. The F values of cluster I and IV were higher than those of cluster 252 

II and III, and the expected heterozygosity of cluster I, II, III and IV were 0.667, 0.744, 0.786 and 253 

0.584, respectively (Fig. 3b). 254 

   According to PCoA based on co-dominant genotypic distances, about 48.9% of the total 255 

variation was described by the first two axes (Fig. 4). The specimens’ seedlings and the wild 256 

individuals were plotted as a single group at Site d. On the other hand, the plots of specimens’ 257 

seedlings at Sites e and g were nearby the wild individuals. The plots of seedlings at Site i were 258 

markedly removed from those of the wild individuals.  259 

 260 

Discussion 261 
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We found that 18.4% of specimens’ seeds were germinated. Furthermore, the specimens’ seedlings 262 

had unique alleles that did not exist in the wild populations, although the genetic diversity of 263 

germinated specimens’ seedlings was lower than that of wild populations and clear genetic structure 264 

was observed between specimens’ seedlings and wild populations at the three sites. These result 265 

suggested that viable herbarium-specimen sourced seeds can contribute to the restoration of genetic 266 

diversity in threatened plants as ex situ conservation resources. 267 

 268 

Restoration of genetic diversity by specimens’ seedlings 269 

The specimens’ seedlings from each site had one to three unique alleles (Table 2). Although we 270 

could not estimate the past genetic diversity in each site, the number of alleles of V. pycnostelma 271 

may have declined in recent decades. The specimens’ seedlings probably had the alleles that had 272 

extirpated from current wild populations. Thus, the reintroduction of specimens’ seedlings with these 273 

unique alleles would be useful to restore or augment the genetic diversity of the wild populations. 274 

   The genetic diversity (i.e. number of alleles, allelic richness and expected heterozygosity) of 275 

specimens’ seedlings was lower than that of the wild population. In this study, we used only one 276 

specimen fruit per population in order to minimize the damage to the specimens. Because the 277 

subfamily Asclepiadoideae of Apocynaceae is pollinated via transfer of pollinia, multiple paternities 278 

are very low within fruits (Broyles and Wyatt 1990; Wyatt and Broyles 1994). Therefore, the genetic 279 

diversity of the specimens’ seedlings would be enhanced by using the seeds of (1) multiple fruits and 280 

specimens, (2) species that do not form pollinia (i.e. Orchidaceae and Asclepiadoideae) and 281 

allogamous species and (3) fruits from chasmogamous flowers.  282 

   Except at Site d, the allele compositions were different and clear genetic structures were 283 
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observed between the specimens’ seedlings and the wild populations (Figs. 3 and 4). This could be 284 

because the specimens’ seedlings retained different alleles than the wild populations and they 285 

exhibited low genetic diversity. Similarly, significant genetic differences between the seedlings 286 

derived from soil seedbanks and the wild populations were also reported (Honnay et al. 2008). 287 

Reintroduction of many seedlings taken from only a few specimens or fruits might lead to the 288 

dominance of a few alleles in the wild populations. Thus, collecting seeds from multiple fruits and 289 

specimens would enhance the genetic diversity of specimens’ seedlings so that they more closely 290 

resemble the original populations, and the allele frequencies of the seedlings would then be more 291 

similar to the wild populations. 292 

 293 

Usability of herbarium specimens’ seeds of threatened plants 294 

In this study, we determined that 18.4 % of specimens’ seeds, which had been collected recently 295 

(<19 years), were germinated. These germinated seeds preserved in herbarium could be useful in 296 

reintroduction or augmentation resources because viable seeds and bulbils of plants can be preserved 297 

for a long time (>20 years) under ideal conditions (Probert et al. 2009; Alsos et al. 2013). In addition, 298 

seeds that possess physical dormancy and those with large embryos and little endosperm remain 299 

viable for a longer time (Merritt et al. 2014). The seeds of V. pycnostelma also possess a 300 

physiological dormancy and Vincetoxicum species have large embryos (Martin 1946; Zhou et al. 301 

2003; Baskin and Baskin 2014). Thus, the seeds of V. pycnostelma specimens collected more than 20 302 

years prior to the study would have a potential to germinate, although we used only nine fruits for 303 

germination test in this study. Furthermore, 3.0% of the ungerminated specimens’ seeds that were 304 

collected 9–18 years prior to the study were viable (Table 1). Because such seeds may be in a 305 
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dormant state, seed dormancy should be broken using various methods such as cold stratification, 306 

chemicals, heat shock, hormones or scarification (Fontaine et al. 1994; Susko et al. 2001; Kanmegne 307 

and Omokolo 2008; Baskin and Baskin 2014). To germinate seeds, it is important to create 308 

appropriate environments for inducing germination based on the germination characteristics of the 309 

target species. Zygotic embryo culture and callus culture technologies are also available for 310 

regenerating endangered plants (Gomes et al. 2003; Rambabu et al. 2006). These technologies could 311 

be used to increase the number of individuals derived from the specimens’ seeds. The storage 312 

conditions in herbaria are also important for specimens’ seed longevity. Insect controls that avoid 313 

heating, but employ nitrogen, argon, carbon dioxide and freezing have been developed in herbaria 314 

(Strang 1992; Valentin 1993); these controls do not have negative effects on seed germination of 315 

many species (Bass and Stanwood 1978; Prokopiev et al. 2014). 316 

   It is recommended that sampling regimes for reintroduction resources should involve collecting 1 317 

to 20 seeds per individual from each of 10 to 50 individuals belonging to each of five separate 318 

populations to remove the inbreeding depression (Falk and Holsinger 1991). Hoban and Schlarbaum 319 

(2014) also suggest that we should collect seeds from 25 to 30 individuals belonging to the few but 320 

widely dispersed populations and between two to eight seeds of fruits per individual to maintain 321 

their genetic diversity. However, many specimens of target species collected from the same site (>10 322 

individuals) may be rarely preserved in a herbarium. In addition, damage to an excessive number of 323 

specimens should be minimized because museum specimens are very valuable and irreplaceable 324 

(Graves and Braun 1992; Wandeler et al. 2007; Shiga 2013). Furthermore, the number of retained 325 

and available seeds on herbarium specimens would be also not known before their germination tests. 326 

Thus, it may be difficult to collect sufficient seeds from specimens in only a few herbaria as 327 
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reintroduction resources. For example, it is feasible to sample across many sites and have wider 328 

genetic variation if material is sourced from several herbaria.  329 

   In recent decades, in addition to the designation of the sampling guidelines of seed banking 330 

projects, their utilization for ex situ conservation has been increasingly applied to a more diverse 331 

array of wild species (Schoen and Brown 2001; Van Slageren 2003; Guerrant et al. 2014; Hoban and 332 

Schlarbaum 2014). However, the application of seed banking projects may be difficult for the 333 

conservation of locally threatened populations because these projects usually do not assume the 334 

conservation of the local populations. The use of herbaria specimens’ seeds would also remarkably 335 

contribute to restore the genetic diversity of not only the plant species but also each locally 336 

threatened population if the viable specimens’ seeds collected at the target species or populations are 337 

preserved in herbaria. 338 
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Supplementary material 526 

Additional supplemental material can be found in the online version of this article. 527 
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Table S1 The condition of germination test 529 
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Figure S1 The ΔK in the STRUCTRE analysis 531 
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Table 1 Specimen characteristics and number of seeds used in experiments 548 

 549 
550 

Site Prefecture 

No. of 
years 
after 
collected 

Date of 
collecting 
specimens 

Voucher specimen 

Increasing temperature condition   decreasing temperature condition 
No. of 
seeds used 
experiment 

No. of 
germinated 
seeds  

No. of viable 
ungerminated 
seeds  

No. of 
seeds used 
experiment 

No. of 
germinated 
seeds  

No. of viable 
ungerminated 
seeds  

a Gifu 16 25 Sep. 1997 H. Marui 2434 (OSA203391) 10 0 1  10 0 0 
b Kyoto 51 16 Sep. 1962 M. Hutoh 24248 (OSA214994) 9 0 0  9 0 0 
c Kyoto 22 24 Sep. 1991 T. Fujii 2413 (OSA209484) 10 0 0  10 0 0 
d Nara 4 12 Oct. 2009 S. Onoue s.n. (OSA225354) 9 3 0  9 3 0 
e Nara 16 03 Aug. 1997 K. Seto 47673 (OSA104247) 11 0 0  11 4 0 
f Nara 62 03 Jul. 1951 M. Hori s.n. (OSA190777) 8 0 0  8 0 0 
g Osaka 3 26 Nov. 2010 F. Uwakubo 101126-002 (OSA185864) 12 0 0  12 2 0 
h Osaka 9 10 Oct. 2004 K. Hirano 2501 (OSA280257) 11 0 2  11 0 0 
i Hyogo 18 02 Nov. 1994 S. Miyake 2987 (OSA122127) 23 16 2  23 10 0 
        Total 103 19 5   103 19 0 
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Table 2 Genetic diversity measurements of each site of Vincetoxicum pycnostelma. Each site contained specimens’ seedlings, a wild and a 551 
hypothetical mixed population (specimens’ seedlings + wild population). A, numbers of alleles per locus; AR, allelic richness; RA, summed number 552 
of rare alleles; UA, summed number of unique alleles that are only present in specimens’ seedlings; HO, observed heterozygosity (in bold numbers, if 553 
values are significantly deviated from HWE); HE, expected heterozygosity; FIS, inbreeding coefficient 554 
Site Wild Population size Sample No. of samples A AR RA UA HO HE FIS 

d                    
20  

specimens' seedlings 6 3.111 2.366 5 0 0.815 0.582 -0.382 
Wild population 19 6.222 2.683 17  0.754 0.687 -0.106 

Hypothetical mixed 
population 25 6.222 2.637 17  0.769 0.680 -0.137 

e  220*  

specimens' seedlings 4 3.000 2.406 5 1 0.778 0.566 -0.348 
Wild population 46* 11.333 2.917 51  0.749 0.752 0.008 

Hypothetical mixed 
population 50 11.444 2.929 52  0.751 0.756 0.010 

g                  
100  

specimens' seedlings 2 2.222 2.222 2 1 0.833 0.472 -0.767 
Wild population 50 10.000 2.859 39  0.767 0.748 -0.030 

Hypothetical mixed 
population 52 10.111 2.858 40  0.769 0.748 -0.034 

i                    
24  

specimens' seedlings 20 2.889 2.230 3 3 0.694 0.570 -0.205 
Wild population 16 7.556 2.826 25  0.701 0.723 0.030 

Hypothetical mixed 
population 36 8.000 2.765 27  0.698 0.725 0.044 

*: sampled about 1 km from where specimens were originally collected, because original population was locally extinct 555 
 556 



 28 / 28 
 

Figure captions 557 

 558 

Fig. 1 a The herbarium specimen of Vincetoxicum pycnostelma collected site i (OSA122127). Arrow head 559 

indicates the fruit, Bar indicates 50mm. b Seeds in the fruits of OSA122127. Bar indicates 5.0mm. c 560 

Habitat of V. pycnostelma (Site d). d Juvenile individuals germinated from the seeds of herbarium 561 

specimens (right pot: OSA104247, left pot: OSA185864) 562 

 563 

Fig. 2 a Locations of the collected Vincetoxicum pycnostelma specimens in Kinki and Tokai districts. b 564 

Location of Kinki and Tokai districts in Japan 565 

 566 

Fig. 3 Results of Bayesian clustering in the STRUCTURE analysis (Pritchard et al. 2010). a The 567 

proportion of the membership coefficient of 131 individuals in the wild populations at the four sites for 568 

each of the inferred clusters for K = 2. b The proportion of the membership coefficient of 163 individuals 569 

in the specimens’ seedlings and wild populations at the four sites (right side: specimens’ seedlings, left 570 

side: wild populations) for each of the inferred clusters for K = 3 and K = 4. Each column represents an 571 

individual 572 

 573 

Fig. 4 Principal coordinates analysis plots of individuals at the four sites (each contains specimens’ 574 

seedlings and wild populations) based on co-dominant genotypic distances (Smouse and Peakall 1999). 575 

Red, green, white and blue symbols represent Sites d, e, g and i, respectively. Axis 1 explains 27.5% of 576 

the variance and axis 2 explains 21.4% of the variance 577 

 578 
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Table S1 Relationships between temperature and number of days in each condition. In the increasing temperature condition, the temperature was 1 
alternated between 12 and 25 °C in 24-h intervals after arriving at the final temperature 2 

Increasing 
temperature 
condition 

Temperature (°C) 4 8 12 16 20 24 28 32 36 12~25 

Number of days 8 5 4 3 2 2 2 2 2 5 

Decreasing 
temperature 
condition 

Temperature (°C) 36 32 28 24 20 16 12 8 4 25 

Number of days 2 2 2 2 2 3 4 5 8 5 

 3 
 4 
 5 
 6 
 7 
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Figure S1 8 
The ΔK in the STRUCTRE analysis based on the rate of change in the log probability of data between 9 
successive K values (Evanno et al. 2005). (a) The result of 131 individuals in the only wild populations of 10 
the four sites. (b) The result of 163 individuals in the specimens’ seedlings and wild populations of four 11 
sites.  12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
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