1	Recovery of genetic diversity in threatened plants through use of germinated seeds from herbarium
2	specimens
3	
4	Naoyuki NAKAHAMA ¹ , Yuki HIRASAWA ² , Tsubasa MINATO ³ , Masahiro HASEGAWA ⁴ , Yuji ISAGI ¹ ,
5	Takashi SHIGA ^{2,3}
6	
7	¹ Graduate School of Agriculture, Kyoto University, Oiwake–cho, Kitashirakawa, Sakyo–ku,
8	Kyoto 606–8502, Japan
9	² Graduate School of Education, Niigata University, 8050, Ikarashi2–no–cho, Nishi–ku, Niigata
10	950–2181, Japan
11	³ Faculty of Education, Niigata University, 8050, Ikarashi2–no–cho, Nishi–ku, Niigata 950–
12	2181, Japan
13	⁴ Osaka Museum of Natural History. Nagai Park 1–23, Higashisumiyoshi–ku, Osaka 546–0034,
14	Japan
15	
16	Corresponding author: Naoyuki Nakahama
17	E-mail: nakahama.naoyuki.68r@st.kyoto-u.ac.jp,
18	The Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake–cho, Sakyo–ku
19	Kyoto 606–8502, Japan.
20	Tel: +81 75 753 6129, Fax: 81 75 753 6129
21	
22	5003 words (Abstract 195 words)

23 Abstract

24The reintroduction of *ex situ* conserved individuals is an important approach for conserving 25threatened plants and reducing extinction risk. In this study, we elucidated the effects on the genetic 26diversity of wild populations of Vincetoxicum pycnostelma Kitag. [= Cynanchum paniculatum 27(Bunge) Kitag.] by modelling the genetic consequences of reintroducing plants using the germinated 28seeds of herbarium specimens. This semi-natural grassland herb is threatened in Japan. First, we 29tested the germinability of seeds from herbarium specimens collected from nine sites in Kinki and 30 Tokai districts, Japan (one specimen per site, total 206 seeds). Next, we analysed the genetic 31diversity and structure of germinated seedlings and the current wild individuals using nine 32polymorphic microsatellite markers. Germination was observed for 38 seeds (18.4%) from four 33 specimens collected 3–18 years prior to the study. Although the genetic diversity of the specimens' 34seeds was lower than that of the wild population because of the small sample size, the seedlings from 35specimens taken from three sites had unique alleles that did not exist in the wild populations. 36 Consequently, viable herbarium specimens' seeds with unique alleles could be useful resources for 37recovering the genetic diversity in threatened wild plant populations. 3839 **Keyword**: threatened plants, genetic diversity recovery, germination test, microsatellite,

40 reintroduction

42 Introduction

43Many species worldwide face an extinction crisis because of the destruction and fragmentation of 44 habitats as a result of human activities (Ceballos and Ehrlich 2002; Hooper et al. 2005; Aguilar et al. 452006). To conserve the populations of threatened species, it is crucial to maintain not only population 46 size and habitat but also genetic diversity for preventing the decline in reproductive success owing to 47inbreeding depression, which would escalate the extinction risk (Keller and Waller 2002; Mattila et 48al. 2012; Palomares et al. 2012). Furthermore, a loss of genetic diversity would compromise their 49 adaptive potential, particularly in the face of concerns pertaining to climate change (Blows and 50Hoffmann 2005; Willi et al. 2006). 51Although the conservation of natural habitat is critical for conserving ecological interactions, in 52situ and ex situ conservation is also appropriate for safeguarding individual species against 53extinction in the wild. For example, use of soil seed bank is an *in situ* natural resource for the 54reproduction of plants that is effective for the restoration of genetic diversity (Uesugi et al. 2007; 55Zaghloul et al. 2013). On the other hand, the primary purpose of ex situ conservation is to maintain 56wild species outside their natural habitat so that species recovery and reintroduction can be 57attempted if the wild populations severely decline or become extinct. It is well known that preserved 58seeds are useful as ex situ populations (Honnay et al. 2008; Frankham et al. 2009; Hoban and 59Schlarbaum 2014). The reintroduction of many individuals germinated from preserved seeds also 60 allows the recovery of population size and genetic diversity (Honnay et al. 2008; Guerrant et al. 612014; Hoban and Schlarbaum 2014). Thus, projects to preserve the seeds of many plants are used 62worldwide and comprise an efficient method for plant reintroduction and conservation (Schoen and 63 Brown 2001; Guerrant et al. 2014; Hoban and Schlarbaum 2014). For example, the 'Millennium

64	Seed Bank Project' of the Royal Botanic Gardens, Kew, the 'Svalbard Global Seed Vault' and many
65	other botanical gardens store wild and cultivated plant seeds as a resource for future use in
66	conservation translocations and crop development (Schoen and Brown 2001; Van Slageren 2003;
67	Qvenild 2008; Alsos et al. 2013).
68	However, re-establishment of the seeds collected in the past has risks pertaining to inbreeding
69	and inbreeding depression if the sources are restricted or population size is small (Frankel and Soulé
70	1981; Schoen and Brown 2001). In addition, reintroduced individuals collected from remote habitats
71	would also have reduced fitness because of local adaptation (Becker et al. 2006; Leimu and Fischer
72	2008; Hereford 2009). Furthermore, reintroduced individuals that are genetically distinct from a wild
73	population would not only have a risk of outbreeding depression (Montalvo and Ellstrand 2001; Huff
74	et al. 2011), but would also lead to the loss of the local genetic identity of the native population
75	(Gottelli et al. 1994; Milián-García et al. 2014). Accordingly, to conserve threatened plants by
76	reintroducing individuals from preserved seeds, it is very important to collect many seeds from
77	widely dispersed populations (Falk and Holsinger 1991; Hoban and Schlarbaum 2014). However,
78	collecting seed resources of threatened or locally extinct species from wild populations may be
79	difficult, although seed banking projects throughout the world have been recently constructed and
80	followed the protocols to ensure the maintenance of genetic diversity (León-Lobos et al. 2012;
81	Guerrant et al. 2014; Hoban and Schlarbaum, 2014). Herbarium specimens in museums can retain
82	viable and germinable diaspores (Windham et al. 1986; Bowles et al. 1993; Lledó et al. 1996;
83	Magrini et al. 2010; Magrini 2011; Bewley et al. 2013; Shiga 2013); therefore, they have potential as
84	a reintroduction resource. Furthermore, the viable diaspores in herbaria specimens are also useful for
85	the conservation of threatened local populations in each plant species because presumably the

86	specimens are collected from these populations. Despite the potential use of herbarium specimens'
87	seeds, the effect of reintroduced seeds on the restoration of genetic diversity has not been studied,
88	and it is unknown whether genetic diversity now lost in wild populations can be found in herbarium
89	collections.
90	Vincetoxicum pycnostelma Kitag. [= Cynanchum paniculatum (Bunge) Kitag.] (Fig. 1a), subfamily
91	Asclepiadoideae of Apocynaceae, is a perennial herb that grows in semi-natural grasslands in Japan,
92	Korea, China, Mongolia and Russia (Yamazaki 1993; Wu and Raven 1995; Flora of Korea Editorial
93	Committee 2007). Although this species was common a few decades ago, its populations have
94	rapidly declined because of land-use changes in semi-natural grasslands in Japan (Environment
95	Agency of Japan 2000; Uematsu et al. 2010). It is estimated that the extinction probability after 100
96	years is 96% (Environment Agency of Japan 2000). The species is categorized as 'near threatened' in
97	the Japanese Red List (Ministry of the Environment Government of Japan 2012). Many other native
98	herbaceous plants have also experienced a rapid decline in semi-natural grasslands (Koyanagi and
99	Furukawa 2013); hence V. pycnostelma is a prime example of these rare and threatened species.
100	In this study, we examined the germinability of seeds from herbarium specimens of V. pycnostelma
101	and we assessed the effect on the genetic diversity and structure of the wild populations by
102	modelling the reintroduction of germinated seeds. We also discuss suitable methods for collecting
103	and managing herbarium specimens' seeds at museums that are to be used for conserving not only
104	threatened plants but also the local populations in each species.
105	

107 Selection of herbarium specimens

Materials and methods

108	Seeds were collected from the herbarium of the Osaka Museum of Natural History, Japan (Figs. 1a,
109	b). The museum was established in 1974, and the herbarium preserves more than 270,000 vascular
110	plant specimens (Osaka Museum of Natural History 2012). In this herbarium, insect control involved
111	naphthalene application and fumigation with carbon disulphide; the room temperature was not
112	controlled until 2000. However, since 2001, integrated insect control has been performed by
113	applying naphthalene and freezing treatments and the room conditions have been controlled at 20°C
114	and 50% humidity. In the herbarium, 206 seeds from nine specimens with mature fruits (one
115	specimen per site) from Kinki and Tokai districts, Japan, had been collected (Fig. 2). The ages of the
116	nine stored specimens were from 4 to 62 years (Table 1). Seeds were collected from only one fruit
117	per specimen. After the germination test, specimens of the seedlings or seeds were mounted and
118	donated to the Osaka Museum of Natural History with annotation cards.
119	
120	Germination test of herbarium specimens' seeds
121	Germination of the herbarium specimens' seeds was tested using the screening test system
122	(Washitani 1987) under a 12/12-h photoperiod and two temperature regimes: 1) a gradually
123	increasing temperature regime from 4°C to 36°C at intervals of 4°C (IT) and 2) a gradually
124	decreasing temperature regime from 36°C to 4°C at intervals of 4°C (DT). The two treatments were
125	conducted because the preservation condition in the herbarium may have affected the dormancy of
126	the specimens' seeds, and it was predicted that a cold stratification treatment would be required to
127	break the seed dormancy of V. pycnotelma (Zhou et al. 2003). Considering that growth rate increases
128	with temperature, the duration of the higher temperature treatment was less than the duration of the
100	

130	seeds were incubated at 25°C (DT, 5 days) or treated at alternating temperatures of 12°C and 25°C at
131	24-h intervals (IT, total 5 days). The number of germinated seedlings was counted when the
132	temperatures were changed, and the seedlings were moved to an incubator at 25°C to determine
133	whether they would grow normally. For microsatellite analysis, we selected well-growing plants
134	among 32 samples of 38 seedlings obtained from four specimen sheets. The germination test was
135	conducted in June 2012 (Site i) and May 2013 (Sites a-h; Table 1).
136	The ungerminated seeds were tested using tetrazolium (2,3,5-triphenyl tetrazolium chloride) to
137	examine their viability (Cottrell 1947; Elias et al. 2012). The seeds were cut and stained for 48 h in
138	the dark with 1% tetrazolium solution, and seeds that stained red were defined as viable.
139	
140	Sampling and microsatellite analysis
141	In 2012 and 2013, leaf samples from 131 adult individuals were collected from sites same as those
142	from where the herbarium specimens had been collected (Figs. 1c and 2). The samples were used to
143	estimate the genetic diversity among the extant populations (Table 2). At all sites, we
144	comprehensively collected samples from each entire patch. Because V. pycnotelma at Site e was
145	locally extinct, we collected leaf samples from a neighbouring population located one kilometre
146	away. The number of individuals was counted at each site.
147	Genomic DNA was extracted using a modified cetyltrimethylammonium bromide method
148	(Milligan 1992). The genotypes of each individual, including wild populations and specimens'
149	seedlings, were characterized at nine microsatellite loci. Seven of the nine loci were characterized by
150	Nakahama et al. (2012): Vpy002, Vpy006, Vpy012, Vpy013, Vpy16, Vpy018 and Vpy022. Two of the
151	nine loci were developed by Nakahama et al. (unpublished data): Vpy025 (GenBank accession

153	reaction (PCR) amplifications, except for those of <i>Vpy025</i> and <i>Vpy031</i> , were performed following
154	the standard protocol of the Qiagen Multiplex PCR kit (Qiagen) with a final reaction volume of 5 μ L,
155	which contained 16 ng extracted DNA, 2.5 μ L of 2× Multiplex Master Mix and 0.2 μ M of each
156	multiplexed primer. For Vpy025 and Vpy031, the forward primer was synthesized with the M13 tag
157	sequence (Vpy025 5'-CACGACGTTGTAAAACGAC-3', Vpy031 5'-TGTGGAATTGTGAGCGG-3';
158	Boutin–Ganache et al. 2001). The PCR mixtures of $Vpy025$ and $Vpy031$ had a final volume of 5 μ L,
159	which included 16 ng extracted DNA, 2.5 μ L of Multiplex PCR Master Mix, 0.01 μ M forward
160	primer, 0.2 μ M reverse primer and 0.1 μ M M13 fluorescent primer. The PCR amplifications of all
161	loci were carried out using a GeneAmp PCR System 2700 thermal cycler (Applied Biosystems,
162	Tokyo, Japan) using the following conditions: initial denaturation at 95°C for 15 min, followed by
163	25 cycles of 30 s at 94°C, 1.5 min at 57°C and 1 min at 72°C, and a final extension for 30 min at
164	60°C. The PCR product size was measured using an ABI PRISM 3130 Genetic Analyzer (Applied
165	Biosystems) and GeneMapper ver. 4.1 (Applied Biosystems).
166	
167	Statistical analysis of the genetic diversity and structure
168	Genetic diversity was evaluated for the specimens' seedlings, the wild populations and the
169	hypothetical mixed populations, which comprised a hypothetical mixing of the specimens' seedlings

number: AB948217) and Vpy031 (GenBank accession number: AB948218). Polymerase chain

- 170 and each corresponding wild population. The genetic diversity was evaluated in terms of the
- 171 following: average number of alleles per locus, allelic richness (El Mousadik and Petit 1996),
- 172 summed number of rare alleles with frequencies less than 5% among the total population, expected
- 173 heterozygosity, observed heterozygosity and inbreeding coefficient. We also evaluated the summed

174	number of unique alleles that were only present in specimens' seedlings from each site. All of these
175	parameters, except allelic richness summed number of rare and unique alleles, were calculated using
176	GenAlEx version 6.41 (Peakall and Smouse 2006). Allelic richness, deviation from Hardy-Weinberg
177	equilibrium and the linkage disequilibrium between loci were also determined using FSTAT ver.
178	2.9.3 software (Goudet 2001). The significances of the heterozygosity excess and deficit values were
179	tested by comparison with the 95% confidence intervals derived from 108,000 randomizations.
180	We evaluated the genetic relationships between the wild populations at all sites using Bayesian
181	clustering with STRUCTURE ver. 2.3.4. (Pritchard et al. 2010), which assigns individuals into K
182	clusters. The population structure was simulated with the values of $K = 1-8$ under an admixture
183	model and the correlated allele frequency model (Hubisz et al. 2009). All runs involved one million
184	Markov chain Monte Carlo iterations after a burn-in period of one million iterations. Twenty runs
185	were performed for each value of K . The F value, the estimated amount of genetic drift between each
186	cluster and a common ancestral population and the expected heterozygosity were calculated. The
187	number of clusters was determined by comparing the mean values and the variability of log
188	likelihoods for each run. To select the optimal value of K, STRUCTURE HARVESTER was used
189	(Earl and vonHoldt 2012). We also evaluated genetic relationships between the wild populations and
190	specimens' seedlings at each site by the same method.
191	To evaluate genetic differentiation between specimens' seedlings and wild populations for each
192	site at the individual level, we calculated pairwise co-dominant genotypic distances (Smouse and
193	Peakall 1999) between all specimens' seedlings and wild individuals from all sites. We also
194	performed principal co-ordinates analysis (PCoA) using GenAlEx version 6.41 (Peakall and Smouse
195	2006).

197	Results
198	Germination and viability of herbarium specimens' seeds
199	A total of 38 seeds, representing four herbarium specimens, were germinated out of a total of 206
200	seeds (Fig. 1d and Table 1). The germination percentage for seeds from each specimen ranged from
201	0% to 56.5%, with an average of 18.4%. The oldest germinated specimens' seeds were collected 18
202	years prior to the study. Under the IT and DT conditions, seed germination from two and four
203	specimens were observed, respectively. Each 18.4% of the seeds germinated in both conditions.
204	Furthermore, 3.0% of ungerminated seeds were confirmed to be viable according to the tetrazolium
205	dye test (Table 1). The viable seeds were collected from three herbarium specimens, which were
206	collected 9 to 18 years prior to the study. The ungerminated viable seeds were confirmed only in the
207	IT condition.
208	
209	Genetic diversity of seedlings from herbarium specimens, wild populations and hypothetical mixed
210	populations
211	There was no evidence for large allele dropouts or null alleles in the data set. The numbers of alleles,
212	the allelic richness and the expected heterozygosity of herbarium specimens' seedlings was
213	considerably lower than those of the wild populations because their allele frequencies were
214	dominated by a few alleles, although the observed heterozygosity of the seedlings was similar
215	between wild populations and specimens seedlings at all sites. At Sites e, g and i, the number of
216	alleles of hypothetical mixed populations were higher than those of the wild populations because one
217	to three unique alleles existed only in the seedlings. The allelic richness of the hypothetical mixed

218	populations was higher than that of the wild populations only at Site e. Although rare alleles were
219	much more common in the wild populations than in the seedlings at all sites, the seedlings had some
220	rare alleles at all sites. Unique alleles in the specimens' seedlings were found at the three sites except
221	Site d. At Sites e and i, the expected heterozygosity of the hypothetical mixed populations was more
222	than that of the wild populations. The inbreeding coefficient of the seedlings ranged from -0.767 to
223	-0.205, whereas that of the seedlings at Site i indicated significant heterozygosity excess (Table 2).
224	On the other hand, no wild populations exhibited significant heterozygosity excesses. Significant
225	linkage disequilibrium occurred at Site g for only one pair of loci ($Vpy002/Vpy013$; $P < 0.05$).
226	
227	Genetic differentiation and structure of herbarium specimens' seedlings and wild populations
228	The STRUCTURE analysis indicates that the wild populations were divided into distinct genetic
229	clusters (Fig. 3a). The ΔK value representing the hierarchical approach for the STRUCTURE
230	analysis was clearly the highest at $K = 2$ (Fig. S1a). In addition, the variance of log likelihood
231	between runs was low and the ΔK value was high at $K = 3$ (Fig. S1a). Therefore, $K = 3$ also yielded
232	meaningful results. Thus, the results obtained with $K = 2$ and $K = 3$ are shown (Fig. 3a). When $K = 2$,
233	the individuals were divided into two clusters. The wild populations at Sites d, e and i were assigned
234	to cluster I, and the wild population at Site g was assigned to cluster II. The F value of cluster I was
235	higher than that of cluster II, and the expected heterozygosity of clusters I and II were 0.780 and
236	0.747, respectively (Fig. 3a). When $K = 3$, cluster I from the $K = 2$ analysis was divided into two
237	clusters. The wild population at Site g was assigned to cluster II and those at Sites e and i were
238	assigned to cluster III. The F value of cluster III was lower than that of cluster I and II, and the
239	expected heterozygosity of cluster I, II and III were 0.743, 0.742 and 0.781, respectively (Fig. 3a).

240	The wild populations and specimens' seedlings were also divided into distinct genetic clusters (Fig.
241	3b). The ΔK value representing the hierarchical approach for the STRUCTURE analysis was clearly
242	highest at $K = 3$ (Fig. S1b). Thus, $K = 3$ was the uppermost hierarchical level of the genetic structure.
243	In addition, the variance of log likelihood between runs was low and the ΔK value was high at $K = 4$
244	(Fig. S1b). Therefore, $K = 4$ also yielded meaningful results. Thus, the results obtained with $K = 3$
245	and $K = 4$ are shown (Fig. 3b). When $K = 3$, the individuals were clearly divided into three clusters.
246	The wild population and herbarium specimens' seedlings at Site d and the seedlings at Site e were
247	assigned to cluster I. The wild populations at Sites e, g and i were assigned to cluster II. The
248	seedlings at Sites g and i were assigned to cluster III. The F values of cluster I and III were higher
249	than that of cluster II, and the expected heterozygosity of clusters I, II and III were 0.672, 0.787 and
250	0.584, respectively (Fig. 3b). When $K = 4$, cluster II from the $K = 3$ analysis was divided into two
251	clusters. The wild population at Site g was assigned to cluster II and the wild populations at Sites e
252	and i were assigned to cluster III. The F values of cluster I and IV were higher than those of cluster
253	II and III, and the expected heterozygosity of cluster I, II, III and IV were 0.667, 0.744, 0.786 and
254	0.584, respectively (Fig. 3b).
255	According to PCoA based on co-dominant genotypic distances, about 48.9% of the total
256	variation was described by the first two axes (Fig. 4). The specimens' seedlings and the wild
257	individuals were plotted as a single group at Site d. On the other hand, the plots of specimens'
258	seedlings at Sites e and g were nearby the wild individuals. The plots of seedlings at Site i were
259	markedly removed from those of the wild individuals.

Discussion

263	had unique alleles that did not exist in the wild populations, although the genetic diversity of
264	germinated specimens' seedlings was lower than that of wild populations and clear genetic structure
265	was observed between specimens' seedlings and wild populations at the three sites. These result
266	suggested that viable herbarium-specimen sourced seeds can contribute to the restoration of genetic
267	diversity in threatened plants as ex situ conservation resources.
268	
269	Restoration of genetic diversity by specimens' seedlings
270	The specimens' seedlings from each site had one to three unique alleles (Table 2). Although we
271	could not estimate the past genetic diversity in each site, the number of alleles of V. pycnostelma
272	may have declined in recent decades. The specimens' seedlings probably had the alleles that had
273	extirpated from current wild populations. Thus, the reintroduction of specimens' seedlings with these
274	unique alleles would be useful to restore or augment the genetic diversity of the wild populations.
275	The genetic diversity (i.e. number of alleles, allelic richness and expected heterozygosity) of
276	specimens' seedlings was lower than that of the wild population. In this study, we used only one
277	specimen fruit per population in order to minimize the damage to the specimens. Because the
278	subfamily Asclepiadoideae of Apocynaceae is pollinated via transfer of pollinia, multiple paternities
279	are very low within fruits (Broyles and Wyatt 1990; Wyatt and Broyles 1994). Therefore, the genetic
280	diversity of the specimens' seedlings would be enhanced by using the seeds of (1) multiple fruits and
281	specimens, (2) species that do not form pollinia (i.e. Orchidaceae and Asclepiadoideae) and
282	allogamous species and (3) fruits from chasmogamous flowers.
283	Except at Site d, the allele compositions were different and clear genetic structures were

We found that 18.4% of specimens' seeds were germinated. Furthermore, the specimens' seedlings

262

284	observed between the specimens' seedlings and the wild populations (Figs. 3 and 4). This could be
285	because the specimens' seedlings retained different alleles than the wild populations and they
286	exhibited low genetic diversity. Similarly, significant genetic differences between the seedlings
287	derived from soil seedbanks and the wild populations were also reported (Honnay et al. 2008).
288	Reintroduction of many seedlings taken from only a few specimens or fruits might lead to the
289	dominance of a few alleles in the wild populations. Thus, collecting seeds from multiple fruits and
290	specimens would enhance the genetic diversity of specimens' seedlings so that they more closely
291	resemble the original populations, and the allele frequencies of the seedlings would then be more
292	similar to the wild populations.
293	
294	Usability of herbarium specimens' seeds of threatened plants
295	In this study, we determined that 18.4 % of specimens' seeds, which had been collected recently
296	(<19 years), were germinated. These germinated seeds preserved in herbarium could be useful in
297	reintroduction or augmentation resources because viable seeds and bulbils of plants can be preserved
298	for a long time (>20 years) under ideal conditions (Probert et al. 2009; Alsos et al. 2013). In addition,
299	seeds that possess physical dormancy and those with large embryos and little endosperm remain
300	viable for a longer time (Merritt et al. 2014). The seeds of V. pycnostelma also possess a
301	physiological dormancy and Vincetoxicum species have large embryos (Martin 1946; Zhou et al.
302	2003; Baskin and Baskin 2014). Thus, the seeds of V. pycnostelma specimens collected more than 20
303	years prior to the study would have a potential to germinate, although we used only nine fruits for
304	germination test in this study. Furthermore, 3.0% of the ungerminated specimens' seeds that were
305	collected 9-18 years prior to the study were viable (Table 1). Because such seeds may be in a

306	dormant state, seed dormancy should be broken using various methods such as cold stratification,
307	chemicals, heat shock, hormones or scarification (Fontaine et al. 1994; Susko et al. 2001; Kanmegne
308	and Omokolo 2008; Baskin and Baskin 2014). To germinate seeds, it is important to create
309	appropriate environments for inducing germination based on the germination characteristics of the
310	target species. Zygotic embryo culture and callus culture technologies are also available for
311	regenerating endangered plants (Gomes et al. 2003; Rambabu et al. 2006). These technologies could
312	be used to increase the number of individuals derived from the specimens' seeds. The storage
313	conditions in herbaria are also important for specimens' seed longevity. Insect controls that avoid
314	heating, but employ nitrogen, argon, carbon dioxide and freezing have been developed in herbaria
315	(Strang 1992; Valentin 1993); these controls do not have negative effects on seed germination of
316	many species (Bass and Stanwood 1978; Prokopiev et al. 2014).
317	It is recommended that sampling regimes for reintroduction resources should involve collecting 1
318	to 20 seeds per individual from each of 10 to 50 individuals belonging to each of five separate
319	populations to remove the inbreeding depression (Falk and Holsinger 1991). Hoban and Schlarbaum
320	(2014) also suggest that we should collect seeds from 25 to 30 individuals belonging to the few but
321	widely dispersed populations and between two to eight seeds of fruits per individual to maintain
322	their genetic diversity. However, many specimens of target species collected from the same site (>10
323	individuals) may be rarely preserved in a herbarium. In addition, damage to an excessive number of
324	specimens should be minimized because museum specimens are very valuable and irreplaceable
325	(Graves and Braun 1992; Wandeler et al. 2007; Shiga 2013). Furthermore, the number of retained
326	and available seeds on herbarium specimens would be also not known before their germination tests.
327	Thus, it may be difficult to collect sufficient seeds from specimens in only a few herbaria as

 $15 \, / \, 28$

328

reintroduction resources. For example, it is feasible to sample across many sites and have wider

- 329 genetic variation if material is sourced from several herbaria.
- 330 In recent decades, in addition to the designation of the sampling guidelines of seed banking
- 331 projects, their utilization for *ex situ* conservation has been increasingly applied to a more diverse
- array of wild species (Schoen and Brown 2001; Van Slageren 2003; Guerrant et al. 2014; Hoban and
- 333 Schlarbaum 2014). However, the application of seed banking projects may be difficult for the
- 334 conservation of locally threatened populations because these projects usually do not assume the
- 335 conservation of the local populations. The use of herbaria specimens' seeds would also remarkably
- 336 contribute to restore the genetic diversity of not only the plant species but also each locally
- threatened population if the viable specimens' seeds collected at the target species or populations are
- 338 preserved in herbaria.
- 339

340 Acknowledgments

We thank M. Azuma and M. Zushi for their helpful specimens' seeds sampling support. This work was
supported by Grants in Aid for Scientific Research (23701024, 26350387) from the Japan Society for the
Promotion of Science.

- 344
- 345
- 346
- 347
- 348
- .
- 349

350 **References**

- 351 Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat
- fragmentation: review and synthesis through a meta-analysis. Ecol lett 9: 968–980
- Alsos IG, Müller E, Eidesen PB (2013) Germinating seeds or bulbils in 87 of 113 tested Arctic species
- indicate potential for ex situ seed bank storage. Pol Biol 36: 819–830
- Baskin CC, Baskin JM (2014) Seeds: Ecology, Biogeography, and Evolution of Dormancy and
- 356 Germination (Second Edition). Academic Press, San Diego
- Bass LN, Stanwood PC (1978) Long-term preservation of sorghum seed as affected by seed moisture,
- 358 temperature, and atmospheric environment. Crop Sci 18: 575–577
- Becker U, Colling G, Dostal P, Jakobsson A, Matthies D (2006) Local adaptation in the monocarpic
- 360 perennial *Carlina vulgaris* at different spatial scales across Europe. Oecologia 150: 506–518
- 361 Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: Physiology of Development,
- 362 Germination and Dormancy, 3rd Edition. Springer, New York
- Blows MW, Hoffmann AA (2005) A reassessment of genetic limits to evolutionary change. Ecology 86:
- 364 1371–1384
- 365 Boutin–Ganache I, Raposo M, Raymond M, Deschepper CF (2001) M13–tailed primers improve the
- 366 reliability and usability of microsatellite analyses performed with two different allele sizing methods.
- 367 Biotechniques 31: 24–26
- Bowles ML, Betz RF, DeMauro MM (1993) Propagation of rare plants from historic seed collections:
- 369 implications for species restoration and herbarium management. Restor Ecol 1: 101–106
- 370 Broyles SB, Wyatt R (1990) Paternity analysis in a natural population of Asclepias exaltata: multiple
- 371 paternity, functional gender, and the "pollen-donation hypothesis". Evolution 44: 1454–1468

- 372 Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296: 904–907
- 373 Cottrell, HJ (1947) Tetrazolium salt as a seed germination indicator. Nature 159: 748
- Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing
- 375 STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4: 359–361
- Elias SG, Copeland LO, McDonald MB, Baalbaki RZ (2012) Seed Testing: Principles and Practices.
- 377 Michigan State University Press, East Lansing
- 378 El Mousadik EA, Petit RJ (1996) High level of genetic differentiation for allelic richness among
- populations of the argan tree [*Argania spinosa* (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:
- 380 832-839
- 381 Environment Agency of Japan (2000) Threatened Wildlife of Japan Red Data Book 2nd ed. Vascular 3.
- 382 Plants. Japan Wildlife Research Center, Tokyo (in Japanese)
- 383 Falk DA, Holsinger KE (1991) Genetics and conservation of rare plants. Oxford university press, New
- 384 York
- Flora of Korea Editorial Committee (2007) The Genera of Vascular Plants of Korea. Academy Publishing,
 Seoul
- 387 Fontaine O, Huault C, Pavis N, Billard JP (1994) Dormancy breakate of *Hordeum vulgare* seeds: effects
- 388 of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity. Plant
- 389 Physiol Biochem 32: 677–683
- 390 Frankel OH, Soulé ME (1981) Conservation and Evolution. Cambridge University Press, Cambridge
- 391 Frankham R, Ballou JD, Briscoe DA (2009) Genetic management of captive populations. In: Introduction
- 392 To Conservation Genetics, Second Edition. Cambridge university press, Cambridge, pp 430–452
- 393 Gomes GAC, Paiva R, de Oliveira PPD, de Santiago EJA (2003) Plant regeneration from callus cultures

- 394 of *Maclura tinctoria*, an endangered woody species. In Vitro Cell Dev–Pl 39: 293–295
- 395 Gottelli D, Sillero–Zubiri C, Appelbaum GD, Roy MS, Girman DJ, Garcia–Moreno J, Ostrander EA,
- Wayne RK (1994) Molecular genetics of the most endangered canid: the Ethiopian wolf *Canis simensis*.
- 397 Mol Ecol 3: 301–312
- 398 Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version
- 399 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 14 Jan 2014
- 400 Graves GR, Braun MJ (1992) Museums: storehouses of DNA? Science 255: 1335–1336
- 401 Guerrant Jr EO, Havens,K, Vitt P (2014) Sampling for effective ex situ plant conservation. Int J Plant Sci
- 402 175: 11–20
- 403 Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Amer Nat 173: 579–588
- 404 Hoban S, Schlarbaum S (2014) Optimal sampling of seeds from plant populations for ex-situ
- 405 conservation of genetic biodiversity, considering realistic population structure. Biol Conserv 177: 90–
- 406 99
- 407 Honnay O, Bossuyt B, Jacquemyn H, Shimono A, Uchiyama K (2008) Can a seed bank maintain the
- 408 genetic variation in the above ground plant population? Oikos 117: 1–5
- 409 Hooper DU, Chapin Iii FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M,
- 410 Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity
- 411 on ecosystem functioning: a consensus of current knowledge. Ecol monographs 75: 3–35
- 412 Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the
- 413 assistance of sample group information. Mol Ecol Resour 9: 1322–1332
- 414 Huff DD, Miller LM, Chizinski CJ, Vondracek B (2011) Mixed-source reintroductions lead to
- 415 outbreeding depression in second–generation descendants of a native North American fish. Mol ecol

416 20: 4246–4258

- 417 Kanmegne G, Omokolo ND (2008) Germination of Garcinia kola (Heckel) seeds in response to different
- 418 hormone treatments. Fruits 63: 155–161
- 419 Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evolut 17: 230–241
- 420 Koyanagi TF. Furukawa T (2013) Nation-wide agrarian depopulation threatens semi-natural grassland
- 421 species in Japan: Sub–national application of the Red List Index. Biol Conserv 167: 1–8
- 422 Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS One 3: e4010
- 423 León-Lobos P, Way M, Aranda PD, Lima-Junior M (2012) The role of ex situ seed banks in the
- 424 conservation of plant diversity and in ecological restoration in Latin America. Plant Ecol Divers 5:
- 425 245–258
- 426 Lledó MD, Crespo MB, Amo-Marco JB (1996) Micropropagation of *Limonium thiniense* Erben
- 427 (Plumbaginaceae) using herbarium material. Bot Gard Micropropag News 2: 18–21
- 428 Magrini S (2011) Herbaria as useful spore banks for integrated conservation strategies of pteridophytic
- 429 diversity. Plant Biosyst 145: 635–637
- 430 Magrini S, Olmati C, Onofri S, Scoppola A (2010) Recovery of viable germplasm from herbarium
- 431 specimens of Osmunda regalis L. Amer. Fern J. 100: 159–166
- 432 Martin AC (1946) The comparative internal morphology of seeds. Amer Midl Nat 36: 513–660
- 433 Mattila AL, Duplouy A, Kirjokangas M, Lehtonen R, Rastas P, Hanski I (2012) High genetic load in an
- 434 old isolated butterfly population. Proc Natl Acad Sci 109: 2496–2505
- 435 Merritt DJ, Martyn AJ, Ainsley P, Young RE, Seed LU, Thorpe M, Hay FR, Commander LE, Shackelford
- 436 N, Offord CA, Dixon KW, Probert RJ (2014) A continental–scale study of seed lifespan in
- 437 experimental storage examining seed, plant, and environmental traits associated with longevity.

- 438 Biodivers Conserv 23: 1081–1104
- 439 Milián-García Y, Venegas-Anaya M, Frias-Soler R, Crawford AJ, Ramos-Targarona R,
- 440 Rodríguez-Soberón R, Alonso-Tabet A, Thorbjarnarson J, Sanjur OI, Espinosa-López G, Bermingham
- 441 E (2011) Evolutionary history of Cuban crocodiles *Crocodylus rhombifer* and *Crocodylus acutus*
- 442 inferred from multilocus markers. J Exp Zool A Ecol Genet Physiol, 315: 358–375
- 443 Milligan B (1992) Plant DNA isolation. In: Hoelzel AR (ed) Molecular Genetic Analysis of Populations: a
- 444 Practical Approach. IRL Press, Oxford, pp 59–88
- 445 Ministry of the Environment Government of Japan (2012) The Red List of Vascular Plants of Japan.
- 446 https://www.env.go.jp/press/file_view.php?serial=20557&hou_id=15619. Accessed 14 Jan 2014
- 447 Montalvo AM, Ellstrand NC (2001) Nonlocal transplantation and outbreeding depression in the subshrub
- 448 Lotus scoparius (Fabaceae). Am J of Bot 88: 258–269
- 449 Nakahama N, Kaneko S, Hayano A, Isagi Y, Inoue–Murayama M, Tominaga T (2012) Development of
- 450 microsatellite markers for the endangered grassland species *Vincetoxicum pycnostelma* (Apocynaceae),
- 451 using next–generation sequencing technology. Conserv Genet Resour 4: 669–671
- 452 Osaka Museum of Natural History (2012) Collecting and storage business. Annu Rep Osaka Mus Nat
- 453 Hist 37: 19–27 (in Japanese)
- 454 Palomares F, Godoy JA, López-bao JV, Rodríguez A, Roques S, Casas-Marce M, Revilla E, Delibes, M
- 455 (2012) Possible extinction vortex for a population of Iberian lynx on the verge of extirpation. Conserv
- 456 Biol 26: 689–697
- 457 Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for
- 458 teaching and research. Mol Ecol Notes 6: 288–295
- 459 Pritchard JK, Wen X, Falshu D (2010) Documentation for STRUCTURE ver. 2.3. University of Chicago,

- 460 Chicago
- 461 Probert RJ, Daws MI, Hay FR (2009) Ecological correlates of ex situ seed longevity: a comparative study
- 462 on195 species. Ann Bot 104: 57–69
- 463 Prokopiev IA, Filippova GV, Shein AA (2014) Effect of different conditions of welsh onion seed storage
- 464 on germination and cytogenic characteristics of its seedlings. Russ J Genet 4: 614–617
- 465 Qvenild M (2008) Svalbard Global Seed Vault: a 'Noah's Ark' for the world's seeds. Dev Pract 18: 110–
- 466 116
- 467 Rambabu M, Upender M, Ujjwala D, Ugandhar T, Praveen M, Swamy NR (2006) In vitro zygotic
- 468 embryo culture of an endangered forest tree *Givotia rottleriformis* and factors affecting its germination
- and seedling growth. In Vitro Cell Dev–Pl 42: 418–421
- 470 Schoen DJ, Brown AH (2001) The conservation of wild plant species in seed banks. Attention to both
- 471 taxonomic coverage and population biology will improve the role of seed banks as conservation tools.
- 472 Bioscience 51: 960–966
- 473 Shiga T (2013) A relationships among curator, collector, and user surrounding natural history
- 474 specimens: toward a better specimen preservation, collection and usage (Museum and ecology (22)).
- 475 Jap J Ecol 63: 375–383 (in Japanese)
- 476 Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus
- 477 genetic structure. Heredity 82: 561–573
- 478 Strang TJK (1992) A review of published temperatures for the control of pest insects in museums. Collect
- 479 Forum 8: 41–67
- 480 Susko DJ, Mueller, JP, Spears, JF (2001) An evaluation of methods for breaking seed dormancy in kudzu
- 481 (*Pueraria lobata*). Can J Bot 79: 197–203

- 482 Uematsu Y, Koga T, Mitsuhashi H, Ushimaru A (2010) Abandonment and intensified use of agricultural
- 483 land decrease habitats of rare herbs in semi-natural grasslands. Agricult Ecosys Environ 135: 304–309
- 484 Uesugi R, Nishihiro J, Tsumura Y, Washitani I (2007) Restoration of genetic diversity from soil seed
- 485 banks in a threatened aquatic plant, *Nymphoides peltata*. Conserv Genet 8: 111–121
- 486 Valentin N (1993) Comparative analysis of insect control by nitrogen, argon and carbon dioxide in
- 487 museum, archive and herbarium collections. Int Biodeterior Biodegrad 32: 263–278
- 488 Van Slageren W (2003) The Millennium Seed Bank: building partnerships in arid regions for the
- 489 conservation of wild species. J Arid Environ 54: 195–201
- 490 Washitani I (1987) A convenient screening test system and a model for thermal germination responses of
- 491 wild plant seeds: behavior of model and real seeds in the system. Plant Cell Environ 10: 587–598
- 492 Wandeler P, Paquita EAB, Lukas FK (2007) Back to the future: museum specimens in population genetics.
- 493 TREE 22: 634–642
- 494 Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu
- 495 Rev Ecol Evol Syst 37: 433–458
- 496 Windham MD, Wolf PG, Ranker TA (1986) Factors affecting prolonged spore viability in herbarium
- 497 collections of three species of *Pellaea*. Amer Fern J 76: 141–148
- 498 Wu ZY, Raven PH (1995) Flora of China. Vol. 16 (Gentianaceae through Boraginaceae). Science Press,
- 499 Beijing, and Missouri Botanical Garden Press, St. Louis
- 500 Wyatt R, Broyles S (1994) Ecology and evolution of reproduction in Milkweeds. Annu Rev Ecol Evol 25:
- 501 423-441
- 502 Yamazaki T (1993) Asclepiadaceae. In: Iwatsuki K, Yamazaki T, Boufford DE, Ohba H. (Eds), Flora of
- 503 Japan IIIa. Kodansha, Tokyo, pp 176 (in Japanese)

- 504 Zaghloul M, Reisch C, Poschlod P (2013) Soil seed bank contributes significantly to genetic variation of
- *Hypericum sinaicum* in a changing environment. Plant Syst Evol 299: 819–828
- 506 Zhou YF, Hang YZ, Zhou LL, Wang KC (2003) The germination characteristics of Cynanchum
- *paniculatum* seeds. J Plant Resourc Environ 12: 35–38

526	Supplementary material
527	Additional supplemental material can be found in the online version of this article.
528	
529	Table S1 The condition of germination test
530	
531	Figure S1 The ΔK in the STRUCTRE analysis
532	
533	
534	
535	
536	
537	
538	
539	
540	
541	
542	
543	
544	
545	
546	
547	

	Prefecture	No. of	Date of		Increasi	ng temperatur	e condition	decreasing temperature condition			
Site		e years collecting after specimens		Voucher specimen	No. of seeds used experiment	No. of germinated seeds	No. of viable ungerminated seeds	No. of seeds used experiment	No. of germinated seeds	No. of viable ungerminated seeds	
а	Gifu	16	25 Sep. 1997	H. Marui 2434 (OSA203391)	10	0	1	10	0	0	
b	Kyoto	51	16 Sep. 1962	M. Hutoh 24248 (OSA214994)	9	0	0	9	0	0	
c	Kyoto	22	24 Sep. 1991	T. Fujii 2413 (OSA209484)	10	0	0	10	0	0	
d	Nara	4	12 Oct. 2009	S. Onoue s.n. (OSA225354)	9	3	0	9	3	0	
e	Nara	16	03 Aug. 1997	K. Seto 47673 (OSA104247)	11	0	0	11	4	0	
f	Nara	62	03 Jul. 1951	M. Hori s.n. (OSA190777)	8	0	0	8	0	0	
g	Osaka	3	26 Nov. 2010	F. Uwakubo 101126-002 (OSA185864)	12	0	0	12	2	0	
h	Osaka	9	10 Oct. 2004	K. Hirano 2501 (OSA280257)	11	0	2	11	0	0	
i	Hyogo	18	02 Nov. 1994	S. Miyake 2987 (OSA122127)	23	16	2	23	10	0	
				Total	103	19	5	103	19	0	

548 **Table 1** Specimen characteristics and number of seeds used in experiments

 $\frac{549}{550}$

551 **Table 2** Genetic diversity measurements of each site of *Vincetoxicum pycnostelma*. Each site contained specimens' seedlings, a wild and a

by hypothetical mixed population (specimens' seedlings + wild population). *A*, numbers of alleles per locus; *AR*, allelic richness; *RA*, summed number

553 of rare alleles; UA, summed number of unique alleles that are only present in specimens' seedlings; H₀, observed heterozygosity (in bold numbers, if

Site	Wild Population size	Sample	No. of samples	Α	AR	RA	UA	Ho	$H_{ m E}$	$F_{\rm IS}$
		specimens' seedlings	6	3.111	2.366	5	0	0.815	0.582	-0.382
d		Wild population	19	6.222	2.683	17		0.754	0.687	-0.106
a	20	Hypothetical mixed population	25	6.222	2.637	17		0.769	0.680	-0.137
		specimens' seedlings	4	3.000	2.406	5	1	0.778	0.566	-0.348
٩	220*	Wild population	46*	11.333	2.917	51		0.749	0.752	0.008
e		Hypothetical mixed population	50	11.444	2.929	52		0.751	0.756	0.010
		specimens' seedlings	2	2.222	2.222	2	1	0.833	0.472	-0.767
a	100	Wild population	50	10.000	2.859	39		0.767	0.748	-0.030
g		Hypothetical mixed population	52	10.111	2.858	40		0.769	0.748	-0.034
		specimens' seedlings	20	2.889	2.230	3	3	0.694	0.570	-0.205
:		Wild population	16	7.556	2.826	25		0.701	0.723	0.030
1	24	Hypothetical mixed population	36	8.000	2.765	27		0.698	0.725	0.044

554 values are significantly deviated from HWE); $H_{\rm E}$, expected heterozygosity; $F_{\rm IS}$, inbreeding coefficient

555 *: sampled about 1 km from where specimens were originally collected, because original population was locally extinct

	T 10	
557	Figure	cantions
001	Inguic	captions

558

559	Fig. 1 a Tl	he herbarium	specimen of	Vincetoxicum	pycnostelma	collected site i	(OSA122127). Arrow head
	— • • • • • • • • • • • • • • • • • • •				r		\	

- 560 indicates the fruit, Bar indicates 50mm. **b** Seeds in the fruits of OSA122127. Bar indicates 5.0mm. **c**
- 561 Habitat of V. pycnostelma (Site d). d Juvenile individuals germinated from the seeds of herbarium
- 562 specimens (right pot: OSA104247, left pot: OSA185864)

- 564 Fig. 2 a Locations of the collected *Vincetoxicum pycnostelma* specimens in Kinki and Tokai districts. b
- 565 Location of Kinki and Tokai districts in Japan
- 566
- 567 Fig. 3 Results of Bayesian clustering in the STRUCTURE analysis (Pritchard et al. 2010). a The
- 568 proportion of the membership coefficient of 131 individuals in the wild populations at the four sites for
- each of the inferred clusters for K = 2. **b** The proportion of the membership coefficient of 163 individuals
- 570 in the specimens' seedlings and wild populations at the four sites (right side: specimens' seedlings, left
- side: wild populations) for each of the inferred clusters for K = 3 and K = 4. Each column represents an
- 572 individual
- 573
- 574 Fig. 4 Principal coordinates analysis plots of individuals at the four sites (each contains specimens'
- 575 seedlings and wild populations) based on co-dominant genotypic distances (Smouse and Peakall 1999).
- 576 Red, green, white and blue symbols represent Sites d, e, g and i, respectively. Axis 1 explains 27.5% of
- the variance and axis 2 explains 21.4% of the variance
- 578

Figure 1

Figure 2

Figure 4

2 alte	erhated between 12 and 25 °C ii	n 24-n interva	ils after arriv	ing at the m	nai temperat	ure					
Increasing	Temperature (°C)	4	8	12	16	20	24	28	32	36	12~25
temperature condition	Number of days	8	5	4	3	2	2	2	2	2	5
Decreasing temperature condition	Temperature (°C)	36	32	28	24	20	16	12	8	4	25
	Number of days	2	2	2	2	2	3	4	5	8	5

Table S1 Relationships between temperature and number of days in each condition. In the increasing temperature condition, the temperature was alternated between 12 and 25 $^{\circ}$ C in 24-b intervals after arriving at the final temperature $\frac{1}{2}$

3 $\frac{4}{5}$

 ${6 \over 7}$

8 Figure S1

9 The ΔK in the STRUCTRE analysis based on the rate of change in the log probability of data between

10 successive *K* values (Evanno et al. 2005). (a) The result of 131 individuals in the only wild populations of

- 11 the four sites. (b) The result of 163 individuals in the specimens' seedlings and wild populations of four
- 12 sites.

30 97

37 References

- 38 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software
- 39 Structure: a simulation study. Mol Ecol 14: 2611–2620