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Crystallographic groups with cubic normal

fundamental domain

By

LI Yu *

Abstract

We study the crystallographic groups in an n‐dimensional Euclidean space whose normal

fundamental domain can be chosen to be an n‐dimensional cube (we call them cube‐type
crystallographic groups). We will show that dening a cube‐type crystallographic group is

equivalent to dening a combinatorial structure called facets‐pairing structure on the n‐cube.

From this viewpoint, we can identify any cube‐type crystallographic group in dimension n

with a collection of permutations on the set \{1, -1, \cdots, n, -n\} that satisfy some compatible
relations.

§1. Introduction

An n‐dimensional crystallographic group is a discrete, cocompact subgroup  $\Gamma$ of

the isometry group of the  n‐dimensional Euclidean space \mathbb{R}^{n} . If  $\Gamma$ is also torsion free,
then  $\Gamma$ is called a Bieberbach group. A Bieberbach group acts freely and properly

discontinuously on \mathbb{R}^{n}
,

thus the orbit space  M_{ $\Gamma$}:=\mathbb{R}^{n}/ $\Gamma$ is a compact flat manifold

with fundamental group  $\Gamma$ . In fact, any compact flat manifold arises in this way.

For an  n‐dimensional crystallographic group  $\Gamma$
,

all the translations in  $\Gamma$ form a

normal maximal abelian subgroup of finite index, denoted by  L_{ $\Gamma$} . Let H_{ $\Gamma$}= $\Gamma$/L_{ $\Gamma$}.
Then we have a short exact sequence

0\rightarrow L_{ $\Gamma$}\rightarrow $\Gamma$\rightarrow H_{ $\Gamma$}\rightarrow 1.
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The groups L_{ $\Gamma$} and H_{ $\Gamma$} are called the translation subgroup of  $\Gamma$ and holonomy group (or
point‐group), respectively. More specifically, if we write the group of isometries of \mathbb{R}^{n}

as Isom (\mathbb{R}^{n})=O(n)\ltimes \mathbb{R}^{n} ,
then any element of Isom (\mathbb{R}^{n}) can be written uniquely as

L_{b}B ,
where B\in O(n) and L_{b} is a translation by b\in \mathbb{R}^{n}.

Let r:\mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}(\mathbb{R}^{n})\rightarrow O(n) be the canonical projection which sends any L_{b}B to B.

Then L_{ $\Gamma$}= $\Gamma$\cap \mathbb{R}^{n} and H_{ $\Gamma$}=r( $\Gamma$)<O(n) . In addition, since L_{ $\Gamma$} is a normal subgroup of

 $\Gamma$
,

and (L_{b}B)L_{a}(L_{b}B)^{-1}=L_{Ba} ,
we have an integral representation of H_{ $\Gamma$} on L_{ $\Gamma$}\cong \mathbb{Z}^{n},

called holonomy representation of  $\Gamma$ . This representation is faithful, so we can identify
 H_{ $\Gamma$} with a subgroup of \mathrm{G}\mathrm{L}(n, \mathbb{Z}) . The reader is referred to [1] and [5] for more details

on the above definitions.

Denition 1.1 (Fundamental Domain). For an n‐dimensional crystallographic

group  $\Gamma$
,
a subset  D of \mathbb{R}^{n} is called a fundamental domain for  $\Gamma$ if it satisfies the following

conditions.

(i)  D is a closed set;

(ii) all the images \{ $\gamma$(D)|\forall $\gamma$\in $\Gamma$\} of the set D together cover the entire \mathbb{R}^{n} ;

(iii) some (sufficiently small) neighborhood of each point of \mathbb{R}^{n} intersects only finitely

many of the sets  $\gamma$(D) ,  $\gamma$\in $\Gamma$.

(iv) for any  $\gamma$\neq id_{\mathbb{R}^{n}}\in $\Gamma$,  $\gamma$( IntD) \cap IntD =\emptyset where IntD is the interior of the set  D.

It can be shown that any n‐dimensional crystallographic group has a fundamental

domain D which is a convex polyhedron in \mathbb{R}^{n} (for example, the Dirichlet domain of

 $\Gamma$) . In this case, we call D a fundamental polyhedron of  $\Gamma$ . A fundamental polyhedron
is called normal if the intersection of any adjacent polyhedra in the decomposition

\displaystyle \mathbb{R}^{n}=\bigcup_{ $\gamma$\in $\Gamma$} $\gamma$(D) is a face of each of them. If a fundamental domain D of  $\Gamma$ is not

normal, we can always normalize  D by introducing some extra faces (see chapter 2

in [4]).
In this paper, we will study crystallographic groups which have an n‐dimensional

cube as a normal fundamental polyhedron. Let C^{n} denote the following n‐dimensional

cube in the Euclidean space \mathbb{R}^{n}.

C^{n} :=\displaystyle \{(x_{1}, \cdots, x_{n})\in \mathbb{R}^{n}|-\frac{1}{4}\leq x_{i}\leq\frac{1}{4}, 1\leq\forall i\leq n\}
It is easy to see that if a crystallographic group  $\Gamma$ has some  n‐dimensional cube as its

normal fundamental polyhedron, there must exist a crystallographic group $\Gamma$' so that

 $\Gamma$'\cong $\Gamma$ and  $\Gamma$' has C^{n} as a normal fundamental polyhedron. So without loss of generality,
we introduce the following notion.
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Denition 1.2. A crystallographic (Bieberbach) group  $\Gamma$ in dimension  n is

called cube‐type if the cube C^{n} can serve as a normal fundamental polyhedron for  $\Gamma$.

In the rest of this paper, we will study any n‐dimensional cube‐type crystallographic

group  $\Gamma$ by some combinatorial structure on  C^{n} that is canonically associated to  $\Gamma$.

§2. Facets‐Pairing Structure on a Cube

Suppose  $\Gamma$ is an  n‐dimensional cube‐type crystallographic group. Then by defini‐

tion, \mathbb{R}^{n} is tessellated by the family of cubes \{ $\gamma$(C^{n})|\forall $\gamma$\in $\Gamma$\} . We call each  $\gamma$(C^{n})\mathrm{a}
chamber. Since C^{n} is a normal fundamental polyhedron, for each facet F of C^{n} ,

there

exists a unique chamber $\gamma$_{F}(C^{n})($\gamma$_{F}\in $\Gamma$) so that $\gamma$_{F}(C^{n})\cap C^{n}=F . Then $\gamma$_{F} will

map another facet F^{*} of C^{n} to F (it is possible that F^{*}=F ). It is easy to see that

$\gamma$_{F^{*}}=$\gamma$_{F}^{-1} and (F^{*})^{*}=F . Each $\gamma$_{F} is called an adjacency transfO rmation in  $\Gamma$.

So we have an involuntary permutation of the set of facets of C^{n} by associating
F^{*} to F . Let $\tau$_{F} : F\rightarrow F^{*} denote the restriction of $\gamma$_{F}^{-1} to F . It is clear that $\tau$_{F}

is a face‐preserving isometry. The following two theorems contain some standard facts

about fundamental polyhedra of crystallographic groups. Their proof may be found in

Chapter 2 of [4].

Theorem 2.1 (see [4]). The crystallographic group  $\Gamma$ is generated by adjacency

transfO rmations.

There are two types of relations among the adjacency transformations of  $\Gamma$.

Type‐1: For any facet F of C^{n}, $\gamma$_{F}*$\gamma$_{F}=id_{\mathbb{R}^{n}} ;

Type‐2: For a codimension‐two face f of C^{n} ,
let $\gamma$_{F_{1}} (Cn), $\gamma$_{F_{2}}$\gamma$_{F_{1}} (Cn), $\gamma$_{F_{3}}$\gamma$_{F_{2}}$\gamma$_{F_{1}}(C^{n}) and

$\gamma$_{F_{4}}$\gamma$_{F_{3}}$\gamma$_{F_{2}}$\gamma$_{F_{1}}(C^{n}) be the four chambers meeting at f . Then we have:

$\gamma$_{F_{4}}$\gamma$_{F_{3}}$\gamma$_{F_{2}}$\gamma$_{F_{1}}=id_{\mathbb{R}^{n}}.

The Type‐2 relations are called Poincaré relations. We remark that the facets

F_{1}, F_{2}, F_{3}, F_{4} in a Type‐2 relation may not be all distinct.

Theorem 2.2 (see [4]). The Type‐1 and Type‐2 relations together form a set of
abstract dening relations for the cube‐type crystallographic group  $\Gamma$ on the generators

{  $\gamma$_{F};F is a facet of C^{n} }.

Since \mathbb{R}^{n} is tiled by all the chambers of  $\Gamma$
,

we can identify \mathbb{R}^{n} with the quotient

space  $\Gamma$\times C^{n}/\mathcal{I} where \mathcal{I} is the equivalent relation on  $\Gamma$\times C^{n} generated by the equivalences
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of the form ( $\gamma \gamma$_{F}, x)\sim( $\gamma,\ \gamma$_{F}^{-1}(x))= (; $\tau$_{F}(x)) for any  $\gamma$\in $\Gamma$ and any point  x in a facet

F of C^{n} . Then the chambers of  $\Gamma$ can be represented by [(  $\gamma$ , Cn)],  $\gamma$\in $\Gamma$.

(2.1) Let  $\pi$ :  $\Gamma$\times C^{n}\rightarrow \mathbb{R}^{n}= $\Gamma$\times C^{n}/\mathcal{I} denote the quotient map.

For any proper face f of C^{n} ,
let  $\Xi$(f) denote the set of facets of C^{n} that contain f,

i.e.  $\Xi$(f)= {F|F is any facet of C^{n} with f\subset F }. And let $\Xi$^{\perp}(f) be the set of facets of

C^{n} that intersect f transversely. For any F\in---\perp(f) , F\cap f must be a codimension‐one

face of f . So we have:

$\Xi$^{\perp}(f)= {F|F is any facet of C^{n} so that f\cap F is a codimension‐one face of f}.

For an arbitrary facet F\in $\Xi$(f) ,
let f'=$\tau$_{F}(f)\subset F^{*} . Then we can define a map

(2.2) $\Psi$_{F}^{f} :  $\Xi$(f)\rightarrow---(f') ,
where $\Psi$_{F}^{f\#}(F)\cap F^{*}=$\tau$_{F}(F\#\cap F) for \forall F\#\in $\Xi$(f) .

In particular, $\Psi$_{F}^{f}(F)=F^{*} . Similarly, we can define a map

(2.3) ($\Psi$_{F}^{f})^{\perp}: ---\perp(f)\rightarrow---\perp(f') , ($\Psi$_{F}^{f})^{\perp}(F^{\flat})\cap f'=$\tau$_{F}(F^{\flat}\cap f) for \forall F^{\flat}\in$\Xi$^{\perp}(f) .

Since $\tau$_{F} : F\rightarrow F^{*} is a face‐preserving homeomorphism, $\Psi$_{F}^{f} and ($\Psi$_{F}^{f})^{\perp} are both

bijections. Geometrically, $\Psi$_{F}^{f} and ($\Psi$_{F}^{f})^{\perp} just tell us how $\gamma$_{F} permutes the facets that

contain f . Moreover, for any facet F'\in $\Xi$(f') ,
let f''=$\tau$_{F'}(f') . So we have the

composite maps:

$\Psi$_{F}^{f'}, \circ$\Psi$_{F}^{f} :  $\Xi$(f)\rightarrow---(f'') and ($\Psi$_{F}^{f'},)^{\perp}\circ($\Psi$_{F}^{f})^{\perp}: ---\perp(f)\rightarrow---\perp(f'') .

Using these notions, we can interpret the above Type‐1 and Type‐2 relations among

$\gamma$_{F} �s into two types of relations among $\tau$_{F} �s as follows.

Type‐1�: For any facet F of C^{n}, $\tau$_{F}*$\tau$_{F}=id_{F} ;

Type‐2�: For a codimension‐two face f_{1} of C^{n} ,
let $\gamma$_{F_{1}} (Cn), $\gamma$_{F_{2}}$\gamma$_{F_{1}} (Cn), $\gamma$_{F_{3}}$\gamma$_{F_{2}}$\gamma$_{F_{1}}(C^{n}) and

$\gamma$_{F_{4}}$\gamma$_{F_{3}}$\gamma$_{F_{2}}$\gamma$_{F_{1}}(C^{n})=C^{n} be the four chambers meeting at f_{1} . Suppose  f_{2}=$\tau$_{F_{1}}(f_{1})\subset
 F_{1}^{*}\cap F_{2}, f_{3}=$\tau$_{F_{2}}(f_{2})\subset F_{2}^{*}\cap F_{3}, f_{4}=$\tau$_{F_{3}}(f_{3})\subset F_{3}^{*}\cap F_{4} . Then $\tau$_{F_{4}}(f_{4})=f_{1} and

we have:

(a) the map $\tau$_{F_{4}}$\tau$_{F_{3}}$\tau$_{F_{2}}$\tau$_{F_{1}}|_{f}1 : f_{1}\rightarrow f_{1} coincides with id_{f}1 ,
and

(b) the map $\Psi$_{F_{4}}^{f4}\circ$\Psi$_{F_{3}}^{f_{3}}\circ$\Psi$_{F_{2}}^{f}2\circ$\Psi$_{F_{1}}^{f}1 :  $\Xi$(f_{1})\rightarrow---(f_{1}) is the identity map.

Since the map $\tau$_{F_{4}}$\tau$_{F_{3}}$\tau$_{F_{2}}$\tau$_{F_{1}}|_{f}1 : f_{1}\rightarrow f_{1} is an isometry, it is uniquely determined by
how it permutes the codimension‐one faces of f_{1} . So Type‐2�(a) is equivalent to saying
that ($\Psi$_{F_{4}}^{f4})^{\perp}\circ($\Psi$_{F_{3}}^{f_{3}})^{\perp}\circ($\Psi$_{F_{2}}^{f}2)^{\perp}\circ($\Psi$_{F_{1}}^{f}1)^{\perp}: $\Xi$^{\perp}(f_{1})\rightarrow---\perp(f) is the identity map. In
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Figure 1.

addition, the Type‐2�(b) here is actually a consequence of Type‐2�(a), because there are

always four chambers meeting at a codimension‐two face of C^{n} in the tessellation of \mathbb{R}^{n}.

Notice that we can write Type‐2�(a) equivalently as $\tau$_{F_{2}}$\tau$_{F_{1}}|_{f}1=$\tau$_{F_{3}}^{-1}$\tau$_{F_{4}}^{-1}|_{f}1^{\cdot} So

the Type‐1� and Type‐2� conditions lead to a general notion on any nice manifold with

corners as follows (also see [6]).

Denition 2.3 (Facets‐Pairing Structure). Suppose we have the following data

on an n‐dimensional nice manifold with corners V^{n} :

(I) each facet F of V^{n} is uniquely paired with a facet F^{*} (it is possible that F^{*}=F )
and there are isometries $\tau$_{F} : F\rightarrow F^{*} and $\tau$_{F^{*}} : F^{*}\rightarrow F such that $\tau$_{F^{*}}=$\tau$_{F}^{-1}
(here F and F^{*} themselves are considered as manifolds with corners). If F^{*}\neq F,
we call \hat{F}=\{F, F^{*}\} a facet pair and call F^{*} the twin facet of F . If F^{*}=F

,
the

$\tau$_{F}:F\rightarrow F is necessarily an involution on F (i.e. $\tau$_{F}0$\tau$_{F}=id_{F} ). Then we define

\hat{F}=\{F\} and call such an Fa self‐ involutive facet.

(II) for any codimension‐two face f=F_{1}\cap F_{2} ,
if $\tau$_{F_{1}}(f)=F_{1}^{*}\cap F_{3}, $\tau$_{F_{2}}(f)=F_{2}^{*}\cap F_{4},

then $\tau$_{F_{3}}$\tau$_{F_{1}}(f)=$\tau$_{F_{4}}$\tau$_{F_{2}}(f)=F_{3}^{*}\cap F_{4}^{*} (see Figure 1), and $\tau$_{F_{3}}$\tau$_{F_{1}}(p)=$\tau$_{F_{4}}$\tau$_{F_{2}}(p)
for \forall p\in f . Here it is possible that F_{3}=F_{2}^{*} or F_{4}=F_{1}^{*}.

We call \mathcal{P}=\{\hat{F}, $\tau$_{F}\}_{F\subset V^{n}} a facets‐pairing structure on V^{n} ,
and call \{$\tau$_{F} :  F\rightarrow

 F^{*}\}_{F\subset V^{n}} the structure maps of \mathcal{P}.

By our discussion above, any n‐dimensional cube‐type crystallographic group  $\Gamma$

determines a facets‐pairing structure on the cube  C^{n} ,
denoted by \mathcal{P}_{ $\Gamma$} . Conversely, we

can prove the following.

Theorem 2.4. Any facets‐pairing structure \mathcal{P} on C^{n} canonically determines an

n ‐dimensional cube‐type crystallographic group  $\Gamma$ so that \mathcal{P}_{ $\Gamma$}=\mathcal{P}.

Proof. For any facet F of C^{n} ,
the isometry $\tau$_{F} : F\rightarrow F^{*} determines a unique

isometry $\gamma$_{F} of \mathbb{R}^{n} so that $\gamma$_{F}(C^{n})\cap C^{n}=F and $\gamma$_{F}^{-1} agrees with $\tau$_{F} on F . Let  $\Gamma$ be
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the subgroup of Isom (\mathbb{R}^{n}) generated by all these $\gamma$_{F}' \mathrm{s} . Then by the definition of facets‐

pairing structure, these $\gamma$_{F} �s satisfy the Type‐1 and Type‐2 relations. In addition, for

any codimension‐two face f ,
there exist facets F_{1}, F_{2}, F_{3}, F_{4} (may not be all distinct) so

that $\gamma$_{F_{1}} (Cn), $\gamma$_{F_{2}}$\gamma$_{F_{1}} (Cn), $\gamma$_{F_{3}}$\gamma$_{F_{2}}$\gamma$_{F_{1}}(C^{n}) and $\gamma$_{F_{4}}$\gamma$_{F_{3}}$\gamma$_{F_{2}}$\gamma$_{F_{1}}(C^{n})=C^{n} form a �circuit�

around f in \mathbb{R}^{n} . Since the sum of the dihedral angles of $\tau$_{F_{1}}(f) , $\tau$_{F_{2}}$\tau$_{F_{1}}(f) , $\tau$_{F_{3}}$\tau$_{F_{2}}$\tau$_{F_{1}}(f)
and $\tau$_{F_{4}}$\tau$_{F_{3}}$\tau$_{F_{2}}$\tau$_{F_{1}}(f)=f equals 2,  $\Gamma$ is an  n‐dimensional crystallographic group (see
p.165 of [4]). It is clear that C^{n} is a normal fundamental polyhedron of  $\Gamma$ and, the

facets‐pairing structure on  C^{n} induced by  $\Gamma$ is exactly \mathcal{P}. \square 

By Theorem 2.2 and Theorem 2.4, defining a cube‐type crystallographic group of

dimension n is equivalent to defining a facets‐pairing structure on C^{n}.

Example 2.5. If we define F^{*}=F and $\tau$_{F}=id_{F} for each facet F of C^{n} ,
what

we get is obviously a facets‐pairing structure on C^{n} ,
denoted by \mathcal{P}_{0} . We call \mathcal{P}_{0} the

trivial facets‐pairing structure. The crystallographic group corresponding to \mathcal{P}_{0} is a

Coxeter group generated by the reflections about all the facets of C^{n}.

§3. Cube‐type Bieberbach Groups

Cube‐type Bieberbach groups are torsion‐free cube‐type crystallographic groups.

In this section, we will interpret the �torsion‐freeness� of a cube‐type crystallographic

group into some condition on the corresponding facets‐pairing structure on C^{n} . First,
let us introduce some new notions in a facets‐pairing structure.

Denition 3.1 (Face Family). Suppose \mathcal{P}=\{\hat{F}, $\tau$_{F}\}_{F\subset V^{n}} is a facets‐pairing
structure on a nice manifold with corners V^{n} . For any face f of V^{n}, $\tau$_{F_{k}}0\cdots\circ$\tau$_{F_{1}}(f) is

called valid if f\subset F_{1} and $\tau$_{F_{j}}0\cdots\circ$\tau$_{F_{1}}(f)\subset F_{j+1} for each 1\leq j<k . Moreover, when

k=0 ,
we define $\tau$_{F_{k}}\circ\cdots\circ$\tau$_{F_{1}}(f) :=f . Let \hat{f} be the set of all faces of the valid form

$\tau$_{F_{k}}0\cdots\circ$\tau$_{F_{1}}(f) for some k\geq 0 . We call \hat{f}\mathrm{t}\mathrm{h}\mathrm{e} face family containing f in \mathcal{P} . Obviously,
each proper face of V^{n} is contained in a unique face family of \mathcal{P} . In particular, the face

family containing a facet F is just \hat{F}.

Denition 3.2 (Perfect Facets‐Pairing Structure). In a facets‐pairing structure

\mathcal{P} on a nice manifold with corners V^{n} ,
a codimension‐l face family \hat{f} is called perfe ct

if \hat{f} consists of exactly 2^{l} different faces of V^{n} . Moreover, \mathcal{P} is called perfe ct if all its

face families are perfect. Note that a perfect facets‐pairing structure should have no

self‐involutive facets.

Theorem 3.3. An n ‐dimensional cube‐type crystallographic group  $\Gamma$ is torsion

free if and only if the corresponding facets‐pairing structure \mathcal{P}_{ $\Gamma$} on C^{n} is perfe ct.
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Figure 2.

Proof. For any codimension‐l face f of C^{n} ,
there are exactly 2^{l} chambers of  $\Gamma$

meeting  f in the tiling of \mathbb{R}^{n} . Let  $\pi$ :  $\Gamma$\times C^{n}\rightarrow \mathbb{R}^{n}= $\Gamma$\times C^{n}/\mathcal{I} be the quotient map

which defines the tiling of \mathbb{R}^{n} by chambers of  $\Gamma$ (see (2.1)). Then

 $\pi$^{-1}( $\pi$(id_{\mathbb{R}^{n}}, f))=\{($\gamma$_{F_{1}}\circ\cdots\circ$\gamma$_{F_{k}}, $\tau$_{F_{k}}0\cdots 0$\tau$_{F_{1}}(f)) ; $\tau$_{F_{k}}0\cdots\circ$\tau$_{F_{1}}(f) is any valid form:

In addition, let  $\theta$ :  $\Gamma$\times C^{n}\rightarrow $\Gamma$ be the map defined by  $\theta$( $\gamma$, x)= $\gamma$ . Then the set

 $\Gamma$_{f} := $\theta$($\pi$^{-1}( $\pi$(id_{\mathbb{R}^{n}}, f \subset $\Gamma$ consists of exactly  2^{l} elements. Note that this implies
that the face family \hat{f} has at most 2^{l} components.

If we assume \mathcal{P}_{ $\Gamma$} is perfect, the face family of f consists of exactly 2^{l} different faces

of C^{n} . This implies that for any $\gamma$_{F_{1}}\circ\cdots\circ$\gamma$_{F_{k}}\neq id_{\mathbb{R}^{n}}\in$\Gamma$_{f} ,
the $\tau$_{F_{k}}\circ\cdots\circ$\tau$_{F_{1}}(f) is a

face on C^{n} different from f . Under this condition, we claim that the action of  $\Gamma$ on \mathbb{R}^{n}

has to be free. Otherwise, since  $\Gamma$ can be generated by  $\gamma$_{F}' \mathrm{s} , there exists a sequence of

facets F_{1}, \cdots

;  F_{r} of C^{n} so that $\gamma$_{F_{1}}\circ\cdots\circ$\gamma$_{F_{r}}\neq id_{\mathbb{R}^{n}} and $\gamma$_{F_{1}}\circ\cdots\circ$\gamma$_{F_{r}}(x)=x for some

x\in C^{n} . Suppose x is contained in the relative interior of a face f . Then since each $\gamma$_{F_{i}}

is face‐preserving, we must have $\gamma$_{F_{1}}\circ\cdots\circ$\gamma$_{F_{r}}(f)=f . Then $\gamma$_{F_{r}}^{-1}\circ\cdots\circ$\gamma$_{F_{1}}^{-1}(f)=f.
By definition, $\tau$_{F}=$\gamma$_{F}^{-1}|_{F} : F\rightarrow F^{*} for any facet F

,
so we have $\tau$_{F_{r}}0\cdots\circ$\tau$_{F_{1}}(f)=f,

which leads to a contradiction.

Conversely, we assume the action of  $\Gamma$ on \mathbb{R}^{n} is free. To prove \mathcal{P}_{ $\Gamma$} is perfect on C^{n},
it suffices to show that for any proper face f of C^{n} and any $\gamma$_{F_{1}}\circ\cdots\circ$\gamma$_{F_{k}}\neq id_{\mathbb{R}^{n}}\in$\Gamma$_{f},
the $\tau$_{F_{k}}\circ\cdots 0$\tau$_{F_{1}}(f) is a face on C^{n} different from f . Indeed, $\tau$_{F_{k}}\circ\cdots\circ$\tau$_{F_{1}}(f)=f
implies that $\gamma$_{F_{k}}^{-1}\circ\cdots\circ$\gamma$_{F_{1}}^{-1}(f)=f . So we have $\gamma$_{F_{1}}\cdots$\gamma$_{F_{k}}(f)=f . By Brouwer�s fixed

point theorem, $\gamma$_{F_{1}}\circ\cdots\circ$\gamma$_{F_{k}} must have a fixed point which contradicts our assumption
that  $\Gamma$ acts freely on \mathbb{R}^{n} . So the theorem is proved. \square 

Example 3.4. Figure 2 shows three different facets‐pairing structures on C^{2}.

Only the left and the middle one are perfect. The cube‐type crystallographic groups

corresponding to these facets‐pairing structures are shown in Example 4.7.

§4. Combinatorics of Facets‐Pairing Structures on a Cube

In this section, we will study the combinatorics of a facets‐pairing structure on a

cube, which will help us to understand the geometry of the corresponding cube‐type
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crystallographic group. First, let us introduce some auxiliary notations.

Let [\pm n]:=\{\pm 1, \cdots, \pm n\}=\{1, -1, 2, -2, \cdots, n, -n\} . A map  $\sigma$ : [\pm n]\rightarrow[n]
is called a signed permutation on [n] if  $\sigma$ is a bijection and  $\sigma$(-k)=- $\sigma$(k) for any

k\in[\pm n] . The set of all signed permutations on [n] with respect to the composition of

maps forms a group, denoted by \mathfrak{S}_{n}^{\pm} (also called Hyperoctahedral group). In addition,
we can consider \mathfrak{S}_{n}^{\pm} as a subgroup of \mathrm{G}\mathrm{L}(n, \mathbb{Z}) by sending  $\sigma$\in \mathfrak{S}_{n}^{\pm} to a matrix P_{ $\sigma$} where

(i, j) ‐entry of P_{ $\sigma$}=\left\{\begin{array}{l}
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}( $\sigma$(i)) , j= $\sigma$(i) ;\\
0, \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
Such a matrix P_{ $\sigma$}\in \mathrm{G}\mathrm{L}(n, \mathbb{Z}) is called a signed permutation matrix. Since any P_{ $\sigma$} is

an orthogonal matrix, we have P_{ $\sigma$-1}=P_{ $\sigma$}^{-1}=P_{ $\sigma$}^{t} . In fact, the set of all n‐dimensional

signed permutation matrices is exactly \mathrm{G}\mathrm{L}(n, \mathbb{Z})\cap O(n) .

Let \mathrm{F}(i) and \mathrm{F}(\mathrm{i}) be the facets of C^{n} which lie in the hyperplanes \displaystyle \{x_{i}=\frac{1}{4}\} and

\displaystyle \{x_{i}=-\frac{1}{4}\} of \mathbb{R}^{n}
, respectively. Moreover, for any j_{1}, \cdots

;  j_{s}\in[n] whose absolute

values |j_{1}|, \cdots, |j_{s}| are pairwise distinct, we define

\mathrm{F}(j_{1}, \cdots, j_{s}):=\mathrm{F}(j_{1})\cap\cdots\cap \mathrm{F}(j_{s})\subset C^{n}

Then \mathrm{F}(j_{1}, \cdots; j_{s}) is a face of C^{n} with codimension s . Conversely, for any proper

codimension‐s face f of C^{n} ,
there exists j_{1}, \cdots

;  j_{s}\in[n] so that \mathrm{F}(j_{1}, \cdots; j_{s}) equals

f . Obviously, \mathrm{F}(j_{1}, \cdots, j) = F(jí, \cdots, j_{s}' ) if and only if \{j_{1}, \cdots ; j_{s}\}=\{j\'{i}, \cdots

, js� \}.

Fact: The symmetry group of C^{n} is isomorphic to the signed permutation group

\mathfrak{S}_{n}^{\pm} . This is because each symmetry of C^{n} is uniquely determined by how it permutes

the 2n facets \{\mathrm{F}(j)\}_{j\in[\pm n]} of C^{n}.

Theorem 4.1. For any n ‐dimensional cube‐type crystallographic group  $\Gamma$
,

its

holonomy group  H_{ $\Gamma$}<O(n) is generated by some signed permutation matrices and its

translation subgroup L_{ $\Gamma$}\displaystyle \subset\frac{1}{2}\mathbb{Z}^{n}.

Proof. For any facet \mathrm{F}(j) of C^{n} , suppose \mathrm{F}(j)^{*}=\mathrm{F}(j') ,
i.e. $\gamma$_{\mathrm{F}(j)} maps \mathrm{F}(j') to

\mathrm{F}(j) and $\gamma$_{\mathrm{F}(j)}(C^{n})\cap C^{n}=\mathrm{F}(j) . We can write $\gamma$_{\mathrm{F}(j)}=L_{b_{j}}B_{j} where B_{j}\in O(n) and

L_{b_{j}} is the translation along a vector b_{j} in \mathbb{R}^{n} . Notice that B_{j} must preserve the cube

C^{n} ,
i.e. B_{j} induces a symmetry of C^{n} . So B_{j} is a signed permutation matrix. And

since  $\Gamma$ is generated by the set \{$\gamma$_{\mathrm{F}(j)}, j\in[\pm n]\} ,
the holonomy group H_{ $\Gamma$} is generated

by \{B_{j}, j\in[\pm n]\} . In addition, observe that we must have B_{j}(\mathrm{F}(j'))=\mathrm{F}(\mathrm{j}) and L_{b_{j}}
is the translation which moves \mathrm{F}(\mathrm{j}) to \mathrm{F}(j) . So

b_{j}=\left\{\begin{array}{l}
\frac{1}{2}$\delta$_{j}, j>0;\\
-\frac{1}{2}$\delta$_{|j|}, j<0.
\end{array}\right.
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where $\delta$_{i}= (0, \cdots, 0,1, 0i, \cdots; 0)^{t}\in \mathbb{Z}^{n} for any 1\leq i\leq n . For any translation  L_{b}\in

 L_{ $\Gamma$}= $\Gamma$\cap \mathbb{R}^{n} ,
if we write L_{b} as a product of elements in \{$\gamma$_{\mathrm{F}(j)}, j\in[\pm n]\} ,

it is easy to

see that b=\displaystyle \frac{1}{2}(k_{1}$\delta$_{1}+\cdots+k_{n}$\delta$_{n}) for some k_{1}, \cdots

;  k_{n}\in \mathbb{Z} . So L_{ $\Gamma$}\displaystyle \subset\frac{1}{2}\mathbb{Z}^{n}. \square 

Remark. In the above theorem, suppose  $\eta$ :  H_{ $\Gamma$}\rightarrow \mathrm{G}\mathrm{L}(n, \mathbb{Z}) is the holonomy rep‐

resentation of  $\Gamma$ . In general,  $\eta$(H_{ $\Gamma$})<\mathrm{G}\mathrm{L}(n, \mathbb{Z}) may not consist of signed permutation
matrices although H_{ $\Gamma$}<O(n) does.

Suppose \mathcal{P} is a facets‐pairing structure on C^{n} . For any facet \mathrm{F}(j) of C^{n} ,
let the

twin facet of \mathrm{F}(j) in \mathcal{P} be \mathrm{F}( $\omega$(\mathrm{j})) where  $\omega$(j)\in[\pm n] . Then  $\omega$\circ $\omega$=id_{[\pm n]} . In other

words,  $\omega$ is an involuntary permutation on [\pm n].

The structure maps of \mathcal{P} are a collection of isometries between facets of C^{n}

\{$\tau$_{j}=$\tau$_{\mathrm{F}(j)}:\mathrm{F}(j)\triangle\rightarrow \mathrm{F}( $\omega$(j))\}_{j\in[\pm n]}

which satisfy the conditions in Definition 2.3. To each $\tau$_{j} ,
we can associate a map

$\sigma$_{j}:[\pm n]\backslash \{\pm j\}\rightarrow[\pm n]\backslash \{\pm $\omega$(j)\}, j\in[\pm n]

(4.1) with $\tau$_{j}(\mathrm{F}(j, k))=\mathrm{F}( $\omega$(j), $\sigma$_{j}(k)) , \forall k\in[\pm n]\backslash \{\pm j\}.

Obviously, $\sigma$_{j} is a bijection and $\sigma$_{j}(-k)=-$\sigma$_{j}(k) ,
and \mathcal{P} is completely determined by

\{ $\omega,\ \sigma$_{j}\}_{j\in[\pm n]} . So in the rest of this paper, we write \mathcal{P}=\{ $\omega,\ \sigma$_{j}\}_{j\in[\pm n]}.

Next, we interpret the condition (I) and (II) in the Definition 2.3 into conditions

on \{ $\omega,\ \sigma$_{j}\}_{j\in[\pm n]} . We can show that the condition (I) is equivalent to:

(4.2) $\sigma$_{ $\omega$(j)}\circ$\sigma$_{j}(k)=k, \forall k\in[\pm n]\backslash \{\pm j\}, \forall j\in[n]

The condition(II) is equivalent to the following two conditions (see section 3 of [6]).

(4.3) $\sigma$_{ $\sigma$(k)}j( $\omega$(j))= $\omega$($\sigma$_{k}(j)) , \forall|j|\neq|k| where j, k\in[\pm n] ;

(4.4) $\sigma$_{$\sigma$_{j}(k)}($\sigma$_{j}(l))=$\sigma$_{$\sigma$_{k}(j)}($\sigma$_{k}(l)) , \forall|j|\neq|k|\neq|l| where j, k, l\in[\pm n].

The following theorem follows easily from our discussion above.

Theorem 4.2. For any facets‐pairing structure \mathcal{P} on C^{n} ,
the corresponding data

\{ $\omega,\ \sigma$_{j}\}_{j\in[\pm n]} must satisfy (4.2) (4.3) and (4.4). Conversely, given any involuntary per‐

mutation  $\omega$ on [n] and bijections $\sigma$_{j} : [\pm n]\backslash \{\pm j\}\rightarrow[\pm n]\backslash \{\pm $\omega$(j)\} for \forall j\in[n]
with $\sigma$_{j}(-k)=-$\sigma$_{j}(k) ,

which satisfy (4.2) (4.3) and (4.4), the \{ $\omega,\ \sigma$_{j}\}_{j\in[\pm n]} canonically
determines a facets‐pairing structure on C^{n}.
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From the definition of \mathcal{P} ,
it is not clear whether  $\omega$(j) should equal - $\omega$(j) for

j\in[\pm n] . But if we assume  $\omega$(-j)=- $\omega$(j) for all j\in[\pm n] ,
then each $\sigma$_{j} canonically

determines a signed permutation \overline{ $\sigma$}_{j} : [\pm n]\rightarrow[n] by:

(4.5) \overline{ $\sigma$}_{j}(k):=\left\{\begin{array}{l}
$\sigma$_{j}(k) , k\neq\pm j;\\
 $\omega$(k) , k=\pm j.
\end{array}\right.
In this case, (4.2) (4.3) and (4.4) are equivalent to the following conditions on \{ $\omega$, \overline{ $\sigma$}_{j}\}_{j\in[\pm n]}.

(4.6) \overline{ $\sigma$}_{ $\omega$(j)}\circ\overline{ $\sigma$}_{j}=id_{[\pm n]}, \forall j\in[\pm n].
(4.7) \overline{ $\sigma$}$\sigma$_{j}(k)( $\omega$(j))= $\omega$(\overline{ $\sigma$}_{k}(j)) , \forall j, k\in[\pm n].
(4.8) \overline{ $\sigma$}_{\overline{ $\sigma$}_{j}(k)}(\overline{ $\sigma$}_{j}(l))=\overline{ $\sigma$}_{\overline{ $\sigma$}_{k}(j)}(\overline{ $\sigma$}_{k}(l)) , \forall j, k, l\in[\pm n].

Note if we set l=j in (4.8), we obtain (4.7). So (4.7) is actually contained in (4.8).

Denition 4.3. A facets‐pairing structure \mathcal{P}=\{ $\omega,\ \tau$_{j}\}_{j\in[\pm n]} on C^{n} is called

regular if  $\omega$(-j)=- $\omega$(j) for all j\in[\pm n] . In other words,  $\omega$ is an involuntary signed

permutation on [\pm n] . Geometrically, this means that if \mathrm{F}(j) is paired with \mathrm{F}( $\omega$(j)) ,

then \mathrm{F}(\mathrm{j}) is paired with \mathrm{F}(- $\omega$(j)) .

If \mathcal{P}=\{ $\omega,\ \sigma$_{j}\}_{j\in[\pm n]} is a regular facets‐pairing structure on C^{n} ,
each \overline{ $\sigma$}_{j} is a signed

permutation on [\pm n] . So \overline{ $\sigma$}_{j} determines a unique symmetry of the cube C^{n} ,
denoted by

\overline{ $\tau$}_{j} : C^{n}\rightarrow C^{n} where \overline{ $\tau$}_{j}(\mathrm{F}(k))=\mathrm{F}((\mathrm{k})) for any k\in[\pm n] . Then (4.1) becomes:

(4.9) \overline{ $\tau$}_{j}(\mathrm{F}(j, k))=\mathrm{F}(\overline{ $\sigma$}_{j}(j), \overline{ $\sigma$}_{j}(k))) .

Obviously, $\tau$_{j}=\overline{ $\tau$}_{j}|_{\mathrm{F}(j)} . So for a regular facets‐pairing structure \mathcal{P} , we also write

\mathcal{P}=\{ $\omega$, \overline{ $\sigma$}_{j}\}_{j\in[\pm n]} where  $\omega$, \overline{ $\sigma$}_{j}\in \mathfrak{S}_{n}^{\pm}.

Corollary 4.4. Any regular facets‐pairing structure on C^{n} corresponds to a tuple

of elements ( $\omega$;T_{1}, T_{-1}, \cdots; T_{n}, T_{-n}) in \mathfrak{S}_{n}^{\pm} which satisfy the following conditions.

(a)  $\omega$\circ $\omega$=id_{[\pm n]} for \forall j\in[\pm n].

(b) T_{j}(j)= $\omega$(j) and T_{ $\omega$(j)}\circ T_{j}=id_{[\pm n]}, \forall j\in[\pm n],

(c) T_{T_{j}(k)}\mathrm{o}T_{j}=T_{T_{k}(j)}\mathrm{o}T_{k}, \forall j, k\in[\pm n].

The following question on cube‐type crystallographic groups seems a little bold to

ask. But no counterexample of this question is known to the author so far.

Question: for any n‐dimensional cube‐type crystallographic group  $\Gamma$
,

is the

corresponding facets‐pairing structure  P_{ $\Gamma$} on C^{n} always regular?

Besides, there is a natural equivalence relation among all facets‐pairing structures

on C^{n} induced by the symmetries of C^{n} as defined below.
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Denition 4.5. Two facets‐pairing structures \mathcal{P} and \mathcal{P}' on C^{n} are called strongly

equivalent if there exists a symmetry h : C^{n}\rightarrow C^{n} such that \mathcal{P}'=h(\mathcal{P}) . Suppose

\mathcal{P}=\{ $\omega,\ \tau$_{j}\}_{j\in[\pm n]} and \mathcal{P}'=\{$\omega$', $\tau$_{j}'\}_{j\in[\pm n]} . Then we have: $\tau$_{j}=h^{-1}\mathrm{o}$\tau$_{j}' , oh where

\mathrm{F}(j')=h(\mathrm{F}(j)) for each j\in[\pm n].

Suppose ( $\omega$;\overline{ $\sigma$}_{1}, \overline{ $\sigma$}_{-1}, \cdots, \overline{ $\sigma$}_{n}, \overline{ $\sigma$}_{-n}) and ($\omega$';- $\sigma$\'{i}, \overline{ $\sigma$}_{-1}', \cdots, \overline{ $\sigma$}_{n}', \overline{ $\sigma$}_{-n}') are two tuples of

elements of \mathfrak{S}_{n}^{\pm} corresponding to regular facets‐pairing structures \mathcal{P} and \mathcal{P}' on C^{n},

respectively. Then \mathcal{P} is strongly equivalent to \mathcal{P}' if and only if there is an element

S\in \mathfrak{S}_{n}^{\pm} so that:

 $\omega$=S^{-1}$\omega$'S ; \overline{ $\sigma$}_{j}=S^{-1}\overline{ $\sigma$}_{S(j)}'S, \forall j\in[\pm n].

Remark. Let $\Gamma$_{i} be the crystallographic groups determined by a facets‐pairing
structures \mathcal{P}_{i} on C^{n}, i=1

,
2. If \mathcal{P}_{1} is strongly equivalent to \mathcal{P}_{2} ,

then $\Gamma$_{1} is obviously

isomorphic to $\Gamma$_{2} . But conversely, $\Gamma$_{1} and $\Gamma$_{2} are isomorphic can not guarantee that \mathcal{P}_{1}

and \mathcal{P}_{2} are strongly equivalent.

Finally, let us discuss an interesting class of cube‐type crystallographic groups

introduced in [3]. For any n\times n binary matrix A with zero diagonal, a set of Euclidean

motions s_{1}, \cdots, s_{n} on \mathbb{R}^{n} is defined by:

s_{i}^{A}(x_{1}, \cdots, x_{n}) :=((-1)^{A_{1}^{i}}x_{1}, \displaystyle \cdots, (-1)^{A_{i-1}^{i}}x_{i-1}, x_{i}+\frac{1}{2}, (-1)^{A_{i+1}^{i}}x_{i+1}, \cdots, (-1)^{A_{n}^{i}}x_{n})
where A_{j}^{i}\in \mathbb{Z}_{2} denote the (i, j) entry of A . Let  $\Gamma$(A) be the subgroup of Isom (\mathbb{R}^{n})
generated by s_{1}^{A}, \cdots, s_{n}^{A} ,

and let M(A)=\mathbb{R}^{n}/ $\Gamma$(A) be the orbit space of the action of

 $\Gamma$(A) on \mathbb{R}^{n} . It is easy to see that  $\Gamma$(A) is a cube‐type crystallographic group. By our

notation in Section 2, for any facet \mathrm{F}(i) , 1\leq i\leq n, $\gamma$_{\mathrm{F}(i)}=s_{i}^{A} . In addition, it is easy to

see that the holonomy group H_{ $\Gamma$(A)} of  $\Gamma$(A) is isomorphic to (\mathbb{Z}_{2})^{r} where r= rankZ (A).
We denote the facets‐pairing structure on C^{n} corresponding to  $\Gamma$(A) by \mathcal{P}_{A} . Indeed,

\mathcal{P}_{A} is a regular facets‐pairing structure defined by \{$\omega$_{0}, \overline{ $\sigma$}_{j}^{A}\}_{j\in[\pm n]} where

(4.10) $\omega$_{0}(j)=-j, \forall j\in[\pm n] ;

(4.11) \overline{ $\sigma$}_{j}^{A}(k)=\left\{\begin{array}{l}
(-1)^{A_{|k|}^{|j|}}\cdot k, k\in[\pm n], k\neq\pm j;\\
-k, k=\pm j.
\end{array}\right.
Proposition 4.6 (Theorem 6.1 of [6]). For two n\times n binary matrix A_{1} and A_{2}

with zero diagonal, the facets‐pairing structures \mathcal{P}_{A_{1}} and \mathcal{P}_{A_{2}} are strongly equivalent if
and only if A_{1} and A_{2} are conjugate by a permutation matrix.

It is shown in [2] that  $\Gamma$(A) is isomorphic to  $\Gamma$(A) as abstract group if and only
if A_{1} can be turned into A_{2} via three types of matrix operations, one of which is the
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conjugation by permutation matrices. So there are many examples of  $\Gamma$(A) being

isomorphic to  $\Gamma$(A) but \mathcal{P}_{A_{1}} is not strongly equivalent to \mathcal{P}_{A_{2}}.

In addition, it is shown in [3] that  $\Gamma$(A) is torsion‐free if and only if A is a Bott

matrix, which means that there exists an n\times n permutation matrix P so that PAP^{-1}

is a strictly upper triangular binary matrix. So \mathcal{P}_{A} is perfect if and only if A is a Bott

matrix (another proof of this statement is given in Theorem 6.6 of [6]).

Example 4.7. For the following matrix A
,

the representation of  $\Gamma$(A) via the

Poincaré relations is:

(i) For A=\left(\begin{array}{ll}
0 & 0\\
0 & 0
\end{array}\right),  $\Gamma$(A)=\{$\gamma$_{1}, $\gamma$_{2}|$\gamma$_{2}^{-1}$\gamma$_{1}$\gamma$_{2}=$\gamma$_{1}\}, M(A)\cong T^{2} (torus).

(ii) For A=\left(\begin{array}{ll}
0 & 1\\
0 & 0
\end{array}\right),  $\Gamma$(A)=\{$\gamma$_{1}, $\gamma$_{2}|$\gamma$_{2}$\gamma$_{1}$\gamma$_{2}=$\gamma$_{1}\}, M(A)\cong K^{2} (Klein bottle).

(iii) For A=\left(\begin{array}{ll}
0 & 1\\
1 & 0
\end{array}\right),  $\Gamma$(A)=\{$\gamma$_{1}, $\gamma$_{2}|$\gamma$_{2}$\gamma$_{1}$\gamma$_{2}=$\gamma$_{1}^{-1}, $\gamma$_{2}$\gamma$_{1}^{-1}$\gamma$_{2}=$\gamma$_{1}\}, M(A)\cong \mathbb{R}P^{2}

(real projective plane).

The facets‐pairing structures \mathcal{P}_{A} corresponding to these three binary matrices are shown

from the left to the right in Figure 2.
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