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Abstract

In this paper, we study the exact WKB analysis for two concrete holonomic systems, that

is, the Pearcey system and the (1,4) hypergeometric system, and investigate the structure of

their Stokes geometry. In particular, we discuss the relationship between the Stokes geometry
for these two holonomic systems and the Stokes geometry for third‐order ordinary differential

equations obtained by restricting these systems. We show that the Stokes surfaces of the

systems contain the new Stokes curves relevant to Stokes phenomena for WKB solutions of

the ordinary differential equations obtained by restricting them. Furthermore, it is also shown

that new Stokes curves irrelevant to Stokes phenomena are included in the Stokes surface as

well. We also discuss the relationship between the Stokes surface for the (1,4) hypergeometric
system and the structure of virtual turning points of the ordinary differential equation obtained

by restricting it.

§1. Introduction

The exact WKB analysis was first developed for second‐order ordinary differential

equations and then has been extended to higher‐order ordinary differential equations
and non‐linear ordinary differential equations. However, the exact WKB analysis for

holonomic systems, although being initiated in [1], is not well developed yet. In this

paper, as the first step toward the generalization of the exact WKB analysis to holonomic

systems, we study two concrete holonomic systems from the viewpoint of the exact WKB

analysis and, in particular, investigate their Stokes geometry.
The first holonomic system we study is

@x(1.1) @x

@x
Received June 19, 2012, Accepted October 22, 2012.

2010 Mathematics Subject Classication(s): 33\mathrm{C}70, 34\mathrm{E}20, 34\mathrm{M}60

Key Words: exact WKB analysis, Stokes geometry, holonomic system
* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606‐8502, Japan.

© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



244 Sampei Hirose

Since this system has the following Pearcey integral as a particular solution:

(1.2)  $\psi$=\displaystyle \int\exp\{ $\eta$(t^{4}+x_{2}t^{2}+x_{1}t)\}dt,
we call (1.1) the Pearcey system. In [1] Aoki constructed WKB solutions and defined

turning points and Stokes surfaces for the Pearcey system. On the other hand, for fixed

x_{2}=c_{2} ,
the Pearcey integral satisfies the following third‐order ordinary differential

equation:

(1.3) (\displaystyle \frac{d^{3}}{dx_{1}^{3}}+\frac{1}{2}c_{2}$\eta$^{2}\frac{d}{dx_{1}}+\frac{1}{4}x_{1}$\eta$^{3}) $\psi$=0.
Since (1.3) is the equation which Berk‐Nevins‐Roberts discussed in considering the ex‐

tension of the WKB analysis to higher order equations, it is often called the BNR

equation. As was pointed out by Berk et al, there exist crossing points of Stokes curves

for the BNR equation and Stokes phenomena for WKB solutions of the BNR equation
occur not only on ordinary Stokes curves but also on the so‐called �new Stokes curves�,
that is, Stokes curves passing through such crossing points. After the pioneering work

of [3], Aoki‐Kawai‐Takei showed in [2] that a new Stokes curve can be interpreted as

a Stokes curve emanating from the so‐called �virtual turning point�. The existence of

new Stokes curves and virtual turning points shows the difficulty of the exact WKB

analysis for higher‐order ordinary differential equations. The first purpose of this paper

is to develop the exact WKB analysis for the Pearcey system and to investigate the

relationship between the Stokes geometry for the Pearcey system and the Stokes geom‐

etry for the BNR equation. In particular, we will show that the new Stokes curves for

the BNR equation are included in the restriction of the Stokes surface for the Pearcey

system.
The second holonomic system we consider is

(1.4) \left\{\begin{array}{l}
(\frac{\partial^{3}}{\partial x_{1}^{3}}+\frac{2}{3}x_{2} $\eta$\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{1}{3}x_{1}$\eta$^{2}\frac{\partial}{\partial x_{1}}-\frac{ $\alpha$}{3}$\eta$^{3}) $\psi$=0,\\
( $\eta$\frac{\partial}{\partial x_{2}}-\frac{\partial^{2}}{\partial x_{1}^{2}}) $\psi$=0,
\end{array}\right.
(  $\alpha$\in \mathbb{C} is a complex constant), which belongs to the class of hypergeometric systems of

two variables studied in [5]. Since (1.4) has the following solution

(1.5)  $\psi$=\displaystyle \int\exp\{ $\eta$(t^{3}+x_{2}t^{2}+x_{1}t)\}t^{- $\eta \alpha$-1}dt
and it is determined by the partition (1, 4 of the natural number 5, we call (1.5)
the (1,4) hypergeometric function and (1.4) the (1,4) hypergeometric system. For fixed
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x_{2}=c_{2} ,
the (1,4) hypergeometric function satisfies the following third‐order ordinary

differential equation:

(1.6) (\displaystyle \frac{d^{3}}{dx_{1}^{3}}+\frac{2}{3}c_{2} $\eta$\frac{d^{2}}{dx_{1}^{2}}+\frac{1}{3}x_{1}$\eta$^{2}\frac{d}{dx_{1}}-\frac{ $\alpha$}{3}$\eta$^{3}) $\psi$=0.
Since (1.6) is the equation which Aoki‐Kawai‐Takei discussed in considering the exact

WKB analysis for higher order equations, we call it the AKT equation in this paper.

Just like the BNR equation the AKT equation has new Stokes curves relevant to Stokes

phenomena for its WKB solutions. As a matter of fact, it was shown in [2] that there

exist three new Stokes curves relevant to Stokes phenomena for the AKT equation. Fur‐

thermore, [2] also showed that the AKT equation has infinitely many virtual turning

points and new Stokes curves emanating from them, which are considered to be irrel‐

evant to Stokes phenomena. The second purpose of this paper is to develop the exact

WKB analysis for the (1,4) hypergeometric system and to investigate the relationship
between its Stokes geometry and the Stokes geometry for the AKT equation, particu‐

larly the relationship between the Stokes surface for the (1,4) hypergeometric system
and the new Stokes curves for the AKT equation. Our conclusion is that, in parallel to

the result for the Pearcey system, the (three) new Stokes curves for the AKT equation
relevant to the Stokes phenomena are included in the restriction of the Stokes surface for

the (1,4) hypergeometric system. With the aid of a computer we will further show that

the Stokes surface for the (1,4) hypergeometric system also contains (at least some of)
new Stokes curves for the AKT equation irrelevant to Stokes phenomena. Inspired by
these observations, we also study the behavior of infinitely many virtual turning points
of the AKT equation when the c_{2} ‐variable varies. These results lead to an expectation
that all of the infinitely many new Stokes curves for the AKT equation are included in

the Stokes surface for the (1,4) hypergeometric system.

This paper is constructed as follows: In §2 we study the Pearcey system and its

Stokes geometry. We review the Stokes geometry for the BNR equation in §2.1 and recall

some basic definitions for the exact WKB analysis for the Pearcey system given by [1],
i.e., WKB solutions, turning points and Stokes surfaces in §2.2. Then the relationship
between the Stokes geometry for the Pearcey system and the Stokes geometry for the

BNR equation is discussed in §2.3. In §3 we study the (1,4) hypergeometric system
and its Stokes geometry. In §3.1 we review the Stokes geometry for the AKT equation
studied in [2]. Then, in parallel to the case of the Pearcey system, we give some basic

definitions for the exact WKB analysis for the (1,4) hypergeometric system in §3.2. In

§3.3, §3.4 and §3.5, we investigate the relationship between the Stokes geometry for

the (1,4) hypergeometric system and new Stokes curves for the AKT equation. Finally
in §3.6 we discuss the behavior of virtual turning points of the AKT equation when

c_{2} varies and its relationship with the Stokes geometry for the (1,4) hypergeometric
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system.

The author would like to express his thanks to Professor Y. Takei, Professor T.

Kawai and Professor T. Koike for their many valuable advices and encouragements.

§2. The Stokes geometry for the Pearcey system

§2.1. The Stokes geometry for the BNR equation

In this section we study the Pearcey system

(2.1) \left\{\begin{array}{l}
(\frac{\partial^{3}}{\partial x_{1}^{3}}+\frac{1}{2}x_{2}$\eta$^{2}\frac{\partial}{\partial x_{1}}+\frac{1}{4}x_{1}$\eta$^{3}) $\psi$=0,\\
( $\eta$\frac{\partial}{\partial x_{2}}-\frac{\partial^{2}}{\partial x_{1}^{2}}) $\psi$=0,
\end{array}\right.
and the structure of its Stokes geometry. Before discussing the Stokes geometry for the

Pearcey system, we first consider the following ordinary differential equation obtained

by restricting the Pearcey system to x_{2}=c_{2} :

(2.2) (\displaystyle \frac{d^{3}}{dx_{1}^{3}}+\frac{1}{2}c_{2}$\eta$^{2}\frac{d}{dx_{1}}+\frac{1}{4}x_{1}$\eta$^{3}) $\psi$=0.
As this equation was discussed by Berk‐Nevins‐Roberts in detail ([3]), we call it the

\mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation.
A turning point of (2.2) is, by definition, a point where the algebraic equation

(2.3) $\xi$^{3}+\displaystyle \frac{1}{2}c_{2} $\xi$+\frac{1}{4}x_{1}=0
has a multiple root, that is, a zero of the discriminant of (2.3). An ordinary Stokes

curve emanating from a turning point x_{1}=a_{1} is defined by

(2.4) \displaystyle \Im\int_{a_{1}}^{x_{1}}($\xi$_{i}-$\xi$_{i'})dx_{1}=0,
where $\xi$_{i}, $\xi$_{i'} are two roots of (2.3) satisfying $\xi$_{i}(a_{1})=$\xi$_{i'}(\mathrm{a}_{1}) . The configuration of the

turning points and the ordinary Stokes curves of the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation for c_{2}=1+\sqrt{-1}
is shown in Figure 1. Stokes phenomena for WKB solutions occur on ordinary Stokes

curves. Furthermore, Berk et al showed that Stokes phenomena for WKB solutions

also occur on the so‐called �new Stokes curves�. In [2] Aoki‐Kawai‐Takei showed that

a new Stokes curve can be interpreted also as a Stokes curve emanating from a virtual

turning point. Figure 2 shows the complete Stokes geometry of the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation for

c_{2}=1+\sqrt{-1} ,
that is, the configuration of turning points and ordinary Stokes curves

with the virtual turning point, i.e., x_{1}=0 ,
and new Stokes curves also being added.



On the Stokes geometry FoR the Pearcey system AND THE(1,4) hypergeometric system 247

Figure 1. The turning points and the or‐

dinary Stokes curves of the \mathrm{B}\mathrm{N}\mathrm{R}_{1+\sqrt{-1}}
equation.

Figure 2. The complete Stokes geometry
of the \mathrm{B}\mathrm{N}\mathrm{R}_{1+\sqrt{-1}} equation.

The purpose of this section is to investigate the relationship between the Stokes

geometry for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation and the Stokes geometry for the Pearcey system.
In particular, we consider the relationship between the new Stokes curve of the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}}
equation and the Stokes surface of the Pearcey system which is the corresponding notion

of the Stokes curve for a holonomic system.

§2.2. Some definitions for the exact WKB analysis for the Pearcey system

In this subsection we review some basic definitions for the Pearcey system, i.e., \mathrm{a}

WKB solution, a turning point and a Stokes surface. These definitions are given in [1]
with explanations for their relevance to the analysis on the Borel plane.

Substituting

(2.5) S^{(1)}=\displaystyle \frac{\partial u}{\partial x_{1}}/u,
into the Pearcey system, we have

S^{(2)}=\displaystyle \frac{\partial u}{\partial x_{2}}/u

(2.6) (S^{(1)})^{3}+3S^{(1)}\displaystyle \frac{\partial S^{(1)}}{\partial x_{1}}+\frac{\partial^{2}S^{(1)}}{\partial x_{1}^{2}}+\frac{1}{2}x_{2}$\eta$^{2}S^{(1)}+\frac{1}{4}x_{1}$\eta$^{3}=0,
(2.7)  $\eta$ S^{(2)}-(S^{(1)})^{2}-\displaystyle \frac{\partial S^{(1)}}{\partial x_{1}}=0.
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Assuming S^{(1)} and S^{(2)} have the following form

(2.8) S^{(1)}(x,  $\eta$)=\displaystyle \sum_{j\geq-1}S_{j}^{(1)}(x)$\eta$^{-j},
we then obtain the following relations:

S^{(2)}(x,  $\eta$)=\displaystyle \sum_{j\geq-1}S_{j}^{(2)}(x)$\eta$^{-j},

(2.9) \left\{\begin{array}{ll}
(S_{-1}^{(1)})^{3}+\frac{1}{2}x_{2}S_{-1}^{(1)}+\frac{1}{4}x_{1}=0, & \\
\mathfrak{l}_{3(S_{-1}^{(1)})^{2}+\frac {}{}x_{2}}^{3(S_{-1}^{(1)})^{2}+\frac{1}{221}x_{2}}1_{S_{j}^{(1)}}^{S_{0}^{(1)}}+\sum_{j\geq k,l,m\geq 0}^{+}S_{k-1}^{(1)}S_{l-1}^{(1)}S_{m-1}^{(1)}3S_{-1^{\frac{\partial S_{-1}^{(1)}}{\partial x_{1}}}}^{(1)}=0k+l+m=j+1' & \\
+3\sum_{\geq j^{k+l=j}k,l\geq 0}S_{k-1}^{(1)}\frac{\partial S_{l-1}^{(1)}}{\partial x_{1}}+\frac{\partial^{2}S_{j-2}^{(1)}}{\partial x_{1}^{2}}=0 & (j\geq 1) .
\end{array}\right.
(2.10) \left\{\begin{array}{ll}
S_{-1}^{(2)}=(S_{-1}^{(1)})^{2}, & \\
S_{j}^{(2)}=j+1\geq k,l\geq 0\sum_{k+l=j+1}S_{k-1}^{(1)}S_{l-1}^{(1)}+\frac{\partial S_{j-1}^{(1)}}{\partial x_{1}} & (j\geq 0) .
\end{array}\right.
Hence S_{-1}^{(1)} is a root of the algebraic equation

(2.11) p(x,  $\xi$)=$\xi$^{3}+\displaystyle \frac{1}{2}x_{2} $\xi$+\frac{1}{4}x_{1}=0
and S_{-1}^{(2)}=(S_{-1}^{(1)})^{2} . The other coefficients S_{j}^{(k)}(j\geq 0, k=1,2) are uniquely determined

in a recursive manner. As there exist three roots $\xi$_{i}(i=1,2,3) of (2.11), we thus obtain

three solutions (S^{(1),i}, S^{(2),i}) of (2.6) and (2.7) satisfying (S_{-1}^{(1),i}, S_{-1}^{(2),i})=($\xi$_{i}, $\xi$_{i}^{2}) .

For S^{(k),i} we have

Proposition 2.1. $\omega$^{i}=S^{(1),i}dx_{1}+S^{(2),i}dx_{2} is a closed one form.

Proof. For simplicity, S^{(k),i} is denoted by S^{(k)} in this proof. We show the propo‐

sition near a point x\in \mathbb{C}^{2} which satisfies 3 (S_{-1}^{(1)})^{2}+x_{2}/2\neq 0 ,
that is, x is outside the

set of the turning points. (The definition of a turning point is given by Definition 2.3

below.)
Taking the partial derivative of (2.6) with respect to the variable x_{2} ,

we obtain

(2.12)

3 (S^{(1)})^{2}\displaystyle \frac{\partial S^{(1)}}{\partial x_{2}}+3\frac{\partial S^{(1)}}{\partial x_{1}}\frac{\partial S^{(1)}}{\partial x_{2}}+3S^{(1)}\frac{\partial^{2}S^{(1)}}{\partial x_{1}\partial x_{2}}+\frac{\partial^{3}S^{(1)}}{\partial x_{1}^{2}\partial x_{2}}+\frac{1}{2}$\eta$^{2}S^{(1)}+\frac{1}{2}x_{2}$\eta$^{2}\frac{\partial S^{(1)}}{\partial x_{2}}=0.
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Thus it suffices to prove that \partial S^{(2)}/\partial x_{1} is the unique solution of the following equation

(2.13) 3 (S^{(1)})^{2}T+3\displaystyle \frac{\partial S^{(1)}}{\partial x_{1}}T+3S^{(1)}\frac{\partial T}{\partial x_{1}}+\frac{\partial^{2}T}{\partial x_{1}^{2}}+\frac{1}{2}$\eta$^{2}S^{(1)}+\frac{1}{2}x_{2}$\eta$^{2}T=0.
First let us prove the uniqueness of the solution of (2.13). Let \displaystyle \overline{T}=\sum_{j\geq-1}\overline{T}_{j}$\eta$^{-j}

be a solution of the following equation:

(2.14) 3 (S^{(1)})^{2}\displaystyle \overline{T}+3\frac{\partial S^{(1)}}{\partial x_{1}}\overline{T}+3S^{(1)}\frac{\partial\overline{T}}{\partial x_{1}}+\frac{\partial^{2}\tilde{T}}{\partial x_{1}^{2}}+\frac{1}{2}x_{2}$\eta$^{2}\overline{T}=0.
Comparing the terms of degree j with respect to  $\eta$ of both sides of (2.14), we obtain

(2.15) \displaystyle \{3(S_{-1}^{(1)})^{2}+\frac{1}{2}x_{2}\}\overline{T}_{j}+F_{j}=0 (j\geq-1) ,

where

(2.16)

F_{j}=\left\{\begin{array}{ll}
0 (j=-1) , & \\
6S_{-1}^{(1)}S_{0}^{(1)}\overline{T}_{-1}+3\frac{\partial}{\partial x_{1}}(S_{-1}^{(1)}\overline{T}_{-1}) & (j=0) ,\\
3\sum_{j+1\geq k,l\geq 0}S_{k-1}^{(1)}S_{l-1}^{(1)}\overline{T}_{m-1}k+l+m=j+1+3\frac{\partial}{\partial x_{1}} & [Matrix]+\frac{\partial^{2}\overline{T}_{j-2}}{\partial x_{1}^{2}} (j\geq 1) .\\
jm0 & 
\end{array}\right.
Since 3\underline{(}S_{-1}^{(1)})^{2}+x_{2}/2\neq 0 and F_{-1}=0 ,

we get \overline{ $\tau$}_{-1}=0 . Hence we have F_{0}=0 . Then

we get T_{0}=0 from the relation (2.15) for j=0 . In a similar way, we get \overline{T}_{j}=0 in a

recursive manner. Therefore the uniqueness of solutions of (2.13) holds.

Next we prove that \partial S^{(2)}/\partial x_{1} satisfies (2.13). Using (2.6) and (2.7), we obtain

(2.17)

3 (S^{(1)})^{2}\displaystyle \frac{\partial S^{(2)}}{\partial x_{1}}+3\frac{\partial S^{(1)}}{\partial x_{1}}\frac{\partial S^{(2)}}{\partial x_{1}}+3S^{(1)}\frac{\partial^{2}S^{(2)}}{\partial x_{1}^{2}}+\frac{\partial^{3}S^{(2)}}{\partial x_{1}^{3}}+\frac{1}{2}$\eta$^{2}S^{(1)}+\frac{1}{2}x_{2}$\eta$^{2}\frac{\partial S^{(2)}}{\partial x_{1}}
=6$\eta$^{-1}(S^{(1)})^{3}\displaystyle \frac{\partial S^{(1)}}{\partial x_{1}}+9$\eta$^{-1}(S^{(1)})^{2}\frac{\partial^{2}S^{(1)}}{\partial x_{1}^{2}}+12$\eta$^{-1}S^{(1)}(\frac{\partial S^{(1)}}{\partial x_{1}})^{2}+9$\eta$^{-1}\frac{\partial S^{(1)}}{\partial x_{1}}\frac{\partial^{2}S^{(1)}}{\partial x_{1}^{2}}

+5$\eta$^{-1}S^{(1)}\displaystyle \frac{\partial^{3}S^{(1)}}{\partial x_{1}^{3}}+$\eta$^{-1}\frac{\partial^{4}S^{(1)}}{\partial x_{1}^{4}}+\frac{1}{2}$\eta$^{2}S^{(1)}+x_{2} $\eta$ S^{(1)}\frac{\partial S^{(1)}}{\partial x_{1}}+\frac{1}{2}x_{2} $\eta$\frac{\partial^{2}S^{(1)}}{\partial x_{1}^{2}}
=6$\eta$^{-1}(S^{(1)})^{3}\displaystyle \frac{\partial S^{(1)}}{\partial x_{1}}+6$\eta$^{-1}(S^{(1)})^{2}\frac{\partial^{2}S^{(1)}}{\partial x_{1}^{2}}+6$\eta$^{-1}S^{(1)}(\frac{\partial S^{(1)}}{\partial x_{1}})^{2}

+2$\eta$^{-1}S^{(1)}\displaystyle \frac{\partial^{3}S^{(1)}}{\partial x_{1}^{3}}+\frac{1}{2}$\eta$^{2}S^{(1)}+x_{2} $\eta$ S^{(1)}\frac{\partial S^{(1)}}{\partial x_{1}}
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=2$\eta$^{-1}S^{(1)}\displaystyle \frac{\partial}{\partial x_{1}}\{(S^{(1)})^{3}+3S^{(1)}\frac{\partial S^{(1)}}{\partial x_{1}}+\frac{\partial^{2}S^{(1)}}{\partial x_{1}^{2}}+\frac{1}{2}x_{2}$\eta$^{2}S^{(1)}+\frac{1}{4}x_{1}$\eta$^{3}\}
=0.

\square 

Proposition 2.1 implies the following integral is well‐defined as a formal power series

in $\eta$^{-1}

(2.18) \displaystyle \int^{x}$\omega$^{i}
Definition 2.2.

(2.19) $\psi$_{i}=$\eta$^{-1/2}\displaystyle \exp(\int^{x}$\omega$^{i})
is called a WKB solution for the Pearcey system.

In the exact WKB analysis for ordinary differential equations, turning points and

ordinary Stokes curves are important notions. We now define turning points and Stokes

surfaces for the Pearcey system, which are the notions corresponding to turning points
and ordinary Stokes curves for ordinary differential equations, respectively.

Definition 2.3. A point a\in \mathbb{C}^{2} is called a turning point for the Pearcey system
if there exist i, i'\in\{1 , 2, 3 \} (i\neq i') for which

(2.20) $\omega$_{-1}^{i}(a)=$\omega$_{-1}^{i'}(a)

holds, where $\omega$_{-1}^{i} is the coefficient of  $\eta$ of  $\omega$^{i}.

Definition 2.4. Let a\in \mathbb{C}^{2} be a turning point. A Stokes surface for the Pearcey

system emanating from x=a is the real 3‐dimensional surface defined by

(2.21) \displaystyle \Im\int_{a}^{x}($\omega$_{-1}^{i}-$\omega$_{-1}^{i'})=0.
§2.3. The structure of the Stokes geometry for the Pearcey system

In this subsection we investigate the relationship between the Stokes geometry for

the Pearcey system and the Stokes geometry for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation.
First we have

Proposition 2.5. The set of the turning points for the Pearcey system restricted

to x_{2}=c_{2} coincides with the set of the turning points for the BNR_{c_{2}} equation.
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Proof. Let a\in \mathbb{C}^{2} be a turning point for the Pearcey system, that is, there exist

i, i'\in\{1 , 2, 3 \} (i\neq i') such that $\omega$^{i}(a)=$\omega$^{i'}(a) . Since S_{-1}^{(2)}=(S_{-1}^{(1)})^{2} ,
this condition is

equivalent to

(2.22) $\xi$_{i}(a)=$\xi$_{i'}(a) ,

where $\xi$_{i}, $\xi$_{i'} are two roots of the algebraic equation p(x,  $\xi$)=0 . Hence a turning point
of the Pearcey system is a point where the algebraic equation p(x,  $\xi$)=0 has a multiple

root, that is, a zero of the discriminant of p(x,  $\xi$)=0 . This completes the proof of

Proposition 2.5. \square 

The set of the turning points for the Pearcey system is explicitly given by

(2.23) \{(x_{1}, x_{2})\in \mathbb{C}^{2};27x_{1}^{2}+8x_{2}^{3}=0\}.
In view of Proposition 2.5, we readily find that ordinary Stokes curves for the

\mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation are contained in the Stokes surface for the Pearcey system restricted

to x_{2}=c_{2}.

Furthermore, we can prove

Proposition 2.6. New Stokes curves for the BNR_{c_{2}} equation are also contained

in the Stokes surfa ce for the Pearcey system restricted to x_{2}=c_{2}.

Before we prove Proposition 2.6, we give some notations related to turning points.
A turning point for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation is a zero of

(2.24) 27x_{1}^{2}+8c_{2}^{3}=0.

Let H be the c_{2} ‐plane equipped with cut lines as is shown in Figure 3. Then the turning

points for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation are single‐valued functions in this cut plane. We denote

a turning point (viewed as a single‐valued function in H ) by a_{j}(c_{2})(j=1,2) . For the

sake of convenience, we also use the notation a(c) which is given by a_{3}(c_{2})=a_{1}(\mathrm{c}_{2}) .

Since a_{j}(1)(j=1,2) are turning points for the \mathrm{B}\mathrm{N}\mathrm{R}_{1} equation, we may assume

(2.25) $\xi$_{i}|_{x=(a_{i}(1),1)}=$\xi$_{i+1}|_{x=(a_{i}(1),1)} (i=1,2) ,

where $\xi$_{i}(x)=$\xi$_{i}(x_{1}, x_{2})(i=1,2,3) are the roots of p(x,  $\xi$)=0.
In this notation we prove

Proposition 2.7. For i=1
,

2 we have

(2.26) \displaystyle \int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}($\xi$_{i}(x_{1}, c_{2})-$\xi$_{i+1}(x_{1}, c_{2}))dx_{1}=\int_{0}^{c_{2}}t_{i}(c_{2})dc_{2},
where t_{i}(i=1,2) are single‐valued functions on H and satises the fo llowing two

conditions
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\lrcorner^{\mathcal{C}}2

Figure 3. The cut plane H. (A wiggly line designates a cut.)

\bullet  t_{i} is the root of t^{2}-9c_{2}^{2}/4=0,

\bullet t_{i}(1)=(-1)^{i}3c_{2}/2.

Proof. For simplicity, $\xi$_{i}(a_{j}(\mathrm{c}_{2}), c_{2}) are denoted by $\xi$_{i,j} (c2). Then $\xi$_{i,j}(i=1,2,3)
satisfy

(2.27) p(a_{j}(\mathrm{c}_{2}), c_{2},  $\xi$)=0.

On the other hand, by the definition of a_{j} ,
the discriminant in  $\xi$ of (2.27) is equal to

zero, that is, (2.27) has a multiple root, which is given by

(2.28)  $\xi$_{j,j}=$\xi$_{j+1,j} (j=1,2)

in view of (2.25). Since $\xi$_{1}+$\xi$_{2}+$\xi$_{3}=0 and $\xi$_{1}$\xi$_{2}+$\xi$_{2}$\xi$_{3}+$\xi$_{3}$\xi$_{1}=c_{2}/2 ,
we have the

following relations for j=1 ,
2

(2.29) 2$\xi$_{j,j}+$\xi$_{j+2,j}=0, $\xi$_{j,j}^{2}+2$\xi$_{j,j}$\xi$_{j+2,j}=\displaystyle \frac{1}{2}c_{2},
where $\xi$_{4,2} is defined by $\xi$_{4,2}=$\xi$_{1,2} . By using these relations, we find that $\xi$_{j,j}(j=1,2)
satisfy the following algebraic equation

(2.30) 6$\xi$^{2}+c_{2}=0.

In particular, $\xi$_{i,j}(i, j=1,2,3) are single‐valued functions on H.



On the Stokes geometry FoR the Pearcey system AND THE(1,4) hypergeometric system 253

Thanks to Proposition 2.1, $\xi$_{i}=$\xi$_{i}(x_{1}, c_{2}) satisfies

(2.31) \displaystyle \frac{\partial}{\partial c_{2}}$\xi$_{i}=\frac{\partial}{\partial x_{1}}$\xi$_{i}^{2}.
It follows from this relation and (2.28) that

(2.32)

\displaystyle \frac{d}{dc_{2}}\int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}($\xi$_{i}-$\xi$_{i+1})dx_{1}
=\displaystyle \int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}\frac{\partial}{\partial c_{2}}($\xi$_{i}-$\xi$_{i+1})dx_{1}+($\xi$_{i}-$\xi$_{i+1})|_{x_{1}=a_{i+1}(c_{2})}\frac{da_{i+1}}{dc_{2}}-($\xi$_{i}-$\xi$_{i+1})|_{x_{1}=a_{i}(c_{2})}\frac{da_{i}}{dc_{2}}
=\displaystyle \int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}\frac{\partial}{\partial x_{1}}($\xi$_{i}^{2}-$\xi$_{i+1}^{2})dx_{1}+($\xi$_{i}-$\xi$_{i+1})|_{x_{1}=a_{i+1}(c_{2})}\frac{da_{i+1}}{dc_{2}}
=($\xi$_{i}^{2}-$\xi$_{i+1}^{2})|_{x_{1}=a_{i+1}(c_{2})}-($\xi$_{i}^{2}-$\xi$_{i+1}^{2})|_{x_{1}=a_{i}(c_{2})}+($\xi$_{i}-$\xi$_{i+1})|_{x_{1}=a_{i+1}(c_{2})}\displaystyle \frac{da_{i+1}}{dc_{2}}
=($\xi$_{i,i+1}^{2}+\displaystyle \frac{da_{i+1}}{dc_{2}}$\xi$_{i,i+1})-($\xi$_{i+1,i+1}^{2}+\frac{da_{i+1}}{dc_{2}}$\xi$_{i+1,i+1})
Since $\xi$_{i,i}(i=1,2) satisfy

(2.33) \{
p(a_{i}(c_{2}), c_{2}, $\xi$_{i,i}(c_{2}))=0,

\displaystyle \frac{\partial p}{\partial $\xi$}(a_{i}(c_{2}), c_{2}, $\xi$_{i,i}(c_{2}))=0,
we have

(2.34)

0=\displaystyle \frac{d}{dc_{2}}p(a_{i}(c_{2}), c_{2}, $\xi$_{i,i}(c_{2}))
=\displaystyle \frac{\partial p}{\partial x_{1}} ( a_{i} (c2), c_{2}, $\xi$_{i,i}(c_{2}) ) \displaystyle \frac{da_{i}}{dc_{2}}+\frac{\partial p}{\partial c_{2}} ( a_{i} (c2), c_{2}, $\xi$_{i,i}(c_{2}) ) +\displaystyle \frac{\partial p}{\partial $\xi$}(a_{i}(c_{2}), c_{2}, $\xi$_{i,i}(c_{2}))\frac{d$\xi$_{i,i}}{dc_{2}}
=\displaystyle \frac{1}{4}\frac{da_{i}}{dc_{2}}+\frac{1}{2}$\xi$_{i,i},

that is,

(2.35) \displaystyle \frac{da_{i}}{dc_{2}}=-2$\xi$_{i,i}
holds. Hence, by (2.28), (2.29) and (2.30), we have

(2.36) \displaystyle \frac{d}{dc_{2}}\int_{a_{1}(c_{2})}^{a_{2}(c_{2})}($\xi$_{1}-$\xi$_{2})dx_{1}=($\xi$_{1,2}-$\xi$_{2,2})($\xi$_{1,2}+$\xi$_{2,2}+\frac{da_{2}}{dc_{2}})
=($\xi$_{1,2}-$\xi$_{2,2})^{2}
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Figure 4. The curves defined by (2.38).

=9$\xi$_{2,2}^{2}
3

=-2^{c_{2}}
=t_{1}

and

(2.37) \displaystyle \frac{d}{dc_{2}}\int_{a_{2}(c_{2})}^{a_{3}(c_{2})}($\xi$_{2}-$\xi$_{3})dx_{1}=($\xi$_{2,3}-$\xi$_{3,3})($\xi$_{2,3}+$\xi$_{3,3}+\frac{da_{3}}{dc_{2}})
=($\xi$_{2,1}-$\xi$_{3,1})($\xi$_{2,1}+$\xi$_{3,1}+\displaystyle \frac{da_{1}}{dc_{2}})
=-9$\xi$_{1,1}^{2}

=\displaystyle \frac{3}{2}c_{2}
=t_{2}.

Since a_{i}(0)=a_{i+1}(0)(i=1,2) ,
we thus obtain (2.26). \square 

Using Proposition 2.7, we can easily draw the figure of the curves defined by

(2.38) \displaystyle \Im\int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}($\xi$_{i}-$\xi$_{i+1})dx_{1}=0 (i=1,2) ,

which is shown in Figure 4.
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Note that, if c_{2}\in \mathbb{C}_{c_{2}} is on the curve defined by (2.38), then an ordinary Stokes

curve of the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation emanating from a turning point passes through another

turning point.

By using Proposition 2.7, we prove Proposition 2.6.

Proof of Proposition 2.6. Let \mathcal{R}_{i}(i=1,2,3,4) be domains bounded by the curves

defined by (2.38) (cf. Figure 4):

\mathcal{R}_{1}=\{\Re c_{2}>0, \Im c_{2}>0\}, \mathcal{R}_{2}=\{\Re c_{2}<0, \Im c_{2}>0\},
(2.39)

\mathcal{R}_{3}=\{\Re c_{2}<0, \Im c_{2}<0\}, \mathcal{R}_{4}=\{\Re c_{2}>0, \Im c_{2}<0\}.

By Proposition 2.7, the Stokes geometry for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation for a point c_{2} in \mathcal{R}_{i} is

topologically equivalent to that for any other point c_{2}' in the same domain \mathcal{R}_{i} . On the

other hand, the Stokes geometry for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation in \mathcal{R}_{i} is topologically different

from that in a different domain \mathcal{R}_{i'} . For example, let us pick up the following points

(2.40) $\mu$_{1}=1+\sqrt{-1}, $\mu$_{2}=-1+\sqrt{-1}, $\mu$_{3}=-1-\sqrt{-1}, $\mu$_{4}=1-\sqrt{-1}

from each domain \mathcal{R}_{i} . The Stokes geometry for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation for c_{2}=$\mu$_{1}, $\mu$_{2}, $\mu$_{3}

and $\mu$_{4} is shown in Figure 5, Figure 6, Figure 7 and Figure 8, respectively. Comparing
these figures, we find that a new Stokes curve for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation for c_{2}\in \mathcal{R}_{i} is

changed to an ordinary Stokes curve in an adjacent domain \mathcal{R}_{i'} . Using this property,
we prove that a new Stokes curve for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation for c_{2}\in \mathcal{R}_{i} is contained in

the Stokes surface for the Pearcey system in what follows.

Since the proof is similar for any domain \mathcal{R}_{i} ,
we consider only \mathcal{R}_{1} . In particular,

taking $\lambda$_{1}=1+\sqrt{-1}/4 in \mathcal{R}_{1} and a point p on the new Stokes curve for the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{1}}
equation (cf. Figure 9), we show that (p, $\lambda$_{1}) is contained in the Stokes surface for

the Pearcey system. That is, we show that there exist a turning point a\in \mathbb{C}^{2} for the

Pearcey system, two one forms $\omega$_{-1}^{i}, $\omega$_{-1}^{i'} and a path  $\gamma$ connecting  a and (p, $\lambda$_{1}) that

satisfy the following conditions.

(2.41) $\omega$_{-1}^{i}(a)=$\omega$_{-1}^{i'}(a) , \displaystyle \Im\int_{a}^{q}($\omega$_{-1}^{i}-$\omega$_{-1}^{i'})=0 (for any  q\in $\gamma$ ).

Let  a_{1}($\lambda$_{1}) , a() be turning points for the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{1}} equation, and b_{1} be a crossing

point of two ordinary Stokes curves of the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{1}} equation emanating from a_{1}()_{;} a_{2}()
in Figure 9. We take a point in an adjacent domain, for example, $\lambda$_{2}=1-\sqrt{-1}/4\in \mathcal{R}_{4},
and a path l(t) connecting $\lambda$_{1} and $\lambda$_{2} defined by

(2.42) l_{2}(t)=(1-t)$\lambda$_{1}+t$\lambda$_{2} (0\leq t\leq 1) .

Note that l(t) crosses the curve defined by (2.38) at c_{2}=1 ,
where the Stokes geometry

of the \mathrm{B}\mathrm{N}\mathrm{R}_{1} equation is degenerate (cf. Figure 10). Let a_{1}($\lambda$_{2}) , a() be turning points
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Figure 5. The Stokes geometry for the

\mathrm{B}\mathrm{N}\mathrm{R}_{$\mu$_{1}} equation.

Figure 7. The Stokes geometry for the

\mathrm{B}\mathrm{N}\mathrm{R}_{$\mu$_{3}} equation.

Figure 6. The Stokes geometry for the

\mathrm{B}\mathrm{N}\mathrm{R}_{$\mu$_{2}} equation.

Figure 8. The Stokes geometry for the

\mathrm{B}\mathrm{N}\mathrm{R}_{$\mu$_{4}} equation.
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for the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{2}} equation, and b_{2} be a crossing point of two ordinary Stokes curves for the

\mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{2}} equation emanating from a_{1}($\lambda$_{2}) , a() in Figure 11. Furthermore, a_{1}(1) , a_{2}(1)
are two turning points for the \mathrm{B}\mathrm{N}\mathrm{R}_{1} equation in Figure 10. Let l(t) be a path defined

by the following

\bullet if  t\neq 1/2 ,
then l(t) is a crossing point in the upper half plane of two ordinary

Stokes curves for the \mathrm{B}\mathrm{N}\mathrm{R}_{l_{2}(t)} equation emanating from two turning points,

\bullet if  t=1/2 ,
then l_{1}(1/2) is a turning point for the \mathrm{B}\mathrm{N}\mathrm{R}_{l_{2}(1/2)} equation in the upper

half plane.

Then l(t)=(l_{1}(t), l_{2}(t))(0\leq t\leq 1) is a path in \mathbb{C}^{2} connecting l(0)=(b_{1}, $\lambda$_{1}) and

l(1)=(b_{2}, $\lambda$_{2}) . By using l
,

we define a path  $\gamma$ connecting (a_{2}($\lambda$_{2}), $\lambda$_{2}) and (p, $\lambda$_{1}) as the

composition of the following three paths:

\bullet a path from (a_{2}($\lambda$_{2}), $\lambda$_{2}) to (b_{2}, $\lambda$_{2}) along an ordinary Stokes curve for the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{2}}
equation (this portion is contained completely in \{c_{2}=$\lambda$_{2}\} ),

\bullet  l^{-1}
,
that is, a path connecting (b_{2}, $\lambda$_{2}) and (b_{1}, $\lambda$_{1}) through crossing points of ordi‐

nary Stokes curves for the \mathrm{B}\mathrm{N}\mathrm{R}_{l_{2}(t)} equation (0\leq t\leq 1) ,

\bullet a path from (b_{1}, $\lambda$_{1}) to (p, $\lambda$_{1}) along a new Stokes curve for the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{1}} equation

(this portion is contained completely in \{c_{2}=$\lambda$_{1}\} ).

We first prove

(2.43) \displaystyle \Im\int_{(a_{2}($\lambda$_{2}),$\lambda$_{2})}^{(p,$\lambda$_{1})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})=0,
where the integration is taken along  $\gamma$ and the branch  $\omega$_{-1}^{i}(i=1,2,3) of $\omega$_{-1} is

assumed to be fixed at the endpoint (p, $\lambda$_{1}) (that is, $\omega$_{-1}^{i} expresses the branch in the

x_{1} ‐plane (given by c_{2}=$\lambda$_{1} ) with cuts; cf. Figure 9). Note that after the analytic
continuation along $\gamma$^{-1}$\omega$_{-1}^{1} and $\omega$_{-1}^{3} are changed to $\omega$_{-1}^{2} and $\omega$_{-1}^{3} , respectively, and

hence the integrand vanishes at the starting point (a_{2}($\lambda$_{2}), $\lambda$_{2}) . To prove (2.43), we

decompose the integral as

(2.44) \displaystyle \int_{(a_{2}($\lambda$_{2}),$\lambda$_{2})}^{(p,$\lambda$_{1})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})
=\displaystyle \int_{(a_{2}($\lambda$_{2}),$\lambda$_{2})}^{(b_{2},$\lambda$_{2})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{(b_{2},$\lambda$_{2})}^{l(1/2)}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})

+\displaystyle \int_{l(1/2)}^{(b_{1},$\lambda$_{1})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{(b_{1},$\lambda$_{1})}^{(p,$\lambda$_{1})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})
=:I_{1}+I_{2}+I_{3}+I_{4}.
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Figure 9. The Stokes geometry for the

\mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{1}} equation. (A wiggly line desig‐
nates a cut to define $\xi$_{i}(x_{1}, $\lambda$_{1}) . For ex‐

ample, on a cut with the symbol 1=2�

the numbering of $\xi$_{1} and $\xi$_{2} should be in‐

terchanged.)

Figure 10. The Stokes geometry for the

\mathrm{B}\mathrm{N}\mathrm{R}_{1} equation.

Figure 11. The Stokes geometry for the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{2}} equation.
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First, since p lies on a new Stokes curve (of type (1,3)) for the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{1}} equation, we have

(2.45) \Im I_{4}=0.

We next consider I3, which is the sum of two integrals:

(2.46) I3=\displaystyle \int_{l(1/2)}^{(b_{1},$\lambda$_{1})}($\omega$_{-1}^{1}-$\omega$_{-1}^{2})+\int_{l(1/2)}^{(b_{1},$\lambda$_{1})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})
=:I_{31}+I_{32}.

By deforming the path of integration, we can express I_{31} as

(2.47) I_{31}=\displaystyle \int_{l(1/2)}^{(a_{1}($\lambda$_{1}),$\lambda$_{1})}($\omega$_{-1}^{1}-$\omega$_{-1}^{2})+\int_{(a_{1}($\lambda$_{1}),$\lambda$_{1})}^{(b_{1},$\lambda$_{1})}($\omega$_{-1}^{1}-$\omega$_{-1}^{2}) ,

where the first integral is taken along the set of turning points for the Pearcey system
and the second integral is done along an ordinary Stokes curve for the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{1}} equation

emanating from a_{1}($\lambda$_{1}) . Since $\omega$_{-1}^{1}=$\omega$_{-1}^{2} holds at turning points (a_{1}(l_{2}(t)), l_{2}(t))(0\leq
 t\leq 1/2) ,

the first integral vanishes. Furthermore, as the second integral is taken along
an ordinary Stokes curve, its imaginary part is zero. Hence

(2.48) I_{31}\in \mathbb{R}.

On the other hand, I_{32} can be expressed as

(2.49)

I_{32}=\displaystyle \int_{l(1/2)}^{(a_{2}(1),1)}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{(a_{2}(1),1)}^{(a_{2}($\lambda$_{1}),$\lambda$_{1})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{(a_{2}($\lambda$_{1}),$\lambda$_{1})}^{(b_{1},$\lambda$_{1})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3}) ,

where the first and the third integrals are done along ordinary Stokes curves for the

\mathrm{B}\mathrm{N}\mathrm{R}_{1} and the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{1}} equation, respectively, and the second integral is taken along the

set of turning points for the Pearcey system. Hence, similarly to I_{31} ,
we have

(2.50) I_{32}=\displaystyle \int_{l(1/2)}^{(a_{2}(1),1)}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{(a_{2}($\lambda$_{1}),$\lambda$_{1})}^{(b_{1},$\lambda$_{1})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})\in \mathbb{R}.
Thus we obtain

(2.51) \Im I_{3}=0.

The integral I_{2} can be discussed in a similar manner: By expressing I_{2} as

(2.52)

I_{2}=\displaystyle \int_{(b_{2},$\lambda$_{2})}^{(a_{2}($\lambda$_{2}),$\lambda$_{2})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{(a_{2}($\lambda$_{2}),$\lambda$_{2})}^{(a_{2}(1),1)}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{(a_{2}(1),1)}^{l(1/2)}($\omega$_{-1}^{2}-$\omega$_{-1}^{3}) ,
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we can confirm

(2.53) I_{2}=\displaystyle \int_{(b_{2},$\lambda$_{2})}^{(a_{2}($\lambda$_{2}),$\lambda$_{2})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{(a_{2}(1),1)}^{l(1/2)}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})\in \mathbb{R}.
Finally, since b_{2} lies on an ordinary Stokes curve for the \mathrm{B}\mathrm{N}\mathrm{R}_{$\lambda$_{2}} equation, we have

(2.54) \Im I_{1}=0.

(Note that the path of integration for I_{1} crosses a cut and consequently the integrand
of I_{1} vanishes at (a_{2}($\lambda$_{2}), $\lambda$_{2}). ) Thus we have verified (2.43).

Using the above reasoning, we can also prove that

(2.55) \displaystyle \Im\int_{(a_{2}($\lambda$_{2}),$\lambda$_{2})}^{q}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})=0
holds for any point q on  $\gamma$ . This completes the proof of Proposition 2.6. \square 

Thus, in the case of the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation, not only the ordinary Stokes curves but

also the new Stokes curves are included in the restriction of the Stokes surface for the

Pearcey system. In other words, the Stokes surface for the Pearcey system describes

the whole Stokes curves for the BNR equation.

§3. The Stokes geometry for the (1,4) hypergeometric system

§3.1. The Stokes geometry for the ordinary differential equation obtained

by restricting the (1,4) hypergeometric system to some line

In this section we study the (1,4) hypergeometric system

(3.1) \left\{\begin{array}{l}
(\frac{\partial^{3}}{\partial x_{1}^{3}}+\frac{2}{3}x_{2} $\eta$\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{1}{3}x_{1}$\eta$^{2}\frac{\partial}{\partial x_{1}}-\frac{ $\alpha$}{3}$\eta$^{3}) $\psi$=0,\\
( $\eta$\frac{\partial}{\partial x_{2}}-\frac{\partial^{2}}{\partial x_{1}^{2}}) $\psi$=0
\end{array}\right.
(where  $\alpha$\in \mathbb{C}^{2} is a complex constant) and the structure of its Stokes geometry. In

parallel to §2, we first consider the following ordinary differential equation obtained by

restricting the (1,4) hypergeometric system to x_{2}=c_{2} :

(3.2) (\displaystyle \frac{d^{3}}{dx_{1}^{3}}+\frac{2}{3}c_{2} $\eta$\frac{d^{2}}{dx_{1}^{2}}+\frac{1}{3}x_{1}$\eta$^{2}\frac{d}{dx_{1}}-\frac{ $\alpha$}{3}$\eta$^{3}) $\psi$=0.
As this equation was discussed by Aoki‐Kawai‐Takei in [2], we call it the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equa‐

tion. The configuration of the turning points and the ordinary Stokes curves of the



On the Stokes geometry F0R the Pearcey system AND THE(1,4) hypergeometric system 261

Figure 12. The turning points and the or‐

dinary Stokes curves of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equa‐

tion for c_{2}=\sqrt{-1}/20 and  $\alpha$=1/2-
\sqrt{-1}/2.

Figure 13. The Stokes geometry shown in

Figure 12 with the new Stokes curves rel‐

evant to Stokes phenomena being added;
the dot on a new Stokes curve designates
the virtual turning point from which it em‐

anates.

\mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation for c_{2}=\sqrt{-1}/20 and  $\alpha$=1/2-\sqrt{-1}/2 is shown in Figure 12. (The
choice of  $\alpha$=1/2-\sqrt{-1}/2 has no special meaning. We can take a generic value for  $\alpha$.

But, for the sake of definiteness, we fix  $\alpha$=1/2-\sqrt{-1}/2 in what follows.)
Similarly to the case of the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation, new Stokes curves appear also for

the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation. In [2] Aoki‐Kawai‐Takei investigated the new Stokes curves of

such an equation. (Although the equation they considered does not have exactly the

same form as (3.2), it can be transformed to (3.2) by a simple gauge transformation

of the unknown function and a translation and a scaling of the independent variable.)
As explained in Introduction, they showed that the equation (equivalent to the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}}
equation in the above sense) has three new Stokes curves where Stokes phenomena for

the WKB solutions occur and that it has also infinitely many virtual turning points. The

latter result implies that, in addition to the three new Stokes curves relevant to Stokes

phenomena for WKB solutions, the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation has infinitely many new Stokes

curves which are irrelevant to Stokes phenomena. The figure where the three new Stokes

curves relevant to Stokes phenomena and the virtual turning points corresponding to

them are added to Figure 12 is shown in Figure 13.

In the previous section we have shown that the new Stokes curve relevant to Stokes
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phenomena for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation is contained in the Stokes surface for the Pearcey

system. Thus the following questions (A) and (B) naturally arise for the (1,4) hyperge‐
ometric system (3.1) and its restriction (3.2) to x_{2}=c_{2} :

(A) Are the (three) new Stokes curves for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation relevant to Stokes

phenomena contained in the Stokes surface for (3.1)?

(B) Are infinitely many new Stokes curves for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation irrelevant to Stokes

phenomena also contained in the Stokes surface for (3.1)?

The purpose of this section is to investigate these two questions (A) and (B). As it will

be clarified below, our answer to the question (A) is �Yes�. We also find that the answer

to the question (B) is positive as far as the examples we have checked are concerned; this

strongly supports our expectation that the answer to (B) is also �Yes�. Our expectation
will be further fortified by our observations in §3.6 below.

§3.2. Some definitions for the exact WKB analysis for the (1,4)
hypergeometric system

Before discussing the questions (A) and (B), in this subsection we review some

basic definitions for the (1,4) hypergeometric system. These definitions are given in

parallel to the case of the Pearcey system.

Substituting

(3.3) S^{(1)}=\displaystyle \frac{\partial u}{\partial x_{1}}/u, S^{(2)}=\frac{\partial u}{\partial x_{2}}/u
into the (1,4) hypergeometric system (3.1), we have

(3.4)

(S^{(1)})^{3}+3S^{(1)}\displaystyle \frac{\partial S^{(1)}}{\partial x_{1}}+\frac{\partial^{2}S^{(1)}}{\partial x_{1^{2}}}+\frac{2}{3}x_{2} $\eta$\{(S^{(1)})^{2}+\frac{\partial S^{(1)}}{\partial x_{1}}\}+\frac{1}{3}x_{1}$\eta$^{2}S^{(1)}-\frac{ $\alpha$}{3}$\eta$^{3}=0,
(3.5)  $\eta$ S^{(2)}-(S^{(1)})^{2}-\displaystyle \frac{\partial S^{(1)}}{\partial x_{1}}=0.
Assuming S^{(1)} and S^{(2)} have the following form

(3.6) S^{(1)}(x,  $\eta$)=\displaystyle \sum_{j\geq-1}S_{j}^{(1)}(x)$\eta$^{-j}, S^{(2)}(x,  $\eta$)=\sum_{j\geq-1}S_{j}^{(2)}(x)$\eta$^{-j},
we then find that S_{-1}^{(1)} is a root of the algebraic equation

(3.7) \displaystyle \overline{p}(x,  $\xi$)=$\xi$^{3}+\frac{2}{3}x_{2}$\xi$^{2}+\frac{1}{3}x_{1} $\xi$-\frac{ $\alpha$}{3}=0
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and S_{-1}^{(2)}=(S_{-1}^{(1)})^{2} . The other coefficients S_{j}^{(k)}(j\geq 0, k=1,2) are uniquely deter‐

mined in a recursive manner. As there exist three roots $\xi$_{i}(i=1,2,3) of (3.7), we

thus obtain three solutions (S^{(1),i}, S^{(2),i}) of (3.4) and (3.5) satisfying (S_{-1}^{(1,i)}, S_{-1}^{(2),i})=
($\xi$_{i}, $\xi$_{i}^{2}) .

Similarly to Proposition 2.1, we can prove

Proposition 3.1. $\omega$^{i}=S^{(1),i}dx_{1}+S^{(2),i}dx_{2} is a closed one form.

Proposition 3.1 implies the following integral is well‐defined as a formal power series

in $\eta$^{-1}

(3.8) \displaystyle \int^{x}$\omega$^{i}
Definition 3.2.

(3.9) $\psi$_{i}=$\eta$^{-1/2}\displaystyle \exp(\int^{x}$\omega$^{i})
is called a WKB solution for the (1,4) hypergeometric system.

Definition 3.3. A point a\in \mathbb{C}^{2} is called a turning point for the (1,4) hyperge‐
ometric system if there exist i, i'\in\{1 , 2, 3 \} (i\neq i') for which

(3.10) $\omega$_{-1}^{i}(a)=$\omega$_{-1}^{i'}(a)

holds, where $\omega$_{-1}^{i} is the coefficient of  $\eta$ of  $\omega$^{i}.

Definition 3.4. Let a\in \mathbb{C}^{2} be a turning point. A Stokes surface for the (1,4)
hypergeometric system emanating from x=a is the real 3‐dimensional surface defined

by

(3.11) \displaystyle \Im\int_{a}^{x}($\omega$_{-1}^{i}-$\omega$_{-1}^{i'})=0.
§3.3. The structure of the Stokes geometry for the (1,4) hypergeometric

system, I

In the subsequent subsections we investigate the structure of the Stokes geometry
for the (1,4) hypergeometric system and answer the questions (A) and (B) raised in

§3.1.
We first give some notations related to turning points. A turning point for the

\mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation is given by a zero of

(3.12) 12x_{1}^{3}-4c_{2}^{2}x_{1}^{2}+108 $\alpha$ c_{2}x_{1}+243$\alpha$^{2}-32 $\alpha$ c_{2}^{3}=0.



264 Sampei Hirose

\lrcorner c_{2}

c_{2,1}

Figure 14. The cut plane H.

The discriminant of this algebraic equation is -16 $\alpha$(8c_{2}^{3}+243 $\alpha$)^{3} . In what follows we

denote the zeros of this discriminant by c_{2,j}(j=1,2,3) ,
that is,

(3.13) c_{2,j}=-\displaystyle \frac{3^{5/3}}{2}$\alpha$^{1/3}e^{2 $\pi$\sqrt{-1}(j-1)/3} (j=1,2,3) .

Let H be the c_{2} ‐plane equipped with cut lines emanating from c_{2,j}(j=1,2,3) as is

shown in Figure 14. In H
, turning points for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation are single‐valued

functions, and denoted by a_{j}(c_{2})(j=1,2,3) . By the definition of c_{2,j} ,
we assume

(3.14) a_{j}(c_{2,j})=a_{j+1}(c_{2,j}) (j=1,2,3) .

Here and in what follows, we consider all indices as modulo 3. Since a_{j}(0)(j=1,2,3)
are turning points for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation, we may assume the following conditions

(3.15) $\xi$_{i}|_{x=(a_{i}(0),0)}=$\xi$_{i+1}|_{x=(a_{i}(0),0)} (i=1,2,3) ,

where $\xi$_{i}(i=1,2,3) are the roots of \overline{p}(x,  $\xi$)=0.
In the discussion of §2 Proposition 2.7 plays an important role. As a counterpart

of Proposition 2.7 for the (1,4) hypergeometric system, we prove

Proposition 3.5. For i=1
, 2, 3 we have

(3.16) \displaystyle \int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}($\xi$_{i}(x_{1}, c_{2})-$\xi$_{i+1}(x_{1}, c_{2}))dx_{1}=\int_{c_{2i}}^{c_{2}},t_{i}(c_{2})dc_{2},
(3.17) \displaystyle \int_{a_{i+1}(c_{2})}^{a_{i}(c_{2})}($\xi$_{i+1}(x_{1}, c_{2})-$\xi$_{i+2}(x_{1}, c_{2}))dx_{1}=-\int_{c_{2i}}^{c_{2}},t_{i-1}(c_{2})dc_{2},
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where t_{i}(i=1,2,3) are single‐valued functions on H
,

and satises the following condi‐

tions

\bullet  t_{i} is the root of the following algebraic equation

(3.18) t^{3}-c_{2}^{2}t^{2}+\displaystyle \frac{1}{27}c_{2}(8c_{2}^{3}+243 $\alpha$)t-\frac{1}{2916}(8c_{2}^{3}+243 $\alpha$)^{2}=0,
\bullet t_{i-1}(c_{2,i})=t_{i}(c_{2,i}) (i=1,2,3) .

Proof. Since the proof is similar for both relations, we only prove (3.16). For

simplicity, $\xi$_{i}(a_{j}(\mathrm{c}_{2}), c_{2}) are denoted by $\xi$_{i,j} (c2). Then $\xi$_{i,j}(i=1,2,3) satisfy

(3.19) \overline{p} ( a_{j} (c2), c_{2},  $\xi$ ) =0.

On the other hand, by the definition of a_{j} ,
the discriminant in  $\xi$ of (3.19) is equal to

zero, that is, (3.19) has a multiple root, which is given by

(3.20)  $\xi$_{j,j}=$\xi$_{j+1,j} (j=1,2,3)

in view of (3.15). Thus we have the following relations for j=1 , 2, 3

(3.21) 2$\xi$_{j,j}+$\xi$_{j+2,j}=-\displaystyle \frac{2}{3}c_{2}, $\xi$_{j,j}^{2}$\xi$_{j+2,j}=\frac{ $\alpha$}{3}.
By using these relations, we find that $\xi$_{j,j}(j=1,2,3) satisfy the following algebraic

equation

(3.22) 6$\xi$^{3}+2c_{2}$\xi$^{2}+ $\alpha$=0.

Since the discriminant of this algebraic equation is -4 $\alpha$(8c_{2}^{3}+243 $\alpha$) , $\xi$_{i,j}(i, j=1,2,3)
are single‐valued functions on H . By (3.14) and (3.20), we have

(3.23)

$\xi$_{i,i}(c_{2,i})=$\xi$_{i+1,i}(c_{2,i})=$\xi$_{i+1}|_{x=(a_{i}(c_{2,i}),c_{2,i})}=$\xi$_{i+1}|_{x=(a_{i+1}(c_{2,i}),c_{2,i})}=$\xi$_{i+1,i+1}(c_{2,i}) .

Thanks to Proposition 3.1, $\xi$_{i}=$\xi$_{i}(x_{1}, c_{2}) satisfies

(3.24) \displaystyle \frac{\partial}{\partial c_{2}}$\xi$_{i}=\frac{\partial}{\partial x_{1}}$\xi$_{i}^{2}.
It follows from this relation and (3.20) that

(3.25)

\displaystyle \frac{d}{dc_{2}}\int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}($\xi$_{i}-$\xi$_{i+1})dx_{1}
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=\displaystyle \int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}\frac{\partial}{\partial c_{2}}($\xi$_{i}-$\xi$_{i+1})dx_{1}+($\xi$_{i}-$\xi$_{i+1})|_{x_{1}=a_{i+1}(c_{2})}\frac{da_{i+1}}{dc_{2}}-($\xi$_{i}-$\xi$_{i+1})|_{x_{1}=a_{i}(c_{2})}\frac{da_{i}}{dc_{2}}
=\displaystyle \int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}\frac{\partial}{\partial x_{1}}($\xi$_{i}^{2}-$\xi$_{i+1}^{2})dx_{1}+($\xi$_{i}-$\xi$_{i+1})|_{x_{1}=a_{i+1}(c_{2})}\frac{da_{i+1}}{dc_{2}}
=($\xi$_{i}^{2}-$\xi$_{i+1}^{2})|_{x_{1}=a_{i+1}(c_{2})}-($\xi$_{i}^{2}-$\xi$_{i+1}^{2})|_{x_{1}=a_{i}(c_{2})}+($\xi$_{i}-$\xi$_{i+1})|_{x_{1}=a_{i+1}(c_{2})}\displaystyle \frac{da_{i+1}}{dc_{2}}
=($\xi$_{i,i+1}^{2}+\displaystyle \frac{da_{i+1}}{dc_{2}}$\xi$_{i,i+1})-($\xi$_{i+1,i+1}^{2}+\frac{da_{i+1}}{dc_{2}}$\xi$_{i+1,i+1})
Since $\xi$_{i,i}(i=1,2,3) satisfy

(3.26) \left\{\begin{array}{l}
\overline{p}(a_{i}(c_{2}), c_{2}, $\xi$_{i,i}(c_{2}))=0,\\
\frac{\partial\overline{p}}{\partial $\xi$}(a_{i}(c_{2}), c_{2}, $\xi$_{i,i}(c_{2}))=0,
\end{array}\right.
we have

(3.27)

0=\displaystyle \frac{d}{dc_{2}}\overline{p}(a_{i}(c_{2}), c_{2}, $\xi$_{i,i}(c_{2}))
=\displaystyle \frac{\partial\overline{p}}{\partial x_{1}} ( a_{i} (c2), c_{2}, $\xi$_{i,i}(c_{2}) ) \displaystyle \frac{da_{i}}{dc_{2}}+\frac{\partial\overline{p}}{\partial c_{2}}(a_{i}(c_{2}), c_{2}, $\xi$_{i,i}(c_{2}))+\frac{\partial\overline{p}}{\partial $\xi$}(a_{i}(c_{2}), c_{2}, $\xi$_{i,i}(c_{2}))\frac{d$\xi$_{i,i}}{dc_{2}}
=\displaystyle \frac{1}{3}$\xi$_{i,i}\frac{da_{i}}{dc_{2}}+\frac{2}{3}$\xi$_{i,i}^{2}
=\displaystyle \frac{1}{3}$\xi$_{i,i}(\frac{da_{i}}{dc_{2}}+2$\xi$_{i,i}) ,

that is,

(3.28) \displaystyle \frac{da_{i}}{dc_{2}}=-2$\xi$_{i,i}
holds. Hence, by (3.21), we have

(3.29) \displaystyle \frac{d}{dc_{2}}\int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}($\xi$_{i}-$\xi$_{i+1})dx_{1}=($\xi$_{i,i+1}-$\xi$_{i+1,i+1})($\xi$_{i,i+1}+$\xi$_{i+1,i+1}+\frac{da_{i+1}}{dc_{2}})
=($\xi$_{i,i+1}-$\xi$_{i+1,i+1})^{2}

=(3$\xi$_{i+1,i+1}+\displaystyle \frac{2}{3}c_{2})^{2}
We now set

(3.30) t_{i}=(3$\xi$_{i+1,i+1}+\displaystyle \frac{2}{3}c_{2})^{2} (i=1,2,3) ,
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Figure 15. The curves defined by (3.31).

then t_{i} are single‐valued functions on H and satisfy the two conditions in the claim of

Proposition 3.5. In view of (3.14), we thus obtain (3.16). \square 

Figure 15 shows the configuration of the curves defined by

(3.31)

\displaystyle \Im\int_{a_{i}(c_{2})}^{a_{i+1}(c_{2})}($\xi$_{i}-$\xi$_{i+1})dx_{1}=0 and \displaystyle \Im\int_{a_{i+1}(c_{2})}^{a_{i}(c_{2})}($\xi$_{i+1}-$\xi$_{i+2})dx_{1}=0 (i=1,2,3)

in Proposition 3.5. Note that, if c_{2} lies on a curve defined by (3.31), then the Stokes

geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation is degenerate in the sense that a Stokes curve of the

\mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation emanating from a turning point hits another turning point.

Remark. As is clear from Figure 15, the curves defined by (3.31) may cross.

These crossing points are dissolved if we draw the figure of the curves defined by (3.31)
on the Riemann surface determined by (3.18).

By using Figure 15, we now confirm that the new Stokes curves for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}}
equation relevant to Stokes phenomena in Figure 13 are contained in the Stokes surface

for the (1,4) hypergeometric system as follows: Among the three new Stokes curves in

Figure 13 relevant to Stokes phenomena we pick up a particular one, which is specified in

Figure 16. We first show that this new Stokes curve specified in Figure 16 is contained in

the Stokes surface for the (1,4) hypergeometric system. Recall that Figure 13 and Figure
16 are figures of (a part of) the Stokes geometry of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation for c_{2}=\sqrt{-1}/20,
which is denoted by $\lambda$_{1} in what follows. Let $\gamma$_{1} be a path in the c_{2} ‐plane emanating
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Figure 16. The ordinary Stokes curves

and one particular new Stokes curve of the

\mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}} equation; here and in what follows

the dot on a new Stokes curve designates
the virtual turning point from which it em‐

anates.

Figure 17. The path $\gamma$_{1} and points $\lambda$_{j}(j=
1

, 2, 3) on it.

from $\lambda$_{1} and let us take points $\lambda$_{2} and $\lambda$_{3} on $\gamma$_{1} ,
as is shown in Figure 17. To observe

how the configuration of the Stokes geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation is deformed when

c_{2} varies along $\gamma$_{1} ,
we give figures of the Stokes geometry (i.e., ordinary Stokes curves

and a new Stokes curve in question) for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation with c_{2}=$\lambda$_{1}, $\lambda$_{2} and $\lambda$_{3}
in Figure 18, 19 and 20, respectively. We examine, in particular, the difference between

Figure 19 and Figure 20.

Let l_{1,2}, l_{2,2} and nl_{2} be Stokes curves in Figure 19 defined as follows:

\bullet  l_{1,2} : an ordinary Stokes curve emanating from a turning point a_{1}($\lambda$_{2}) ,

\bullet  l_{2,2} : an ordinary Stokes curve emanating from a turning point a_{2}($\lambda$_{2}) ,

\bullet  nl_{2} : a new Stokes curve passing through a crossing point of two ordinary Stokes

curves emanating from two turning points a() and a_{3}($\lambda$_{2}) .

Let l_{1,3}, l_{2,3} and nl_{3} be Stokes curves in Figure 20 defined as follows:

\bullet  l_{1,3} : an ordinary Stokes curve emanating from a turning point a_{1}($\lambda$_{3}) ,

\bullet  l_{2,3} : an ordinary Stokes curve emanating from a turning point a_{2}($\lambda$_{3}) ,
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Figure 18. The Stokes geometry in ques‐ Figure 19. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}} equation. tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{2}} equation.

Figure 20. The Stokes geometry in question of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{3}} equation.
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\bullet  nl_{3} : a new Stokes curve passing through a crossing point of two ordinary Stokes

curves emanating from two turning points a() and a_{3}($\lambda$_{3}) .

We can observe that in Figure 19 nl_{2} is asymptotically approaching to l_{2,2} ,
while

l_{1,2} is not approaching to l_{2,2} when they go to the left toward \infty . On the other hand,
in Figure 20  nl_{3} is not approaching to l_{2,3} ,

while l_{1,3} is asymptotically approaching to

l_{2,3} when they go to the left toward \infty . Then, by the same argument as in Proposition

2.6, we can verify that the new Stokes curve  nl_{2} in Figure 19 is contained in the Stokes

surface for the (1,4) hypergeometric system. This immediately implies that the new

Stokes curve in Figure 16 is contained in the Stokes surface for the (1,4) hypergeometric

system.
In a similar manner, we can verify that the other two new Stokes curves in Figure

13 are also contained in the Stokes surface for the (1,4) hypergeometric system. In fact,

by taking a path in Figure 21 (resp. Figure 23), we can confirm that the new Stokes

curve specified in Figure 22 (resp. Figure 24) is contained in the Stokes surface for the

(1,4) hypergeometric system.
Thus we have confirmed that the new Stokes curves in Figure 13 relevant to Stokes

phenomena are all contained in the Stokes surface for the (1,4) hypergeometric system,
that is, the answer to the question (A) in §3.1 is �Yes�

§3.4. The structure of the Stokes geometry for the (1,4) hypergeometric

system, II

In the preceding subsection we showed that the new Stokes curves for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}}
equation relevant to Stokes phenomena are contained in the Stokes surface for the

(1,4) hypergeometric system. In that argument the curves defined by (3.31) and their

configuration (Figure 15) played a crucially important role. In the case of the Pearcey

system, the degeneracy of the Stokes geometry for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation only occurs on

the curve defined by (2.38). However, in the case of the (1,4) hypergeometric system,
this is not true. The degeneracy of the Stokes geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation occurs

not only on the curve defined by (3.31) but also on other curves. In this subsection, we

discuss this problem and, as its consequence, we show that a new Stokes curve irrelevant

to Stokes phenomena is also contained in the Stokes surface for the (1,4) hypergeometric

system.
Let $\gamma$_{2} be a path in Figure 25 and let $\lambda$_{j} (j=1, \cdots; 7) be points on $\gamma$_{2} . (The

first three points $\lambda$_{j}(j=1,2,3) are the same points as in the previous subsection.) In

what follows we consider ordinary Stokes curves and new Stokes curves shown in Figure
26. Note that in Figure 26 there is a new Stokes curve irrelevant to Stokes phenomena,
which in newly added to Figure 13. Figure 27, Figure28, Figure 29, Figure 30, Figure

31, Figure 32 and Figure 33 show the Stokes geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation with
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Figure 21. Figure 22. The ordinary Stokes curves and

the second new Stokes curve of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}}
equation shown in Figure 13.

Figure 23. Figure 24. The ordinary Stokes curves and

the third new Stokes curve of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}}
equation shown in Figure 13.
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Figure 25. The path $\gamma$_{2} and points $\lambda$_{j}(j= Figure 26. A new Stokes curve irrelevant

1, \cdots

, 7) on it. to Stokes phenomena being added to Fig‐
ure 13.

 c_{2}=$\lambda$_{j} (j=1, \cdots; 7) , respectively. We examine, in particular, the difference between

Figure 32 and Figure 33.

Let l_{6}, nl_{1,6}, nl_{2,6} and nl_{3,6} be Stokes curves in Figure 32 defined as follows:

\bullet  l_{6} : an ordinary Stokes curve emanating from a turning point a_{3}($\lambda$_{3}) ,

\bullet  nl_{1,6} : a new Stokes curve passing through a crossing point of two ordinary Stokes

curves emanating from two turning points a() and a_{3}($\lambda$_{6}) ,

\bullet  nl_{2,6} : a new Stokes curve passing through a crossing point of two ordinary Stokes

curves emanating from two turning points a() and a_{3}($\lambda$_{6}) ,

\bullet  nl_{3,6} : a new Stokes curve passing through a crossing point of an ordinary Stokes

curve emanating from a() and the new Stokes curve nl_{2,6}.

Let l7, nl_{1,7}, nl_{2,7} and nl_{3,7} be Stokes curves in Figure 33 defined as follows:

\bullet l7 : an ordinary Stokes curve emanating from a turning point  a_{3}($\lambda$_{7}) ,

\bullet  nl_{1,7} : a new Stokes curve passing through a crossing point of two ordinary Stokes

curves emanating from two turning points a() and a_{3}($\lambda$_{7}) ,

\bullet  nl_{2,7} : a new Stokes curve passing through a crossing point of two ordinary Stokes

curves emanating from two turning points a() and a_{3}($\lambda$_{7}) ,
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Figure 27. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}} equation.

Figure 29. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{3}} equation.

Figure 28. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{2}} equation.

Figure 30. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{4}} equation.
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Figure 31. The Stokes geometry in ques‐ Figure 32. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{5}} equation. tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{6}} equation.

Figure 33. The Stokes geometry in question of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{7}} equation.
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Figure 34. New type of degeneracy for the

Stokes geometry of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation.

(An enlarged figure is given in Figure 44.)

Figure 35. The point \overline{ $\lambda$} on $\gamma$_{2} where the

degenerate configuration Figure 34 is ob‐

served.

\bullet  nl_{3,7} : a new Stokes curve passing through a crossing point of an ordinary Stokes

curve emanating from a() and the new Stokes curve nl_{2,7}.

We then observe that in Figure 32 nl_{2,6} is asymptotically approaching to l_{6} and

nl_{3,6} is asymptotically approaching to nl_{1,6} when they go to the upper‐left toward \infty.

On the other hand, in Figure 33 nl_{2,7} is asymptotically approaching to nl_{1,7} and nl_{3,7} is

asymptotically approaching to l7 when they go to the upper‐left toward \infty . Comparing
these two figures, we find that at some point between $\lambda$_{6} and $\lambda$_{7} on $\gamma$_{2} we should

encounter a new type of degeneracy of the Stokes geometry shown in Figure 34, that is,
there exist two new Stokes curves emanating from two different virtual turning points
hit an (ordinary) turning point. (With the aid of a computer we observe in Figure 34

the new type of degeneracy at \overline{ $\lambda$} on the path $\gamma$_{2} in Figure 35.) Thus the degeneracy of

the Stokes geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation occurs also outside the curve defined by

(3.31) (as a matter of fact, occurs at  $\lambda$ in the current situation).
In the preceding section we observed that at, say,  c_{2}=1 an ordinary Stokes curve

and a new Stokes curve of the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation are switched and, using this fact, we

proved that a new Stokes curve of the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation is contained in the Stokes surface

for the Pearcey system (cf. Proposition 2.6). In the current situation the new Stokes

curve nl_{2,*}(*=6,7) of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation plays a role similar to that the ordinary
Stokes curve of the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation played in the preceding section: That is, at  c_{2}= $\lambda$

the turning point  a_{1}(\overline{ $\lambda$}) of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation switches the new Stokes curves nl_{2,*} and
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nl_{3,*}(*=6,7) and, as was shown in the previous subsection, nl_{2,6} is contained in the

Stokes surface for the (1,4) hypergeometric system. Hence, by the reasoning similar to

that used in the proof of Proposition 2.6, we expect that the new Stokes curve nl_{3,7} is

also contained in the Stokes surface for the (1,4) hypergeometric system. In fact, we

can prove

Proposition 3.6. The new Stokes curve nl_{3,7} in Figure 33 is contained in the

Stokes surfa ce for the (1,4) hypergeometric system.

Proof. Taking a point p on the new Stokes curve nl_{3,7} ,
we show that (p, $\lambda$_{7}) is

contained in the Stokes surface for the (1,4) hypergeometric system. That is, we show

that there exist a turning point a\in \mathbb{C}^{2} for the (1,4) hypergeometric system, two branches

of the one form $\omega$_{-1}^{i}, $\omega$_{-1}^{i'} and a path  $\gamma$ connecting  a and (p, $\lambda$_{7}) that satisfy the following
conditions:

(3.32) $\omega$_{-1}^{i}(a)=$\omega$_{-1}^{i'}(a) , \displaystyle \Im\int_{a}^{q}($\omega$_{-1}^{i}-$\omega$_{-1}^{i'})=0 (for any  q\in $\gamma$ ).

Let  a_{1}($\lambda$_{6}) , a() and a() be turning points for the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{6}} equation, let b_{2} be the

crossing point of the new Stokes curve nl_{2,6} and an ordinary Stokes curve emanating
from a_{1}($\lambda$_{6}) ,

and let b_{4} be the crossing point of two ordinary Stokes curves of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{6}}
equation emanating from a() and a() in Figure 36. Similarly, let a_{1}($\lambda$_{7}) , a()
and a() be turning points for the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{7}} equation, and let b_{1} be the crossing point
of an ordinary Stokes curve emanating from a() and the new Stokes curve nl_{2,7},
and let b_{3} be the crossing point of two ordinary Stokes curves of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{7}} equation

emanating from a() and a() in Figure 38. We further let a_{1}(\overline{ $\lambda$}) , a_{2}(\overline{ $\lambda$}) and a_{3}(\overline{ $\lambda$})
be three turning points for the \mathrm{A}\mathrm{K}\mathrm{T}_{\overline{ $\lambda$}} equation in Figure 37. As a path connecting $\lambda$_{6}
and $\lambda$_{7} we take the restriction $\gamma$_{2}|_{[$\lambda$_{6},$\lambda$_{7}]} of the path $\gamma$_{2} . Let l_{4\rightarrow 3,1}(c_{2})(c_{2}\in$\gamma$_{2}|_{[$\lambda$_{6},$\lambda$_{7}]}) be

a crossing point of two ordinary Stokes curves for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation emanating from

the two turning points a(c) and a_{3}(c_{2}) ,
and let us define l_{2\rightarrow 1,1}(c_{2})(c_{2}\in$\gamma$_{2}|_{[$\lambda$_{6},$\lambda$_{7}]})

by the following

\bullet if  c_{2}\neq\overline{ $\lambda$} , then l_{2\rightarrow 1,1}(c) is a crossing point of an ordinary Stokes curve for the

\mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation emanating from a(c) and a new Stokes curve for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}}
equation passing through l_{4\rightarrow 3,1}(c_{2}) , (that is, l_{2\rightarrow 1,1}(c) coincides with b_{2} and b_{1}

when c_{2}=$\lambda$_{6} and c_{2}=$\lambda$_{7} , respectively,)

\bullet if  c_{2}=\overline{ $\lambda$} , then l_{2\rightarrow 1,1}(\overline{ $\lambda$}) is a_{1}(\overline{ $\lambda$}) .

Then l_{2\rightarrow 1}(c_{2})= ( l_{2\rightarrow 1,1}(\mathrm{c}_{2}) , c)(resp. l_{4\rightarrow 3}(c_{2})=(l_{4\rightarrow 3,1}(\mathrm{c}_{2}), c_{2}) ) (c_{2}\in$\gamma$_{2}|_{[$\lambda$_{6},$\lambda$_{7}]}) is a

path in \mathbb{C}^{2} connecting l_{2\rightarrow 1}($\lambda$_{6})=(b_{2}, $\lambda$_{6}) and l_{2\rightarrow 1}($\lambda$_{7})=(b_{1}, $\lambda$_{7}) (resp. l_{4\rightarrow 3}($\lambda$_{6})=
(b_{4}, $\lambda$_{6}) and l_{4\rightarrow 3}() =(b_{3}, $\lambda$_{7}) ). By using l_{2\rightarrow 1} ,

we define a path \overline{ $\gamma$}_{1} connecting (b_{2}, $\lambda$_{6})
and (p, $\lambda$_{7}) as the composition of the following two paths:
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Figure 36. The Stokes geometry for the Figure 37. The Stokes geometry for the

\mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{6}} equation. \mathrm{A}\mathrm{K}\mathrm{T}_{\overline{ $\lambda$}} equation.

Figure 38. The Stokes geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{7}} equation.
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\bullet a path from (b_{2}, $\lambda$_{6}) to (b_{1}, $\lambda$_{7}) along the path l_{2\rightarrow 1},

\bullet a path from (b_{1}, $\lambda$_{7}) to (p, $\lambda$_{7}) along the new Stokes curve nl_{3,7} (this portion is

contained completely in \{c_{2}=$\lambda$_{7}\} ).

We first prove

(3.33) \displaystyle \Im\int_{(b_{2},$\lambda$_{6})}^{(p,$\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})=0,
where the integration is taken along \overline{ $\gamma$}_{1} and the branch $\omega$_{-1}^{i}(i=1,2,3) of $\omega$_{-1} is

assumed to be fixed at the starting point (b_{2}, $\lambda$_{6}) . Note that the wiggly lines in Figure

36, 37 and 38 designate cuts to define the branch $\omega$_{-1}^{i} of $\omega$_{-1} . To prove (3.33), we

decompose the integral as

(3.34) \displaystyle \int_{(b_{2},$\lambda$_{6})}^{(p,$\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})
=\displaystyle \int_{(b_{2},$\lambda$_{6})}^{l_{2\rightarrow 1}(\overline{ $\lambda$})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{l_{2\rightarrow 1}(\overline{ $\lambda$})}^{(b_{1},$\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{(b_{1},$\lambda$_{7})}^{(p,$\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})
=:I_{1}+I_{2}+I_{3}.

First, since p lies on a new Stokes curve (of type (1,3)) for the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{7}} equation, we

have

(3.35) \Im I_{3}=0.

We next consider I_{2} ,
which is the sum of two integrals:

(3.36) I_{2}=\displaystyle \int_{l_{2\rightarrow 1}(\overline{ $\lambda$})}^{(b_{1},$\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{2})+\int_{l_{2\rightarrow 1}(\overline{ $\lambda$})}^{(b_{1},$\lambda$_{7})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})
=:I_{21}+I_{22}.

By deforming the path of integration, we can express I_{21} as

(3.37) I_{21}=\displaystyle \int_{l_{2\rightarrow 1}(\overline{ $\lambda$})}^{(a_{1}($\lambda$_{7}),$\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{2})+\int_{(a_{1}($\lambda$_{7}),$\lambda$_{7})}^{(b_{1},$\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{2}) ,

where the first integral is taken along the set of turning points for the (1,4) hypergeo‐
metric system and the second integral is done along an ordinary Stokes curve for the

\mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{7}} equation emanating from a_{1}($\lambda$_{7}) . Since $\omega$_{-1}^{1}=$\omega$_{-1}^{2} holds at turning points

( a_{1} (c2), c_{2} ) (c_{2}\in$\gamma$_{2}|_{[$\lambda$_{6},$\lambda$_{7}]}) ,
the first integral vanishes. Furthermore, as the second

integral is taken along an ordinary Stokes curve, its imaginary part is zero. Hence

(3.38) I_{21}\in \mathbb{R}.
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On the other hand, I_{22} can be expressed as

(3.39) I_{22}=\displaystyle \int_{(a_{1}(\overline{ $\lambda$}),\overline{ $\lambda$})}^{l_{4\rightarrow 3}(\overline{ $\lambda$})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{l_{4\rightarrow 3}($\lambda$_{7})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{l_{4\rightarrow 3}($\lambda$_{7})}^{(b_{1},$\lambda$_{7})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3}) ,

where the first and the third integrals are done along new Stokes curves for the \mathrm{A}\mathrm{K}\mathrm{T}_{\overline{ $\lambda$}}
and the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{7}} equation, respectively, and the second integral is taken along l_{4\rightarrow 3}.

Furthermore, we have

(3.40)

\displaystyle \int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{l_{4\rightarrow 3}($\lambda$_{7})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})
=\displaystyle \int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{l_{4\rightarrow 3}($\lambda$_{7})}($\omega$_{-1}^{2}-$\omega$_{-1}^{1})+\int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{l_{4\rightarrow 3}($\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})
=\displaystyle \int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{(a_{2}(\overline{ $\lambda$}),\overline{ $\lambda$})}($\omega$_{-1}^{2}-$\omega$_{-1}^{1})+\int_{(a_{2}(\overline{ $\lambda$}),\overline{ $\lambda$})}^{(a_{2}($\lambda$_{7}),$\lambda$_{7})}($\omega$_{-1}^{2}-$\omega$_{-1}^{1})+\int_{(a_{2}($\lambda$_{7}),$\lambda$_{7})}^{l_{4\rightarrow 3}($\lambda$_{7})}($\omega$_{-1}^{2}-$\omega$_{-1}^{1})

+\displaystyle \int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{(a_{3}(\overline{ $\lambda$}),\overline{ $\lambda$})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{(a_{3}(\overline{ $\lambda$}),\overline{ $\lambda$})}^{(a_{3}($\lambda$_{7}),$\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{(a_{3}($\lambda$_{7}),$\lambda$_{7})}^{l_{4\rightarrow 3}($\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3}) ,

where the first and the fourth integrals are done along ordinary Stokes curves for the

\mathrm{A}\mathrm{K}\mathrm{T}_{\overline{ $\lambda$}} equation, the third and the sixth integrals are done along ordinary Stokes curves

for the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{7}} equation, and the second and the fifth integrals are taken along the set

of turning points for the (1,4) hypergeometric system, respectively. Hence, similarly to

I_{21} ,
we have

(3.41)

I_{22}=\displaystyle \int_{(a_{1}(\overline{ $\lambda$}),\overline{ $\lambda$})}^{l_{4\rightarrow 3}(\overline{ $\lambda$})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{(a_{2}(\overline{ $\lambda$}),\overline{ $\lambda$})}($\omega$_{-1}^{2}-$\omega$_{-1}^{1})+\int_{(a_{2}($\lambda$_{7}),$\lambda$_{7})}^{l_{4\rightarrow 3}($\lambda$_{7})}($\omega$_{-1}^{2}-$\omega$_{-1}^{1})
+\displaystyle \int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{(a_{3}(\overline{ $\lambda$}),\overline{ $\lambda$})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{(a_{3}($\lambda$_{7}),$\lambda$_{7})}^{l_{4\rightarrow 3}($\lambda$_{7})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{l_{4\rightarrow 3}($\lambda$_{7})}^{(b_{1},$\lambda$_{7})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})

\in \mathbb{R}.

Thus we obtain

(3.42) \Im I_{2}=0.

Finally, the integral I_{1} can be discussed in a similar manner: By expressing I_{1} as

(3.43) I_{1}=\displaystyle \int_{(b_{2},$\lambda$_{6})}^{l_{4\rightarrow 3}($\lambda$_{6})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{l_{4\rightarrow 3}($\lambda$_{6})}^{l_{4\rightarrow 3}(\overline{ $\lambda$})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})+\int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{l_{2\rightarrow 1}(\overline{ $\lambda$})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})
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(here the branch $\omega$_{-1}^{i} of $\omega$_{-1} is fixed at the lower endpoint of each integral. Note that

$\omega$_{-1}^{1} is changed to $\omega$_{-1}^{2} on the way from (b_{2}, $\lambda$_{6}) to l_{4\rightarrow 3}($\lambda$_{6})=(b_{4}, $\lambda$_{6}) as this portion
of the integration path crosses a cut 1=2�

), we can confirm

(3.44) I_{1}=\displaystyle \int_{(b_{2},$\lambda$_{6})}^{l_{4\rightarrow 3}($\lambda$_{6})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{l_{4\rightarrow 3}($\lambda$_{6})}^{(a_{2}($\lambda$_{6}),$\lambda$_{6})}($\omega$_{-1}^{2}-$\omega$_{-1}^{1})
+\displaystyle \int_{(a_{2}($\lambda$_{6}),$\lambda$_{6})}^{(a_{2}(\overline{ $\lambda$}),\overline{ $\lambda$})}($\omega$_{-1}^{2}-$\omega$_{-1}^{1})+\int_{(a_{2}(\overline{ $\lambda$}),\overline{ $\lambda$})}^{l_{4\rightarrow 3}(\overline{ $\lambda$})}($\omega$_{-1}^{2}-$\omega$_{-1}^{1})

+\displaystyle \int_{l_{4\rightarrow 3}($\lambda$_{6})}^{(a_{3}($\lambda$_{6}),$\lambda$_{6})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{(a_{3}($\lambda$_{6}),$\lambda$_{6})}^{(a_{3}(\overline{ $\lambda$}),\overline{ $\lambda$})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})
+\displaystyle \int_{(a_{3}(\overline{ $\lambda$}),\overline{ $\lambda$})}^{l_{4\rightarrow 3}(\overline{ $\lambda$})}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})+\int_{l_{4\rightarrow 3}(\overline{ $\lambda$})}^{l_{2\rightarrow 1}(\overline{ $\lambda$})}($\omega$_{-1}^{2}-$\omega$_{-1}^{3})

\in \mathbb{R}.

Thus we have verified (3.33).
Using the above reasoning, we can also prove that

(3.45) \displaystyle \Im\int_{(b_{2},$\lambda$_{6})}^{q}($\omega$_{-1}^{1}-$\omega$_{-1}^{3})=0
holds for any point q on \overline{ $\gamma$}_{1}.

Since nl_{2,6} is contained in the Stokes surface for the (1,4) hypergeometric system,
there exist a turning point a\in \mathbb{C}^{2} for the (1,4) hypergeometric system, two branches of

the one form $\omega$_{-1}^{i}, $\omega$_{-1}^{i'} and a path \overline{ $\gamma$}_{2} connecting a and (b_{2}, $\lambda$_{6}) that satisfy the following
conditions:

(3.46) $\omega$_{-1}^{i}(a)=$\omega$_{-1}^{i'}(a) , \displaystyle \Im\int_{a}^{q}($\omega$_{-1}^{i}-$\omega$_{-1}^{i'})=0 (for any q\in\overline{ $\gamma$}_{2} ).

Note that, after the analytic continuation along \overline{ $\gamma$}_{2}, $\omega$_{-1}^{i} and $\omega$_{-1}^{i'} are changed to $\omega$_{-1}^{1}
and $\omega$_{-1}^{3} , respectively.

We define a path  $\gamma$ connecting  a and (p, $\lambda$_{7}) as the composition of two paths \overline{ $\gamma$}_{1}
and \overline{ $\gamma$}_{2} . Then, by (3.33) and (3.46), we have

(3.47) \displaystyle \Im\int_{a}^{q}($\omega$_{-1}^{i}-$\omega$_{-1}^{i'})=0 (q\in $\gamma$) .

\square 

Remark. In proving (3.42) (resp. (3.44)), we need to deform the path of inte‐

gration for I_{22} (resp. I_{1} ) so that it may pass the two turning points a() and a_{3}($\lambda$_{7}) .

Such a deformation was essentially used in the previous subsection to confirm that the



On the Stokes geometry F0R the Pearcey system AND THE(1,4) hypergeometric system 281

new Stokes curve nl_{2,7} is contained in the Stokes surface for the (1,4) hypergeometric

system.
As is clear from the proof of Proposition 3.6, in order to prove that the new Stokes

curve nl_{3,7} is contained in the Stokes surface for the (1,4) hypergeometric system, we

further need to take another turning point a() into account.

In this manner, to confirm that a new Stokes curve of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation is

contained in the Stokes surface for the (1,4) hypergeometric system, we need to consider

several ordinary turning points and some portions of (ordinary and/or new) Stokes

curves connecting them. These ordinary turning points and portions of Stokes curves are

nothing but those used in [7] (cf. [4] also) to define a virtual turning point corresponding
to the new Stokes curve in question through the so‐called �integral relation�

Thus we have confirmed that all of the new Stokes curves in Figure 26 are contained

in the Stokes surface for the (1,4) hypergeometric system. This implies that at least

one new Stokes curve of \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation which is irrelevant to Stoke phenomena is

contained in the Stokes surface for the (1,4) hypergeometric system.

§3.5. The structure of the Stokes geometry for the (1,4) hypergeometric

system, III

In the previous subsection it was shown that the degeneracy of the Stokes geometry
for \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation occurs also outside the curve defined by (3.31). Then, where does

the degeneracy of the Stokes geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation occur? Is it possible
to describe explicitly the set in the c_{2} ‐plane where such a degeneracy occurs? In this

subsection we discuss this problem. Furthermore, we consider the relationship between

this new type of degeneracy and virtual turning points of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation.
Let \mathcal{P} be the set of �periods� for the (1,4) hypergeometric system, that is,

(3.48) \displaystyle \mathcal{P}=\{\int_{p}$\omega$_{-1}\in \mathbb{C} ; \ell is a closed path in \mathbb{C}^{2}\}
In the case of the (1,4) hypergeometric system it is known that \mathcal{P} is generated by one

element so that

(3.49) \mathcal{P}=\{2 $\pi$\sqrt{-1} $\alpha$ k;k\in \mathbb{Z}\},

where  $\alpha$ is the parameter that the (1,4) hypergeometric system (3.1) contains and it is

also given by

(3.50)  $\alpha$=\displaystyle \frac{1}{2 $\pi$\sqrt{-1}}\int_{p_{0}}$\omega$_{-1}
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Figure 39. The closed path \ell_{0} ,
which is contained in \{c_{2}=0\} . (Note that in (3.50) $\omega$_{-1}

is assumed to take a branch $\omega$_{-1}^{i} on each portion \ell_{0}^{(i)}. )

with, for example, the closed path \ell_{0} shown in Figure 39. Using the period \mathcal{P}=

\{2 $\pi$\sqrt{-1} $\alpha$ k\} ,
we consider the curves in the c_{2} ‐plane defined by

(3.51)

\displaystyle \Im(\int_{c_{2i}}^{c_{2}},t_{i}(c_{2})dc_{2}-2 $\pi$\sqrt{-1} $\alpha$ k)=0 and \displaystyle \Im(-\int_{c_{2i}}^{c_{2}},t_{i-1}(c_{2})dc_{2}-2 $\pi$\sqrt{-1} $\alpha$ k)=0
for i=1

, 2, 3, k\in \mathbb{Z} . Their configuration for k=0, \pm 1, \pm 2 is shown in Figure 40. By
numerical computations we have checked that the degeneracy of the Stokes geometry
for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation is occurring at several points on these curves. For example, the

point \overline{ $\lambda$} predicted in §3.4 lies on the following curve

(3.52) \displaystyle \Im(\int_{c_{23}}^{c_{2}},t_{3}(c_{2})dc_{2}-2 $\pi$\sqrt{-1} $\alpha$)=0,
as is shown in Figure 41.

Remark. In the case of the Pearcey system we have \mathcal{P}=\{0\} ,
that is, there

exist no non‐trivial periods. This fact can be considered as the main reason why the

degeneracy for the Stokes geometry for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation occurs only on the curve

defined by (2.38).

It was observed in §3.4 that two new Stokes curves emanating from two virtual

turning points hit an ordinary turning point at \overline{ $\lambda$} on the curve (3.52). In what follows
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Figure 40. The curves defined by (3.51) Figure 41. A curve (3.51) passing through
for k=0, \pm 1, \pm 2. \overline{ $\lambda$} being added to Figure 15.

we investigate the behavior of these two virtual turning points of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation

along the curve (3.52) in more details. First, let us take \mathrm{a} (unique) zero of

(3.53) \displaystyle \int_{c_{23}}^{c_{2}},t_{3}(c_{2})dc_{2}-2 $\pi$\sqrt{-1} $\alpha$
on the curve (3.52). Then the numerical computation indicates that the two virtual

turning points in question simultaneously hit the ordinary turning point at the zero of

(3.53).
Next, let  $\gamma$_{3} be an (oriented) closed path with a base point c_{2}=\overline{ $\lambda$} which goes

around the zero of (3.53) in a counterclockwise manner and let $\lambda$_{j}(j=8, \cdots; 11) be

points on this path $\gamma$_{3} (cf. Figure 42). To observe how the configuration of the Stokes

geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation is changed when c_{2} varies along $\gamma$_{3} ,
we see Figures

43, 45, 47, 49 and 51 that describe the Stokes geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation with

c_{2}= $\lambda$, $\lambda$_{8}, $\lambda$_{9}, $\lambda$_{10} and $\lambda$_{11} , respectively, and their enlarged version around a turning

point x_{1}=a_{1}(\mathrm{c}_{2}) , i.e., Figures 44, 46, 48, 50 and 52. We denote by v_{1} and v_{2} the two

virtual turning points in question in Figure 43 and their analytic continuation along $\gamma$_{3}.

Comparing these figures, particularly Figures 44 and 52, we find that the position of

the two virtual turning points v_{1} and v_{2} is interchanged when c_{2} varies along $\gamma$_{3} ,
that

is, v_{2} moves to the position of v_{1} and v_{1} moves to the position of v_{2} after the analytic
continuation along $\gamma$_{3}.

Then, with the aid of a computer, we observe that the two new Stokes curves

emanating from v_{1} and v_{2} hit an ordinary turning point a(c) on the curve (3.52) and,
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Figure 42. The path $\gamma$_{3} and points $\lambda$_{j}(j=8, \cdots, 11) on it.

Figure 43. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{\overline{ $\lambda$}} equation.

Figure 44. The enlarged version of Figure
43 around the turning point x_{1}=a_{1}(\overline{ $\lambda$}) .
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Figure 45. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{8}} equation.

Figure 47. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{9}} equation.

Figure 46. The enlarged version of Figure
45 around the turning point x_{1}=a_{1}($\lambda$_{8}) .

Figure 48. The enlarged version of Figure
47 around the turning point x_{1}=a_{1}($\lambda$_{9}) .
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Figure 49. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{10}} equation.

Figure 51. The Stokes geometry in ques‐

tion of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{11}} equation.

Figure 50. The enlarged version of Figure
49 around the turning point x_{1}=a_{1}($\lambda$_{10}) .

Figure 52. The enlarged version of Figure
51 around the turning point x_{1}=a_{1}($\lambda$_{11}) .
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in particular, the virtual turning points v_{1} and v_{2} themselves hit a(c) at the zero of

(3.53). Furthermore, the position of v_{1} and v_{2} is interchanged when c_{2} varies around the

zero of (3.53). Note that these geometric observations also have played an important
role in proving Proposition 3.6, that is, proving that the virtual turning point v_{2} and

the new Stokes curve emanating from it are contained in the Stokes surface for the

(1,4) hypergeometric system by using the fact that the other virtual turning point v_{1} is

contained in it.

§3.6. Virtual turning points of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation and the curve (3.51)

The results in the previous subsection indicate that the degeneracy of the Stokes

geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation in the sense that two virtual turning points hit an

ordinary turning point occurs at the zero of (3.53) on the curve (3.52). In this subsection

we continue to study similar degeneracies of the Stokes geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation
which are expected to occur on the curve (3.51).

Similarly to (3.53), we consider zeros of

(3.54)

\displaystyle \int_{c_{2i}}^{c_{2}},t_{i}(c_{2})dc_{2}-2 $\pi$\sqrt{-1} $\alpha$ k and -\displaystyle \int_{c_{2i}}^{c_{2}},t_{i-1}(c_{2})dc_{2}-2 $\pi$\sqrt{-1} $\alpha$ k (i=1,2,3, k\in \mathbb{Z})

on the curve (3.51). Note that zeros of (3.54) with k=0 coincide with c_{2,i}(i=1,2,3) .

Note also that the zeros of (3.54) lie on the curves defined by

(3.55)

\displaystyle \Im(\overline{2 $\pi$\sqrt{-1} $\alpha$}\int_{c_{2i}}^{c_{2}},t_{i}(c_{2})dc_{2})=0 and \displaystyle \Im(\overline{2 $\pi$\sqrt{-1} $\alpha$}\int_{c_{2i}}^{c_{2}},t_{i-1}(c_{2})dc_{2})=0 (i=1,2,3) .

Figure 53 shows curves of (3.55) and the location of zeros of (3.54) with k=0, \pm 1, \pm 2 in

the c_{2} ‐plane. From each c_{2,i} eight curves defined by (3.55) emanate and zeros of (3.54)
are located on six of them (i.e., except for curves connecting c_{2,i} each other). Having this

fact in mind, we label the zeros of (3.54) for k\neq 0 as p_{i}^{j,k}(i=1,2,3, j=1, \cdots; 6; k\geq 1) ,

as is shown in Figure 54.

On the other hand, it is claimed in [2] that the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation has infinitely many

virtual turning points and they are located on a family of certain real one‐dimensional

curves. In the current situation, as is shown in Figure 55, we see that the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}}
equation with c_{2}=$\lambda$_{1} also has infinitely many virtual turning points and they lie on a

family of curves defined by

(3.56) \displaystyle \Im(\overline{2 $\pi$\sqrt{-1} $\alpha$}\int_{a_{i}(c_{2})}^{x_{1}}($\xi$_{i}-$\xi$_{i+1})dx_{1})=0 (i=1,2,3) .

As a matter of fact, the virtual turning points appearing in Figure 55 are obtained by
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Figure 53. Curves of (3.55) and the loca‐

tion of zeros of (3.54) with k=0, \pm 1, \pm 2.

\nearrow^{\nearrow_{c_{1}^{2}}a_{2b^{1}}^{3^{a_{1}^{3}}}b_{3}^{1}\ovalbox{\tt\small REJECT}_{b_{1}^{1}}^{a_{1}^{2}}c_{3}^{2}b_{6}^{1}b_{5}^{1}c_{2}^{2}b^{1}a_{2}^{2}}
Figure 54. The labeling of zeros of (3.54).

Figure 55. Virtual turning points of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}} equation and the curves (3.56).
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Figure 56. The closed path l_{3}^{3,2}

the relation

Figure 57. Two virtual turning points v_{1}^{ $\dagger$}
and v_{2}^{ $\dagger$} at c_{2}= $\lambda \dagger$.

(3.57) \displaystyle \int_{a_{i}(c_{2})}^{x_{1}}($\xi$_{i}-$\xi$_{i+1})dx_{1}=2 $\pi$\sqrt{-1} $\alpha$ k (i=1,2,3, k\in \mathbb{Z})
which can be confirmed through the integral relation that defines each virtual turning

point. In what follows, we label the virtual turning points appearing in Figure 55 as

a_{k}^{j}, b_{k}^{j} and c_{k}^{j}(j=1,2,3, k\geq 1) . (Cf. Figure 55.)
Now we consider the zero p_{3}^{3,1} ,

which is nothing but the zero of (3.53); let l_{3}^{3,1} be

a closed path starting from c_{2}=$\lambda$_{1} and going around p_{3}^{3,1} defined by ($\gamma$_{2}|_{[$\lambda$_{1},\overline{ $\lambda$}]})^{-1}0
$\gamma$_{3}0$\gamma$_{2}|_{[$\lambda$_{1},\overline{ $\lambda$}]} ,

where $\gamma$_{2} is a path in Figure 25, $\gamma$_{3} is a path in Figure 42 and  $\gamma$\circ\overline{ $\gamma$}

designates the composition of two paths  $\gamma$ and \overline{ $\gamma$} . Then the analytic continuation of

a_{1}^{3} (resp. b_{1}^{1} ) along $\gamma$_{2}|_{[$\lambda$_{1},\overline{ $\lambda$}]} is given by v_{2} (resp. v_{1} ). Since it was observed in the

preceding subsection that the position of v_{1} and v_{2} is interchanged after the analytic
continuation along $\gamma$_{3} ,

we conclude that the position of two virtual turning points a_{1}^{3}
and b_{1}^{1} is interchanged when c_{2} varies along l_{3}^{3,1} . Note that a_{1}^{3} and b_{1}^{1} hit an ordinary

turning point at c_{2}=p_{3}^{3,1} a center of the path $\gamma$_{3} . In a similar manner, let us take a zero

p_{3}^{3,2} of (3.54) and consider two virtual turning points a_{2}^{3} and b_{2}^{1} of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}} equation.
With the aid of a computer, we observe that a_{2}^{3} and b_{2}^{1} hit an ordinary turning point at

c_{2}=p_{3}^{3,2} . Furthermore, letting l_{3}^{3,2} be a closed path starting from $\lambda$_{1} and going around

p_{3}^{3,2} shown in Figure 56, we also observe that the analytic continuation of a_{2}^{3} (resp. b_{2}^{1} )
from $\lambda$_{1} to  $\lambda \dagger$ in Figure 56 along  l_{3}^{3,2} is given by v_{2}^{ $\dagger$} (resp. v_{1}^{ $\dagger$} ) in Figure 57 and that

the position of v_{1}^{ $\dagger$} and v_{2}^{ $\dagger$} is interchanged after the analytic continuation around p_{3}^{3,2} (cf.



290 Sampei Hirose

Figure 57). Hence the position of a_{2}^{3} and b_{2}^{1} is interchanged when c_{2} varies along l_{3}^{3,2}
In general, it is expected that for any k\geq 1 the position of two virtual turning points

a_{k}^{3} and b_{k}^{1} is interchanged when c_{2} varies along an appropriate closed path l_{3}^{3,k} starting
from $\lambda$_{1} and going around p_{3}^{3,k} . In what follows we denote this property by

(3.58) l_{3}^{3,k} : (a_{k}^{3}, b_{k}^{1}) (or l_{3}^{3,k}(a_{k}^{3})=b_{k}^{1}, l_{3}^{3,k}(b_{k}^{1})=a_{k}^{3} ).

More generally, we conjecture (and actually have numerically confirmed in part)
that for any i=1

, 2, 3, j=1, \cdots

; 6 and  k\geq 1 we can explicitly find a closed path l_{i}^{j,k}
starting from $\lambda$_{1} and going around p_{i}^{j,k} that satisfies

l_{1}^{1,k}:(b_{k}^{2}, a_{k+1}^{1}) , l_{1}^{2,k}:(b_{k}^{2}, c_{k}^{2}) , l_{1}^{3,k}:(b_{k}^{3}, c_{k}^{1}) ,

l_{1}^{4,k}:(c_{k}^{2}, b_{k}^{1}) , l_{1}^{5,k}:(c_{k}^{3}, b_{k}^{3}) , l_{1}^{6,k}:(c_{k}^{3}, a_{k+1}^{1}) ,

l_{2}^{1,k}:(c_{k}^{2}, b_{k+1}^{1}) , l_{2}^{2,k}:(c_{k}^{2}, a_{k}^{2}) , l_{2}^{3,k}:(c_{k}^{3}, a_{k}^{1}) ,

(3.59)
l_{2}^{4,k}:(a_{k}^{2}, c_{k}^{1}) , l_{2}^{5,k}:(a_{k}^{3}, c_{k}^{3}) , l_{2}^{6,k}:(a_{k}^{3}, b_{k+1}^{1}) ,

l_{3}^{1,k}:(a_{k}^{2}, c_{k+1}^{1}) , l_{3}^{2,k}:(a_{k}^{2}, b_{k}^{2}) , l_{3}^{3,k}:(a_{k}^{3}, b_{k}^{1}) ,

l_{3}^{4,k}:(b_{k}^{2}, a_{k}^{1}) , l_{3}^{5,k}:(b_{k}^{3}, a_{k}^{3}) , l_{3}^{6,k}:(b_{k}^{3}, c_{k+1}^{1}) .

Admitting (3.59), we can verify the following intriguing result:

Ta ke any virtual turning point a_{k}^{j}, b_{k}^{j} or c_{k}^{j}(j=1,2,3, k\geq 1) of

the AKT_{$\lambda$_{1}} equation shown in Figure 55. Then it is obtained by the

(3.60)
analytic continuation of a_{1}^{1} along an appropriate closed path (in the

c_{2} ‐plane) with the base point $\lambda$_{1}.

This can be confirmed as follows: By the property of l_{1}^{1,k-1} and l_{3}^{4,k-1} in (3.59) we

have

(3.61) l_{1}^{1,k-1}\circ l_{3}^{4,k-1}(a_{k-1}^{1})=l_{1}^{1,k-1}(b_{k-1}^{2})=a_{k}^{1},

where l_{1}^{1,k-1}\circ l_{3}^{4,k-1} designates the composition of two closed paths l_{1}^{1,k-1} and l_{3}^{4,k-1}
Hence we obtain

(3.62) (l_{1}^{1,k-1}\circ l_{3}^{4,k-1})\mathrm{o}(l_{1}^{1,k-2}\circ l_{3}^{4,k-2})\circ\cdots \mathrm{o}(l_{1}^{1,1}\circ l_{3}^{4,1})(a_{1}^{1})=a_{k}^{1}.
In a similar way, we get

(3.63) (l_{2}^{1,k-1}\circ l_{1}^{4,k-1})\circ(l_{2}^{1,k-2}\circ l_{1}^{4,k-2})\circ\cdots\circ(l_{2}^{1,1}\circ l_{1}^{4,1})(b_{1}^{1})=b_{k}^{1},
(3.64) (l_{3}^{1,k-1}\circ l_{2}^{4,k-1})\mathrm{o}(l_{3}^{1,k-2}\circ l_{2}^{4,k-2})\circ\cdots \mathrm{o}(l_{3}^{1,1}\circ l_{2}^{4,1})(c_{1}^{1})=c_{k}^{1}.
Thus a_{k}^{1}, b_{k}^{1} and c_{k}^{1} can be obtained by the analytic continuation of a_{1}^{1}, b_{1}^{1} and c_{1}^{1} ,

re‐

spectively.
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On the other hand, we have

(3.65) l_{3}^{4,k}(a_{k}^{1})=b_{k}^{2}, l_{2}^{3,k}(a_{k}^{1})=c_{k}^{3},
(3.66) l_{1}^{4,k}(b_{k}^{1})=c_{k}^{2}, l_{3}^{3,k}(b_{k}^{1})=a_{k}^{3},
(3.67) l_{2}^{4,k}(c_{k}^{1})=a_{k}^{2}, l_{1}^{3,k}(c_{k}^{1})=b_{k}^{3}.

Combining (3.62)-(3.64) ,
we find that b_{k}^{2} and c_{k}^{3} (resp. c_{k}^{2} and a_{k}^{3}, a_{k}^{2} and b_{k}^{3} ) can be

obtained by the analytic continuation of a_{1}^{1} (resp. b_{1}^{1}, c_{1}^{1} ).
Furthermore, b_{1}^{1} and c_{1}^{1} can be obtained also by the analytic continuation of a_{1}^{1} . In

fact, we have

(3.68) l_{3}^{3,1}\circ l_{2}^{5,1}\circ l_{2}^{3,1}(a_{1}^{1})=l_{3}^{3,1}\circ l_{2}^{5,1}(c_{1}^{3})=l_{3}^{3,1}(a_{1}^{3})=b_{1}^{1},
(3.69) l_{2}^{4,1}\circ l_{3}^{2,1}\circ l_{3}^{4,1}(a_{1}^{1})=l_{2}^{4,1}\circ l_{3}^{2,1}(b_{1}^{2})=l_{2}^{4,1}(a_{1}^{2})=c_{1}^{1}.

Therefore the virtual turning points a_{k}^{j}, b_{k}^{j} and c_{k}^{j} of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}} equation can be obtained

by the analytic continuation of a_{1}^{1}.
Thus we can expect that all the virtual turning points a_{k}^{j}, b_{k}^{j} and c_{k}^{j}(j=1,2,3,  k\geq

1) of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}} equation shown in Figure 55 should be obtained from one virtual turn‐

ing point, say a_{1}^{1} , through the analytic continuation in the c_{2} ‐variable. This intriguing

property is closely related to the degeneracy of the Stokes geometry for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equa‐

tion observed at the zeros of (3.54) on the curve (3.51). Recall that this degeneracy of

the Stokes geometry also plays an important role in proving that virtual turning points
of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation are contained in the Stokes surface for the (1,4) hypergeometric

system (cf. Proposition 3.6). Hence the discussion in this subsection suggests that the

virtual turning points a_{k}^{j}, b_{k}^{j} and c_{k}^{j}(j=1,2,3, k\geq 1) of the \mathrm{A}\mathrm{K}\mathrm{T}_{$\lambda$_{1}} equation and the

new Stokes curves emanating there are all contained in the Stokes surface for the (1,4)
hypergeometric system.

§4. Conclusion

In this paper, we study the two concrete holonomic systems, that is, the Pearcey

system and the (1,4) hypergeometric system, from the viewpoint of the exact WKB

analysis and, in particular, investigate their Stokes geometry.
We first study the Pearcey system with emphasis on its Stokes geometry and show

that not only the ordinary Stokes curves for the \mathrm{B}\mathrm{N}\mathrm{R}_{c_{2}} equation but also its new Stokes

curve are contained in the Stokes surface for the Pearcey system. Proposition 2.7 plays
an important role in our reasoning. (Proposition 3.5 also plays a similar and vital role

in the study of the (1,4) hypergeometric system.)
In the study of the (1,4) hypergeometric system, we first show, in parallel with the

results for the Pearcey system, that the (three) new Stokes curves relevant to Stokes
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phenomena for WKB solutions of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation, i.e., the restriction of the (1,4)
hypergeometric system to x_{2}=c_{2} ,

are contained in the Stokes surface for the (1,4)
hypergeometric system. However, in the case of the (1,4) hypergeometric system, there

exist infinitely many new Stokes curves and virtual turning points for the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equa‐

tion and, as its consequence, a new type of degeneracy of the Stokes geometry for the

\mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation occurs. In §3.4, §3.5 and §3.6, by making use of such a degeneracy,
we show that a new Stokes curve irrelevant to Stokes phenomena is also contained in

the Stokes surface for the (1,4) hypergeometric system and, furthermore, investigate
these degeneracy in detail. The results we have obtained with the aid of a computer

strongly suggest that infinitely many virtual turning points of the \mathrm{A}\mathrm{K}\mathrm{T}_{c_{2}} equation can

be obtained from just one virtual turning point through the analytic continuation (with
respect to the x_{2} ‐variable) and that they are all contained in the Stokes surface for the

(1,4) hypergeometric system.
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