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Parametric Stokes phenomena and Voros coefficients

of the second Painlevé equation

By

Kohei Iwaki *

Abstract

In the author�s paper [4] �parametric Stokes phenomena� occurring to 1‐parameter (for‐
mal) solutions of the second Painlevé equation (P_{\mathrm{I}\mathrm{I}}) in a certain region were analyzed, and

explicit connection formulas describing the Stokes phenomena were derived. In this article

we investigate parametric Stokes phenomena in other regions, and derive connection formu‐

las by computing P‐Voros coefficients�. We show that the connection formulas describing
parametric Stokes phenomena are different depending on the regions where the independent
variable lies. We also confirm the validity of these connection formulas from the view point of

the isomonodromic deformation. Furthermore, we make a brief report for a result about the

P‐Voros coefficients of the third Painlevé equation in Appendix A.

§1. Introduction

The foundations of the theory of WKB analysis of Painlevé equations with a large

parameter have been established by Aoki, Kawai and Takei. They introduced the no‐

tions of P‐turning points� and P‐Stokes curves� for Painlevé equations and discussed

a WKB‐theoretic transformation to the first Painlevé equation near a simple P‐turning

point ([1,7,8,9]). (In this paper, in order to distinguish turning points (resp., Stokes

curves) of Painlevé equations from those of linear differential equations, we use the

terminology P‐turning points� (resp.,
( (P‐Stokes curves�) for Painlevé equations, fol‐

lowing [10].) Moreover, Takei also discussed a connection problem on P‐Stokes curves

of the first Painlevé equation ([15]) through the isomonodromic deformation method.

Painlevé equations have two or more P‐turning points in general exept for the

first Painlevé equation. For such equations, we can observe �

degeneration of P ‐Stokes
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geometry� (i.e., two P‐turning points are connected by a P‐Stokes curve) when param‐

eters contained in these equations take some special values. As we see in Section 2, the

P‐Stokes geometry of the second Painlevé equation with a large parameter  $\eta$>0

(P_{\mathrm{I}\mathrm{I}}):\displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=$\eta$^{2}(2$\lambda$^{3}+t $\lambda$+c)
degenerates when the complex parameter c takes pure imaginary numbers. By the way,

it is known that, in the case of the Weber equation, Stokes phenomena may occur for

WKB solutions when such a kind of degeneration is observed in the Stokes geometry,

i.e., there may be a gap in Borel sums of WKB solutions taken before and after the

degeneration. (Cf. [14, 16 We call such a kind of Stokes phenomena relevant to the

degeneration of the Stokes geometry parametric Stokes phenomena since they happen
when we discuss connection problems of the WKB solutions in the parameter space

of the equation. Moreover, an explicit connection formula which describes parametric
Stokes phenomena for the Weber equation is derived in [14, 16]. Note that a similar

result for the Whittaker equation is obtained in [11].
Now, it is natural to expect that parametric Stokes phenomena may occur also in

the case of the second Painlevé equaltion when the degeneration of P‐Stokes geometry
is observed. Parametric Stokes phenomena for 1‐parameter solutions of (P_{\mathrm{I}\mathrm{I}}) when t is

on a certain region have already been analyzed in [4]. In this article, we analyze the

parametric Stokes phenomena in other regions and derive explicit connection formulas

that describe them. In addition we make a brief report on partial results about para‐

metric Stokes phenomena of the third Painlevé equation of the type D_{6} (in the sense of

[12]).
The paper is organized as follows. In Section 2 we recall the definitions of P‐turning

points and P‐Stokes curves. In Section 3, computing all P ‐Voros coefficinets of (P_{\mathrm{I}\mathrm{I}}) ,
we

derive connection formulas describing parametric Stokes phenomena. We also confirm

the validity of these connection formulas from the view point of the isomonodromic

deformation of a second order linear differential equation (SL) in Section 4. We note

that a part of these results are presented in author�s previous article [4]. Parametric

Stokes phenomena and the P‐Voros coefficients for the third Painlevé equation are

discussed in Appendix.

Acknowledgment

The author is very grateful to Professor Yoshitsugu Takei, Professor Takahiro

Kawai, Professor Takashi Aoki, Professor Tatsuya Koike, Professor Yousuke Ohyama,
Doctor Shingo Kamimoto and Doctor Shinji Sasaki for valuable discussions and advices.

He also would like to thank the referee for helpful comments which improve the paper.



Parametric Stokes phenomena and Voros coefficients oF the second PainlevÉ equation 223

§2. 1‐parameter solutions and P‐Stokes geometry of (P_{\mathrm{I}\mathrm{I}})

In this article we assume that the parameter c contained in (P_{\mathrm{I}\mathrm{I}}) is non‐zero. It is

well‐known that (P_{\mathrm{I}\mathrm{I}}) is equivalent to the following Hamiltonian system (H_{\mathrm{I}\mathrm{I}}) :

(H_{\mathrm{I}\mathrm{I}}):\left\{\begin{array}{l}
\frac{d $\lambda$}{dt}= $\eta$ v,\\
\frac{dv}{dt}= $\eta$(2$\lambda$^{3}+t $\lambda$+c) .
\end{array}\right.
Our main interest consists in the analysis of 1‐parameter solutions, that is, formal

solutions of (H_{\mathrm{I}\mathrm{I}}) of the form:

\left\{\begin{array}{l}
 $\lambda$(t, c,  $\eta$; $\alpha$)=$\lambda$^{(0)}(t, c,  $\eta$)+ $\alpha \eta$^{-1/2}$\lambda$^{(1)}(t, c,  $\eta$)e^{ $\eta \phi$_{\mathrm{I}\mathrm{I}}}+( $\alpha \eta$^{-1/2})^{2}$\lambda$^{(2)}(t, c,  $\eta$)e^{2 $\eta \phi$_{\mathrm{I}\mathrm{I}}}+\cdots,\\
v(t, c,  $\eta$; $\alpha$)=v^{(0)}(t, c,  $\eta$)+ $\alpha \eta$^{-1/2}v^{(1)}(t, c,  $\eta$)e^{ $\eta \phi$_{\mathrm{I}\mathrm{I}}}+( $\alpha \eta$^{-1/2})^{2}v^{(2)}(t, c,  $\eta$)e^{2 $\eta \phi$_{\mathrm{I}\mathrm{I}}}+\cdots,
\end{array}\right.
where  $\alpha$ is a free parameter,  $\lambda$^{(k)} and v^{(k)} are formal power series in $\eta$^{-1} :

$\lambda$^{(k)}(t, c,  $\eta$)=$\lambda$_{0}^{(k)}(t, c)+$\eta$^{-1}$\lambda$_{1}^{(k)}(t, c)+$\eta$^{-2}$\lambda$_{2}^{(k)}(t, c)+\cdots,

v^{(k)}(t, c,  $\eta$)=v_{0}^{(k)}(t, c)+$\eta$^{-1}v_{1}^{(k)}(t, c)+$\eta$^{-2}v_{2}^{(k)}(t, c)+\cdots,
and the phase function $\phi$_{\mathrm{I}\mathrm{I}}=$\phi$_{\mathrm{I}\mathrm{I}}(t, c) is given by

$\phi$_{\mathrm{I}\mathrm{I}}(t, c)=\displaystyle \int^{t}\sqrt{6$\lambda$_{0}^{(0)}(t,c)^{2}+t}dt.
Remark 1. In principle, we consider 1‐parameter solutions for  $\alpha$\in \mathbb{C} . However,

as we will see in Theorem 3.5, we face to the situation where we have to extend the class

of 1‐parameter solutions when we discuss connection problems. Indeed, 1‐parameter
solutions for \tilde{ $\alpha$}=(1+e^{2 $\pi$ ic $\eta$}) $\alpha$( $\alpha$\in \mathbb{C}) appear there as a consequence of parametric
Stokes phenomena, where we regard \tilde{ $\alpha$} as a holomorphic function of a complex variable

 $\eta$ on an appropriate sectorial domain at  $\eta$=\infty . However, such a kind of the extension

of the class does not violate the validity of the following discussion.

See [4] for details of construction of 1‐parameter solutions. Note that ($\lambda$^{(0)}(t, c,  $\eta$) ,

v^{(0)}(t, c,  $\eta$)) itself is a formal power series solution of (H_{\mathrm{I}\mathrm{I}}) ,
which is called a 0‐parameter

solution. The leading term $\lambda$_{0}^{(0)}(t, c) of a 0‐parameter solution is determined by the

following algebraic equation:

(2.1) 2$\lambda$_{0}^{(0)^{3}}+t$\lambda$_{0}^{(0)}+c=0.
In what follows $\lambda$_{0}^{(0)} is abbreviated to $\lambda$_{0} for simplicity. In this article 1‐parameter
solutions are considered in a domain where the real part of $\phi$_{\mathrm{I}\mathrm{I}} is negative, i.e., e^{ $\eta \phi$_{\mathrm{I}\mathrm{I}}}
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is exponentially decaying when  $\eta$\rightarrow+\infty . Here we note that we can find a similar

kind of formal solutions, which is called transseries, in the study of nonlinear ordinary
differential equations at an irregular singular point (e.g., [2]).

We know that if the first part  $\alpha \eta$^{-1/2}$\lambda$^{(1)}(t, c,  $\eta$)e^{ $\eta \phi$_{\mathrm{I}\mathrm{I}}} of  $\lambda$(t, c,  $\eta$; $\alpha$) is denoted by

\tilde{ $\lambda$}^{(1)}(t, c,  $\eta$; $\alpha$) ,
then we know that it satisfies the following second order linear differential

equation

(2.2) \displaystyle \frac{d^{2}\tilde{ $\lambda$}^{(1)}}{dt^{2}}=$\eta$^{2}(6$\lambda$^{(0)}(t, c,  $\eta$)^{2}+t)\tilde{ $\lambda$}^{(1)},
which is the Fréchet derivative of (P_{\mathrm{I}\mathrm{I}}) at  $\lambda$=$\lambda$^{(0)} . Thus \tilde{ $\lambda$}^{(1)} can be taken as a WKB

solution (see [9, §2.1]) of (2.2) containing a free parameter  $\alpha$ as an integration constant:

(2.3) \displaystyle \tilde{ $\lambda$}^{(1)}= $\alpha$\frac{1}{\sqrt{R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t,c, $\eta$)}}\exp(\int^{t}R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t, c,  $\eta$)dt)
= $\alpha \eta$^{-1/2}($\lambda$_{0}^{(1)}(t, c)+$\eta$^{-1}$\lambda$_{1}^{(1)}(t, c)+$\eta$^{-2}$\lambda$_{2}^{(1)}(t, c)+\cdots)e^{ $\eta \phi$_{\mathrm{I}\mathrm{I}}}.

Here  R_{\mathrm{o}\mathrm{d}\mathrm{d}}= $\eta$ R_{-1}+$\eta$^{-1}R_{1}+\cdots is the odd part of a formal power series solution

 R= $\eta$ R_{-1}+R_{0}+$\eta$^{-1}R_{1}+\cdots of the Riccati equation associated with (2.2):

(2.4)  R^{2}+\displaystyle \frac{dR}{dt}=$\eta$^{2}(6$\lambda$^{(0)}(t, c,  $\eta$)^{2}+t) .

An important fact is that, once we fix a normalization (i.e., the lower endpoint and

the path) of the integral of R_{\mathrm{o}\mathrm{d}\mathrm{d}} in (2.3), the coefficients $\lambda$_{p}^{(k)} of the formal series $\lambda$^{(k)}

(k\geq 2, \ell\geq 0) are determined uniquely by some recursive relations. (The normalization

of the integral in (2.3) will be specified in Section 3.)
Next, we recall the definition of P‐turning points and P‐Stokes curves.

Definition 2.1 ([9, Definition 4.5]). (i) A point  t= $\tau$ is a  P ‐turning point of a

1‐parameter solution  $\lambda$(t, c,  $\eta$; $\alpha$) if 6 ($\lambda$_{0}( $\tau$))^{2}+ $\tau$=0.
(ii) For a P‐turning point  t= $\tau$ of  $\lambda$(t, c,  $\eta$; $\alpha$) ,

a real one‐dimensional curve defined by

{\rm Im}\displaystyle \int_{ $\tau$}^{t}\sqrt{6($\lambda$_{0}(t))^{2}+t}dt=0
is called a P ‐Stokes curve of  $\lambda$(t, c,  $\eta$; $\alpha$) .

Although Definition 2.1 is stated with a fixed branch $\lambda$_{0} of roots of (2.1), we may

regard these notions are given on the Riemann surface of $\lambda$_{0} . See Remark 2 for details.

Since we assume that c\neq 0 ,
there are three P‐turning points at t=$\tau$_{j}=

-6(c/4)^{2/3}$\omega$^{j}( $\omega$=e^{2 $\pi$ i/3}, j=1,2,3) . Figure 1\sim 3 describe P‐Stokes curves of

(P_{\mathrm{I}\mathrm{I}}) near \arg c= $\pi$/2 . These figures are drawn by Mathematica. We can observe that

degeneration of P‐Stokes geometry happens when \arg c= $\pi$/2 . This degeneration can

be confirmed by the following Proposition which was shown in [4].
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Figure 1. P‐Stokes curves Figure 2. P‐Stokes curves Figure 3. P‐Stokes curves

when c=i+0.25 . when c=i . when c=i-0.25.

Proposition 2.2 ([4]). For a suitable branch of \sqrt{6$\lambda$_{0}^{2}+t} , we have

(2.5) \displaystyle \int_{$\tau$_{1}}^{$\tau$_{2}}\sqrt{6$\lambda$_{0}(t,c)^{2}+t}dt=2 $\pi$ ic.
Note that, since (P_{\mathrm{I}\mathrm{I}}) is invariant under the rotation of variables

(2.6) t\mapsto e^{2 $\pi$ i/3}t,  $\lambda$\mapsto e^{4 $\pi$ i/3} $\lambda$,

we also have

\displaystyle \int_{$\tau$_{2}}^{$\tau$_{3}}\sqrt{6$\lambda$_{0}(t,c)^{2}+t}dt=\int_{$\tau$_{3}}^{$\tau$_{1}}\sqrt{6$\lambda$_{0}(t,c)^{2}+t}dt=2 $\pi$ ic.
In Section 3 we derive connection formulas for 1‐parameter solutions of (P_{\mathrm{I}\mathrm{I}}) which

describe the parametric Stokes phenomenon relevant to the degeneration observed when

\arg c= $\pi$/2.

Remark 2. Since P‐turning points and P‐Stokes curves are defined in terms of

the algebraic function $\lambda$_{0} ,
it is natural to lift them onto the Riemann surface of $\lambda$_{0}.

Figure 4 describes the lift of P‐Stokes curves onto the Riemann surface of $\lambda$_{0} when \arg

 c= $\pi$/2 . Wiggly lines, solid lines and dotted lines in Figure 4 represent cuts to define the

Riemann surface of $\lambda$_{0}, P‐Stokes curves on the sheet under consideration and P‐Stokes

curves on the other sheets, respectively. In Section 3\sim 4 we only consider the situation

where \arg c is sufficiently close to  $\pi$/2 . The parametric Stokes phenomenon occurring
when t moves in sufficiently small neighborhood of t_{0} in Figure 4 was analyzed in [4].
Parametric Stokes phenomena in other regions (for example, in a neighborhood of t_{1} in

Figure 4) are discussed in subsequent sections. Note that, since (P_{\mathrm{I}\mathrm{I}}) has a rotational

symmetry (2.6), it is sufficient to consider the problem on one of these three sheets in

Figure 4.
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curves onto the Riemann sur‐

face of $\lambda$_{0}.

§3. Voros coefficients of (P_{\mathrm{I}\mathrm{I}}) and connection formulas

In this section, we first recall the definition of Voros coefficients of (P_{\mathrm{I}\mathrm{I}}) (or P‐

Voros coefficients for short), which was introduced in [4]. This is an analogue of Voros

coefficients for linear ordinary differential equations (cf. [3, 16]). These series play an

important role in the analysis of parametric Stokes phenomena.
P‐Voros coefficients are formal power series of $\eta$^{-1} defined by the following integral:

(3.1) W(c,  $\eta$)=\displaystyle \int_{ $\tau$}^{\infty}(R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t, c,  $\eta$)- $\eta$ R_{-1}(t, c))dt
=W_{1}(c)$\eta$^{-1}+W_{3}(c)$\eta$^{-3}+\displaystyle \cdots=\sum_{n=1}^{\infty}W_{2n-1}(c)$\eta$^{1-2n},

where  $\tau$ is a  P‐turning point. Since each coefficient R_{2k-1} of R_{\mathrm{o}\mathrm{d}\mathrm{d}} has a Puiseux

expansion

(t- $\tau$)^{N/4}\displaystyle \sum_{n\geq 0}r_{n}(t- $\tau$)^{n/2} (r_{n}\in \mathbb{C})
at each P‐turning point  $\tau$ with an odd integer  N

, integrals of R_{\mathrm{o}\mathrm{d}\mathrm{d}} from a P‐turning

point should be considered as a contour integral. P‐Voros coefficients appear as the

difference of the following two normalizations of 1‐parameter solutions:

(3.2) $\lambda$_{ $\tau$}^{(1)}(t, c,  $\eta$)=e^{W}$\lambda$_{\infty}^{(1)}(t, c,  $\eta$) ,

(3.3) $\lambda$_{ $\tau$}(t, c,  $\eta$; $\alpha$)=$\lambda$_{\infty}(t, c,  $\eta$;e^{W} $\alpha$) .

Here $\lambda$_{ $\tau$}(t, c,  $\eta$; $\alpha$) (resp., $\lambda$_{\infty}(t, c,  $\eta$; $\alpha$) ) is the 1‐parameter solution defined by using the

following WKB solution of (2.2)

(3.4) \displaystyle \tilde{ $\lambda$}_{ $\tau$}^{(1)}(t, c,  $\eta$; $\alpha$)= $\alpha$\frac{1}{\sqrt{R_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\int_{ $\tau$}^{t}R_{\mathrm{o}\mathrm{d}\mathrm{d}}dt)
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(3.5) (resp., \displaystyle \tilde{ $\lambda$}_{\infty}^{(1)}(t, c,  $\eta$; $\alpha$)= $\alpha$\frac{1}{\sqrt{R_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp( $\eta$\int_{ $\tau$}^{t}R_{-1}dt+\int_{\infty}^{t}(R_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ R_{-1})dt)) ,

for the normalization of the first part \tilde{ $\lambda$}^{(1)} . (As we noted in Section 2, 1‐parameter
solutions are uniquely determined once the normalization of \tilde{ $\lambda$}^{(1)} is fixed.) We call

$\lambda$_{ $\tau$}(t, c,  $\eta$; $\alpha$) (resp., $\lambda$_{\infty}(t, c,  $\eta$; $\alpha$) ) �the 1‐parameter solution normalized at a P‐turning

point  t= $\tau$
�

(resp., �the 1‐parameter solution normalized at  t=\infty�). And we use the

following notations:

$\lambda$_{ $\tau$}(t, c,  $\eta$; $\alpha$)=$\lambda$^{(0)}(t, c,  $\eta$)+ $\alpha \eta$^{-1/2}$\lambda$_{ $\tau$}^{(1)}(t, c,  $\eta$)e^{ $\eta \phi$_{\mathrm{I}\mathrm{I}}}+( $\alpha \eta$^{-1/2})^{2}$\lambda$_{ $\tau$}^{(2)}(t, c,  $\eta$)e^{2 $\eta \phi$_{\mathrm{I}\mathrm{I}}}+\cdots,

$\lambda$_{\infty}(t, c,  $\eta$; $\alpha$)=$\lambda$^{(0)}(t, c,  $\eta$)+ $\alpha \eta$^{-1/2}$\lambda$_{\infty}^{(1)}(t, c,  $\eta$)e^{ $\eta \phi$_{\mathrm{I}\mathrm{I}}}+( $\alpha \eta$^{-1/2})^{2}$\lambda$_{\infty}^{(2)}(t, c,  $\eta$)e^{2 $\eta \phi$_{\mathrm{I}\mathrm{I}}}+\cdots .

We also note that the function $\phi$_{\mathrm{I}\mathrm{I}} for above normalizations is given by

(3.6) $\phi$_{\mathrm{I}\mathrm{I}}(t, c)=\displaystyle \int_{ $\tau$}^{t}\sqrt{6$\lambda$_{0}(t,c)^{2}+t}dt.
Note that we should specify the integration paths in (3.4) and (3.5) in order to

fix the normalization of \tilde{ $\lambda$}^{(1)} completely. Therefore P‐Voros coefficients depends on the

choice of the integration path as well. The goal of this section is to compute the P‐Voros

coefficients for all choices of the integration paths.
In order to state the main theorem, we need to fix the branch of the square root

R_{-1}=\sqrt{6$\lambda$_{0}^{2}+t} . Note that $\lambda$_{0} has the following three possible asymptotic behaviors

as t tends to \infty since it satisfies the algebraic equation (2.1) of degree 3:

(3.7) $\lambda$_{0}=\displaystyle \pm\frac{i}{\sqrt{2}}t^{1/2}+O(t^{-1}) ,

(3.8) $\lambda$_{0}=-ct^{-1}+O(t^{-2}) .

Figure 5 indicates the asymptotic behaviors of $\lambda$_{0} when t tends to \infty along  P‐Stokes

curves. In Figure 5 we use the symbol \infty_{A} (resp., \infty_{B} ) for an infinity such that $\lambda$_{0}
behaves like (3.7) (resp., (3.8)) when t tends to the infinity. In the same figures thick

wiggly lines designate cuts for the determination of the branch of \sqrt{6$\lambda$_{0}^{2}+t} . Here we fix

the branch of \sqrt{6$\lambda$_{0}^{2}+t} such that �signs of P‐Stokes curves� are assigned as in Figure

5; where the sign of a P‐Stokes curve is defined as the sign of

{\rm Re}\displaystyle \int_{ $\tau$}^{t}\sqrt{6$\lambda$_{0}^{2}+t}dt,
where t is a point on the P‐Stokes curve in question and  $\tau$ is a  P‐turning point which

the P‐Stokes curve emanates from, and symbols \oplus \mathrm{a}\mathrm{n}\mathrm{d}\ominus \mathrm{i}\mathrm{n} Figure 5 represent the signs
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t tends to infinity.

of P‐Stokes curves. (The sign does not depend on the point on the P‐Stokes curve in

question.) We use the branch fixed as above.

Let W_{$\tau$_{j},\infty_{*}}(c,  $\eta$)(j=1,2,3, *=A, B) be the P‐Voros coefficient defined by

(3.9) W_{$\tau$_{j},\infty_{*}}(c,  $\eta$)=\displaystyle \int_{$\tau$_{j}}^{\infty_{*}}(R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t, c,  $\eta$)- $\eta$ R_{-1}(t, c))dt,
where the integration path should be taken along a P‐Stokes curve emanating from the

P‐turning point t=$\tau$_{j} . Then our main theorem is formulated as follows:

Theorem 3.1. P ‐Voros coefficients W_{$\tau$_{j},\infty_{*}}(c,  $\eta$) defined by (3.9) are represented

explicitly as follws:

(3.10) W_{$\tau$_{jA}},\displaystyle \infty(c,  $\eta$)=-\sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}(c $\eta$)^{1-2n},
(3.11) W_{$\tau$_{j},\infty_{B}}(c,  $\eta$)=0,

for all j=1 , 2, 3. Here B_{2n} is the 2n‐th Bernoulli number defined by

(3.12) \displaystyle \frac{z}{e^{z}-1}=1-\frac{1}{2}z+\sum_{n=1}^{\infty}\frac{B_{2n}}{(2n)!}z^{2n}
Proof. It is convenient to prepare the following additional integrals Z_{j} in order to

prove the theorem:

(3.13) Z_{j}(c,  $\eta$)=\displaystyle \frac{1}{2}\int_{$\gamma$_{j}}(R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t, c,  $\eta$)- $\eta$ R_{-1}(t, c))dt (j=1,2,3) ,

where the integration paths $\gamma$_{j}(\mathrm{j}=1,2,3) are shown in Figure 6. The dotted part of

$\gamma$_{2} represents a path on another sheet of the Riemann surface of \sqrt{6$\lambda$_{0}^{2}+t} . Actually,
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Figure 6. The path $\gamma$_{j}(j=
1

, 2, 3).

Figure 7. The path \tilde{ $\Gamma$}_{A}.

since (P_{\mathrm{I}\mathrm{I}}) has the rotational symmetry (2.6), we can check that Z_{j}(c,  $\eta$)=Z_{k}(c,  $\eta$)
(j, k\in\{1,2,3\}) .

First let us consider the P‐Voros coefficient

(3.14) W_{$\tau$_{1},\infty}A(c,  $\eta$)=\displaystyle \int_{$\Gamma$_{A}}(R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t, c,  $\eta$)- $\eta$ R_{-1}(t, c))dt
whose integration path is taken along the P‐Stokes curve $\Gamma$_{A} in Figure 6 and we denote

it by W_{$\Gamma$_{A}}(c,  $\eta$) . As we noted in the begining of this section, the integral (3.14) should

be considered as the following contour integral whose integration path \tilde{ $\Gamma$}_{A} is shown in

Figure 7:

W_{$\Gamma$_{A}}(c,  $\eta$)=\displaystyle \frac{1}{2}\int_{\tilde{ $\Gamma$}_{A}}(R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t, c,  $\eta$)- $\eta$ R_{-1}(t, c))dt.
Deforming the path of integration, we can easily see that

(3.15) W_{$\Gamma$_{A}}(c,  $\eta$)=-Z_{1}(c,  $\eta$)-Z_{2}(c,  $\eta$)=-2Z_{1}(c,  $\eta$) .

On the other hand, the P‐Voros coefficient W_{$\Gamma$_{A}}(c,  $\eta$) has already computed in [4].
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Theorem 3.2 ([4]). The P ‐Voros coefficient W_{$\Gamma$_{A}}(c,  $\eta$) defined by (3.14) has the

following explicit representation:

(3.16) W_{$\Gamma$_{A}}(c,  $\eta$)=-\displaystyle \sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}(c $\eta$)^{1-2n},
where B_{2n} is the 2n‐th Bernoulli number defined by (3.12).

This theorem was proved by solving a difference equation satisfied by W_{$\Gamma$_{A}}(c,  $\eta$) .

The difference equation was derived by using the Bäcklund transformation of (P_{\mathrm{I}\mathrm{I}}) which

induces the shift of parameter c\mapsto c-$\eta$^{-1} (cf. [5]). The equalities (3.15) and (3.16)
imply that

(3.17) Z_{j}(c,  $\eta$)=\displaystyle \frac{1}{2}\sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}(c $\eta$)^{1-2n} (j=1,2,3) .

Since each P‐Voros coefficient can be expressed by a sum of \pm Z_{j} ,
we can compute all

P‐Voros coefficients. Therefore we can check (3.10) and (3.11) by direct computations.
For example, let us consider the P‐Voros coefficient

(3.18) W_{$\Gamma$_{B}}(c,  $\eta$)=\displaystyle \int_{$\Gamma$_{B}}(R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t, c,  $\eta$)- $\eta$ R_{-1}(t, c))dt
whose integration path is taken along the P‐Stokes curve $\Gamma$_{B} in Figure 6. We can easily
see that

(3.19) W_{$\Gamma$_{B}}(c,  $\eta$)=-Z_{1}(c,  $\eta$)+Z_{2}(c,  $\eta$)=0.

\square 

Let S_{\arg c= $\theta$}[W(c,  $\eta$)] be the Borel sum of a P‐Voros coefficient W(c,  $\eta$) of (3.1) when

\arg c= $\theta$ ; i.e.,

(3.20)  S_{\arg c= $\theta$}[W(c,  $\eta$)]=\displaystyle \int_{0}^{\infty}e^{-y $\eta$}W_{B}(c, y)|_{\arg c= $\theta$}dy,
where W_{B}(c, y) is the Borel transform of W(c,  $\eta$) defined by

(3.21) W_{B}(c, y)=\displaystyle \sum_{n=1}^{\infty}\frac{W_{2n-1}(c)}{(2n-2)!}y^{2n-2},
and the path of the Laplace integral (3.20) is taken along the positive real axis. Using the

expression (3.10), we can compute the Borel sums of the P‐Voros coefficients explicitly
when \arg c= $\pi$/2\pm $\epsilon$ for sufficiently small  $\epsilon$>0.
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Corollary 3.3 (\mathrm{c}\mathrm{f}.[16, \S 2],[4]) . Let W_{$\Gamma$_{A}}(c,  $\eta$) be the Voros coefficient defined by

(3.14) (it is given by (3.16) explicitly). Then we have the following equalities.

(3.22) S_{\arg c= $\pi$/2- $\epsilon$}[W_{$\Gamma$_{A}}(c,  $\eta$)]=-\displaystyle \log\frac{ $\Gamma$(c $\eta$+1/2)}{\sqrt{2 $\pi$}}+c $\eta$(\log(c $\eta$)-1) ,

(3.23) S_{\arg c= $\pi$/2+ $\epsilon$}[W_{$\Gamma$_{A}}(c,  $\eta$)]=\displaystyle \log\frac{ $\Gamma$(-c $\eta$+1/2)}{\sqrt{2 $\pi$}}+c $\eta$(\log(c $\eta$)-1)-i $\pi$ c $\eta$.
TherefO re we have

(3.24) S_{\arg c= $\pi$/2- $\epsilon$}[e^{W_{$\Gamma$_{A}}(c, $\eta$)}]=(1+e^{2 $\pi$ ic $\eta$})S_{\arg c= $\pi$/2+ $\epsilon$}[e^{W_{$\Gamma$_{A}}(c, $\eta$)}].
Now, using the equality (3.24), we can derive a connection formula which describes

the parametric Stokes phenomenon for 1‐parameter solutions at t=t_{0} in Figure 4. (Note
that this formula has already been obtained in [4].) Let $\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$) and $\lambda$_{\infty}A(t, c,  $\eta$; $\alpha$)
be the 1‐parameter solutions whose first parts \tilde{ $\lambda$}_{$\tau$_{1}}^{(1)} and \tilde{ $\lambda$}_{\infty}^{(1)}A are normalized along the

paths in Figure 8 and 9 (i.e., integrals in (3.4) and (3.5) are taken along the paths
in Figure 8 and 9.) respectively. For the generalized Borel summability of these 1‐

parameter solutions, the following theorem is proved recently by Kamimoto.

Theorem 3.4 ([6]). Assume that the path of integration of R_{\mathrm{o}\mathrm{d}\mathrm{d}} in (2.3) never

touches with any P ‐turning points and P ‐Stokes curves, and the real part of $\phi$_{\mathrm{I}\mathrm{I}} is

negative. Then, the corresponding 1‐parameter solution  $\lambda$(t, c,  $\eta$; $\alpha$) is Borel summable

in general sense as [2]; that is, the k‐th formal series $\lambda$^{(k)}(t, c,  $\eta$) in  $\lambda$(t, c,  $\eta$; $\alpha$) is Borel

summable for each k\geq 0 ,
and the generalized Borel sum of  $\lambda$(t, c,  $\eta$; $\alpha$) defined by the

infinite sum

S[ $\lambda$(t, c,  $\eta$; $\alpha$)]=\displaystyle \sum_{k\geq 0}( $\alpha \eta$^{-1/2})^{k}S[$\lambda$^{(k)}(t, c,  $\eta$)]e^{k $\eta \phi$_{\mathrm{I}\mathrm{I}}}
converges for sufficiently large  $\eta$>0 and represents an analytic solution of (P_{\mathrm{I}\mathrm{I}}) . Here

S[$\lambda$^{(k)}(t, c,  $\eta$)] is the Borel sum of the formal power series $\lambda$^{(k)}(t, c,  $\eta$) .

We use the same notation S_{\arg c= $\theta$} for generalized Borel sums of transseries when

\arg c= $\theta$.
Due to Theroem 3.4, the 1‐parameter solution $\lambda$_{\infty}A is Borel summable even in the

case that the degeneration is happening since it is normalized along the path which

is shown in Figure 9. Hence parametric Stokes phenomena do not occur for the 1‐

parameter solution $\lambda$_{\infty}A ; that is,

(3.25) S_{\arg c= $\pi$/2- $\epsilon$}[$\lambda$_{\infty}A(t, c,  $\eta$; $\alpha$)]=S_{\arg c= $\pi$/2+ $\epsilon$}[$\lambda$_{\infty}A(t, c,  $\eta$;\tilde{ $\alpha$})]
holds for  $\alpha$=\tilde{ $\alpha$} . Especially, the first part \tilde{ $\lambda$}_{\infty}^{(1)}A of the 1‐parameter solution $\lambda$_{\infty}A satisfies

the following:

(3.26) S_{\arg c= $\pi$/2- $\epsilon$}[\tilde{ $\lambda$}_{\infty}^{(1)}A(t, c,  $\eta$; $\alpha$)]=S_{\arg c= $\pi$/2+ $\epsilon$}[\tilde{ $\lambda$}_{\infty}^{(1)}A(t, c,  $\eta$; $\alpha$)]
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Figure 8. Integartion path Figure 9. Integartion path
from $\tau$_{1} to t (near t_{0} ). from \infty to  t (near t_{0} ).

On the other hand, we can not expect the generalized Borel summability for the

1‐parameter solution $\lambda$_{$\tau$_{1}} normalized at $\tau$_{1} with the path shown in Figure 10 when the de‐

generation is happening. However, since the equality $\lambda$_{$\tau$_{1}}^{(k)}(t, c,  $\eta$)=e^{kW_{$\Gamma$_{A}}(c, $\eta$)}$\lambda$_{\infty}^{(k)}A(t, c,  $\eta$)
holds for each k\geq 0 by (3.3), the generalized Borel summability of $\lambda$_{$\tau$_{1}} when \arg

 c= $\pi$/2\pm $\epsilon$ follows from Theorem 3.4 and Corollary 3.3. For this 1‐parameter solu‐

tion, comparing the first part of the generalized Borel sums of  $\lambda$_{$\tau$_{1}} before and after the

degeneration, we find

S_{\arg c= $\pi$/2- $\epsilon$}[\tilde{ $\lambda$}_{$\tau$_{1}}^{(1)}(t_{;}c,  $\eta$; $\alpha$)]=S_{\arg c= $\pi$/2+ $\epsilon$}[\tilde{ $\lambda$}_{$\tau$_{1}}^{(1)}(t_{;}c,  $\eta$;\tilde{ $\alpha$})]
holds for

(3.27) \tilde{ $\alpha$}=(1+e^{2 $\pi$ ic $\eta$}) $\alpha$

due to (3.24) and (3.26). Thus we have the following non‐trivial connection formula for

the 1‐parameter solution  $\lambda$_{$\tau$_{1}} at t=t_{0}.

Theorem 3.5 (Connection formula for the 1‐parameter solution $\lambda$_{$\tau$_{1}} at t=t_{0}, [4] ).
Let  $\epsilon$ be a sufficiently small positive number and let  $\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$) be the 1‐parameter so‐

lution normalized along the path which is shown in Figure 8. Then, the following relation

holds:

(3.28) S_{\arg c= $\pi$/2- $\epsilon$}[$\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$)]=S_{\arg c= $\pi$/2+ $\epsilon$}[$\lambda$_{$\tau$_{1}}(t, c,  $\eta$;\tilde{ $\alpha$})]|_{8=(1+e^{2 $\pi$ ic $\eta$}) $\alpha$}.
This connection formula describes the discontinuous change of 1‐parameter solution

caused by the parametric Stokes phenomenon explicitly. This is an analogue of the result

obtained in [14, 16] for the Weber equation.
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Next let us consider a parametric Stokes phenomenon at another point. For exam‐

ple, here we discuss the case that t moves on a sufficiently small neighborhood of t=t_{1}

in Figure 4. In this case we have the following connection formula.

Figure 10. Integration path Figure 11. Integration path
from $\tau$_{1} to t (near t_{1} ). from \infty to  t (near t_{1} ).

Theorem 3.6 (Connection formula for 1‐parameter solutions at t=t_{1} ). Let  $\epsilon$ be

a sufficiently small positive number and  $\lambda$(t, c,  $\eta$; $\alpha$) be the 1‐parameter solution $\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$)
normalized along the path in Figure 10, or the 1‐parameter solution $\lambda$_{\infty_{B}}(t, c,  $\eta$; $\alpha$) nor‐

malized along the path in Figure 11. For the both cases, the following relation holds:

(3.29) \mathrm{S}_{\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{c}= $\pi$/2- $\epsilon$}[ $\lambda$(t, c,  $\eta$; $\alpha$)]= \mathrm{S}_{\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{c}= $\pi$/2+ $\epsilon$}[ $\lambda$(t, c,  $\eta$;\tilde{ $\alpha$})]|_{d= $\alpha$}.
The formula (3.29) implies that no parametric Stokes phenomenon occurs for both

$\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$) and $\lambda$_{\infty_{B}}(t, c,  $\eta$; $\alpha$) at t=t_{1} . Since the P‐Voros coefficient W_{$\Gamma$_{B}} defined

by (3.18) which represents the difference of $\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$) and $\lambda$_{\infty_{B}}(t, c,  $\eta$; $\alpha$) equals to

0 by Theorem 3.1, we have $\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$)=$\lambda$_{\infty_{B}}(t, c,  $\eta$; $\alpha$) in a neighborhood of t=t_{1}.

Furthermore, Theorem 3.4 implies that parametric Stokes phenomena do not occur for

$\lambda$_{\infty_{B}} because it is normalized along the path in Figure 11 which never touches with any

P‐turning points and P‐Stokes curves. Thus we have the connection formula (3.29).

§4. Stokes multipliers of (SL) and connection formulas

In Section 3, we described parametric Stokes phenomena through the concrete

representation of P‐Voros coefficients and derived the relation for the parameters  $\alpha$ and

\tilde{ $\alpha$} . (Cf., Theorem 3.5 and Theorem 3.6.) In this section we confirm the validity of the

relation given in Theorem 3.6 from the view point of the isomonodromic deformation.

It is known that the second Painlevé equation (or Hamiltonian systems equivalent to

it) represents the compatibility condition for a certain second oreder linear differential
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equation and its deformation equation (e.g., [5, 13]). Accordingly, the Hamiltonian

system (H_{\mathrm{I}\mathrm{I}}) with a large parameter  $\eta$ also represents the compatibility condition for

the following Schrödinger equation (SL) and its deformation equation (D_{\mathrm{I}\mathrm{I}}) ([7]):

\left\{\begin{array}{l}
(SL_{\mathrm{I}\mathrm{I}}):(\frac{\partial^{2}}{\partial x^{2}}-$\eta$^{2}Q_{\mathrm{I}\mathrm{I}}) $\psi$=0,\\
(D_{\mathrm{I}\mathrm{I}}):\frac{\partial $\psi$}{\partial t}=A_{\mathrm{I}\mathrm{I}}\frac{\partial $\psi$}{\partial x}-\frac{1}{2}\frac{\partial A_{\mathrm{I}\mathrm{I}}}{\partial x} $\psi$,
\end{array}\right.
where

Q_{\mathrm{I}\mathrm{I}}=x^{4}+tx^{2}+2cx+2K_{\mathrm{I}\mathrm{I}}-$\eta$^{-1}\displaystyle \frac{v}{x- $\lambda$}+$\eta$^{-2}\frac{3}{4(x- $\lambda$)^{2}},
K_{\mathrm{I}\mathrm{I}}=\displaystyle \frac{1}{2}[v^{2}-($\lambda$^{4}+t$\lambda$^{2}+2c $\lambda$)], A_{\mathrm{I}\mathrm{I}}=\frac{1}{2(x- $\lambda$)}.

The regular singular point  x= $\lambda$ of (SL) is an apparent singular point because K_{\mathrm{I}\mathrm{I}}

has the above form. It is important that the monodromy data of (SL) computed by
a fundamental system of solutions which satisfy both (SL) and (D_{\mathrm{I}\mathrm{I}}) do not depend
on t . (See [5, 13] for example.) Here monodromy data imply Stokes mulitipliers around

 x=\infty in this case. Note that the system (SL) and (D_{\mathrm{I}\mathrm{I}}) is obtained from the

Jimbo‐Miwa�s Lax pair in [5, Appendix \mathrm{C} ].

Remark 3. In this section we only show the result for the case that t moves on

a sufficiently small neighborhood of t=t_{1} in Figure 4. See [4] for the computation of

Stokes multipliers of (SL) when t moves near t=t_{0} in Figure 4. We note that Stokes

multipliers when t moves on other regions can be computed by the same way presented
in [4].

First we will show the Stokes geometry of (SL_{\mathrm{I}\mathrm{I}}) . (See [9, Definition 2.4, Definition

2.6] for the definitions of turning points and Stokes curves.) (SL) has a double turning

point at x=$\lambda$_{0} and two simple turning points x=a_{1} and a_{2} . Figure 12\sim 14 describe

the Stokes curves of (SL) with t being sufficiently close to t=t_{1} in Figure 4 and \arg c

varying near  $\pi$/2 . It is observed in Figure 13 that the Stokes geometry of (SL) does

not degenerate when \arg c= $\pi$/2 even though the P‐Stokes geometry degenerates. This

is a big difference between the cases when t moves near t_{0} and t_{1} . (See Remark 4.)
As is shown in [4], similarly to the construction of WKB solutions for linear equa‐

tions, we can construct the following formal solutions $\psi$_{\pm,\mathrm{I}\mathrm{M}} which satisfy both (SL)
and (D_{\mathrm{I}\mathrm{I}}) with a 1‐parameter solution ( $\lambda$(t, c,  $\eta$; $\alpha$), v(t, c,  $\eta$; $\alpha$)) substituted into their

coefficients:

(4.1) $\psi$_{\pm} ,1M =e^{\pm U/2}\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp[\pm\{ $\eta$\int_{a_{1}}^{x}S_{-1}dx+\int_{\infty}^{x}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ S_{-1})dx\}].



Parametric Stokes phenomena and Voros coefficients oF the second PainlevÉ equation 235

Figure 12. Stokes curves of Figure 14. Stokes curves of
Figure 13. Stokes curves of

(SL) at t=t_{1} when c= (SL) at t=t_{1} when c=

(SL) at t=t_{1} when c=i.
i+0.25. i-0.25.

Here U=U(t, c,  $\eta$; $\alpha$) is given by the following integral along the path in Figure 11

(4.2) U= $\eta$\displaystyle \int_{\infty}^{t}( $\lambda$(t, c,  $\eta$; $\alpha$)-$\lambda$_{0}(t, c))dt,
S_{\mathrm{o}\mathrm{d}\mathrm{d}}=S_{\mathrm{o}\mathrm{d}\mathrm{d}}(x, t, c,  $\eta$; $\alpha$) is the odd part of a formal solution S of the Riccati equation

(4.3) S^{2}+\displaystyle \frac{\partial S}{\partial x}=$\eta$^{2}Q_{\mathrm{I}\mathrm{I}},
S_{-1} is the leading term of S_{\mathrm{o}\mathrm{d}\mathrm{d}} and a_{1} is a simple turning point of (SL_{\mathrm{I}\mathrm{I}}) . See [4] for a

construction of $\psi$_{\pm,\mathrm{I}\mathrm{M}} . Here �IM� stands for Iso‐Monodromic.

Now let us compute the Stokes multipliers of (SL) around  x=\infty by using $\psi$_{\pm,\mathrm{I}\mathrm{M}}.
Since a neighborhood of  x=\infty is divided into the six regions $\Omega$_{j} and $\Omega$_{j}'(1\leq j\leq 6) by
Stokes curves as in Figures 15 and 16, we obtain six Stokes multipliers around  x=\infty

for \arg c= $\pi$/2- $\epsilon$ and \arg c= $\pi$/2+ $\epsilon$ , respectively. Let \mathfrak{s}_{j}=\mathfrak{s}_{j}(c,  $\eta$; $\alpha$) (resp.,

\mathfrak{s}_{j}'=\mathfrak{s}_{j}'(c,  $\eta$; $\alpha$)) be the Stokes multipliers corresponding to the analytic continuation

from $\Omega$_{j} to $\Omega$_{j+1} (resp., from $\Omega$_{j}' to $\Omega$_{j+1}' )( 1\leq j\leq 6 and $\Omega$_{7}=$\Omega$_{1} ). That is, for

1\leq k\leq 3, \mathfrak{s}_{2k-1} and \mathfrak{s}_{2k} are defined by

\left(\begin{array}{l}
$\psi$_{+,\mathrm{I}\mathrm{M}}^{$\Omega$_{2k}}\\
$\psi$_{-,\mathrm{I}\mathrm{M}}^{$\Omega$_{2k}}
\end{array}\right)=\left(\begin{array}{ll}
1 & \mathfrak{s}_{2k-1}\\
0 & 1
\end{array}\right) \left(\begin{array}{l}
$\psi$_{+,\mathrm{I}\mathrm{M}}^{$\Omega$_{2k-1}}\\
$\psi$_{-,\mathrm{I}\mathrm{M}}^{$\Omega$_{2k-1}}
\end{array}\right),
\left(\begin{array}{l}
$\psi$_{+,\mathrm{I}\mathrm{M}}^{$\Omega$_{2k+1}}\\
$\psi$_{-,\mathrm{I}\mathrm{M}}^{$\Omega$_{2k+1}}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0\\
\mathfrak{s}_{2k} & 1
\end{array}\right)\left(\begin{array}{l}
$\psi$_{+,\mathrm{I}\mathrm{M}}^{$\Omega$_{2k}}\\
$\psi$_{-,\mathrm{I}\mathrm{M}}^{$\Omega$_{2k}}
\end{array}\right),

where $\psi$_{\pm,\mathrm{I}\mathrm{M}}^{$\Omega$_{j}} is the Borel sum of $\psi$_{\pm,\mathrm{I}\mathrm{M}} in the region $\Omega$_{j} . These Stokes multipliers can

be computed by using the �Voros� connection formula� (cf. [9, Theorem 2.23], [17]) on
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Stokes curves emanating from simple turning points, and another connection formula on

Stokes curves emanating from the double turning point x=$\lambda$_{0} . The latter connection

formula is obtained through the �transformation theory� at the double turning point

x=$\lambda$_{0} established in [1], [8]. (See also [15].) We omit the details of the computation of

the Stokes multipliers because they can be computed in a similar way presented in [4].
The results of the Stokes multipliers of (SL) computed by using the formal solutions

($\psi$_{+,\mathrm{I}\mathrm{M}}, $\psi$_{-,\mathrm{I}\mathrm{M}}) are as follows:

Figure 15. Stokes multipliers of (SLII) when Figure 16. Stokes multipliers of (SL_{\mathrm{I}\mathrm{I}}) when

\arg c= $\pi$/2- $\epsilon$. \arg c= $\pi$/2+ $\epsilon$.

Stokes multipliers of (SL) at t=t_{1} . Let $\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$) (resp., $\lambda$_{\infty}(t, c,  $\eta$; $\alpha$)
) be the 1‐parameter solution of (P) normalized at t=$\tau$_{1} (resp.,  t=\infty) whose

normalization path is taken as in Figure 10 (resp., Figure 11).
(i) If the 1‐parameter solution $\lambda$_{\infty}(t, c,  $\eta$; $\alpha$) is substituted into the coefficients of (SL)
and (D_{\mathrm{I}\mathrm{I}}) , then the corresponding Stokes multipliers \mathfrak{s}_{j}=\mathfrak{s}_{j}(c,  $\eta$; $\alpha$) and \mathfrak{s}_{j}'=\mathfrak{s}_{j}'(c,  $\eta$; $\alpha$)
are given by the following:

(4.4) \left\{\begin{array}{l}
\mathfrak{s}_{1}=\mathfrak{s} \'{i} =ie^{U-2V}+2\sqrt{ $\pi$} $\alpha$\\
\mathfrak{s}_{2}=\mathfrak{s}_{2}'=ie^{-2 $\pi$ ic $\eta$}e^{2V-U}\\
\mathfrak{s}_{3}=\mathfrak{s}_{3}'=ie^{2 $\pi$ ic $\eta$}e^{U-2V}\\
\mathfrak{s}_{4}=\mathfrak{s}_{4}'=ie^{2 $\pi$ ic $\eta$}e^{2V-U}-2\sqrt{ $\pi$} $\alpha$\\
\mathfrak{s}_{5}=\mathfrak{s}_{5}'=ie^{U-2V}\\
\mathfrak{s}_{6}=\mathfrak{s}_{6}'=ie^{2V-U}.
\end{array}\right.
(ii) If the 1‐parameter solution $\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$) is substituted into the coefficients of (SL)
and (D_{\mathrm{I}\mathrm{I}}) , then the corresponding Stokes multipliers \mathfrak{s}_{j}=\mathfrak{s}_{j}(c,  $\eta$; $\alpha$) and \mathfrak{s}_{j}'=\mathfrak{s}_{j}'(c,  $\eta$; $\alpha$)
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are given by the following

(4.5) \left\{\begin{array}{l}
\mathfrak{s}_{1}=\mathfrak{s} \'{i} =ie^{U-2V}+2\sqrt{ $\pi$} $\alpha$ e^{W_{$\Gamma$_{B}}}\\
\mathfrak{s}_{2}=\mathfrak{s}_{2}'=ie^{-2 $\pi$ ic $\eta$}e^{2V-U}\\
\mathfrak{s}_{3}=\mathfrak{s}_{3}'=ie^{2 $\pi$ ic $\eta$}e^{U-2V}\\
\mathfrak{s}_{4}=\mathfrak{s}_{4}'=ie^{2 $\pi$ ic $\eta$}e^{2V-U}-2\sqrt{ $\pi$} $\alpha$ e^{W_{$\Gamma$_{B}}}\\
\mathfrak{s}_{5}=\mathfrak{s}_{5}'=ie^{U-2V}\\
\mathfrak{s}_{6}=\mathfrak{s}_{6}'=ie^{2V-U}.
\end{array}\right.
Here  $\alpha$ is the free parameter contained in the 1‐parameter solution substituted into the

coefficients of (SL) and (D_{\mathrm{I}\mathrm{I}}) , U=U(t, c,  $\eta$; $\alpha$) is given by (4.2), V=V(t, c,  $\eta$; $\alpha$) is

the Voros coefficient of (SL) defined by

(4.6) V(t, c,  $\eta$; $\alpha$)=\displaystyle \int_{a_{1}}^{\infty}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}(x, t, c,  $\eta$; $\alpha$)- $\eta$ S_{-1}(x, t, c))dx,
and W_{$\Gamma$_{B}}=W_{$\Gamma$_{B}}(c,  $\eta$) is the P‐VO ros coefficient defined by (3.18).

In the case of [4] (i.e., t moves near t_{0} ) because the geometry of Stokes curves of

(SL) changes discontinuously before and after \arg c= $\pi$/2 ,
the expressions of Stokes

multipliers also change. (See Remark 4 below.) However, in this case (i.e., t moves near

t_{1}) the expressions of the Stokes multipliers \mathfrak{s}_{j} and \mathfrak{s}_{j}' coincide for all 1\leq j\leq 6 since

the geometry of Stokes curves does not change before and after \arg c= $\pi$/2.
We also found the following fact about the Voros coefficient V of (SL_{\mathrm{I}\mathrm{I}}) .

Theorem 4.1. The formal series 2V-U does not depend on t
,

and it is repre‐

sented explicitly as follows:

(4.7) 2V(t, c,  $\eta$; $\alpha$)-U(t, c,  $\eta$; $\alpha$)=0.

Proof. First we note that V and U are expanded as

V(t, c,  $\eta$; $\alpha$)=V^{(0)}(t, c,  $\eta$)+ $\alpha \eta$^{-1/2}V^{(1)}(t, c,  $\eta$)e^{ $\eta \phi$_{\mathrm{I}\mathrm{I}}}+( $\alpha \eta$^{-1/2})^{2}V^{(2)}(t, c,  $\eta$)e^{2 $\eta \phi$_{\mathrm{I}\mathrm{I}}}+\cdots,

U(t, c,  $\eta$; $\alpha$)=U^{(0)}(t, c,  $\eta$)+ $\alpha \eta$^{-1/2}U^{(1)}(t, c,  $\eta$)e^{ $\eta \phi$_{\mathrm{I}\mathrm{I}}}+( $\alpha \eta$^{-1/2})^{2}U^{(2)}(t, c,  $\eta$)e^{2 $\eta \phi$_{\mathrm{I}\mathrm{I}}}+\cdots,
where V^{(k)}(t, c,  $\eta$) and U^{(k)}(t, c,  $\eta$) are formal power series in $\eta$^{-1}(k\geq 0) . As is shown

in [4], differentiating (4.6) by t and using the equality

\displaystyle \frac{\partial}{\partial t}S_{\mathrm{o}\mathrm{d}\mathrm{d}}=\frac{\partial}{\partial x}(A_{\mathrm{I}\mathrm{I}}S_{\mathrm{o}\mathrm{d}\mathrm{d}}) ,

which is shown in [1], we can check that the formal series V satisfies

\displaystyle \frac{\partial}{\partial t}V=\frac{1}{2} $\eta$( $\lambda-\lambda$_{0}) .
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Therefore the formal series 2V-U does not depend on t . Especially, it does not contain

exponential factors e^{k $\eta \phi$}(k\geq 1) ; i.e., 2V-U=2V^{(0)}-U^{(0)} and it still does not

depend on t . Moreover, it is also proved in [4] that the formal power series V^{(0)}(t, c,  $\eta$)
satisfies the following difference equation (although it was considered in the case that t

is sufficiently close to t_{0} in [4], we also obtain the following difference equation in this

case by completely the same method):

2V^{(0)}(t, c,  $\eta$)-2V^{(0)}(t, c-$\eta$^{-1},  $\eta$)=\displaystyle \frac{4}{3} $\eta$($\lambda$_{0}(t, c)^{3}-$\lambda$_{0}(t, c-$\eta$^{-1})^{3})
(4.8) -c $\eta$\displaystyle \log\{\frac{2$\lambda$_{0}(t,c-$\eta$^{-1})^{2}+t}{2$\lambda$_{0}(t,c)^{2}+t}\}

-\displaystyle \log\{\frac{2$\lambda$^{(0)}(t,c, $\eta$)^{2}+t-2v^{(0)}(t,c, $\eta$)}{2$\lambda$_{0}(t,c-$\eta$^{-1})^{2}+t}\}.
In order to evaluate 2V^{(0)}-U^{(0)} ,

we take the limit t\rightarrow\infty_{B} of (4.8) along the

P‐Stokes curve $\Gamma$_{B} in Figure 5. As in Figure 5 $\lambda$_{0} behaves as (3.8) and we can easily
check that

$\lambda$^{(0)}(t, c,  $\eta$)=-ct^{-1}+O(t^{-2}) ,

v^{(0)}(t, c,  $\eta$)=O(t^{-2}) .

Thus, taking the limit in the equality (4.8), we can see that the formal power series

V^{(0)} (_{;} c,  $\eta$) satisfies

(4.9) 2V^{(0)}(\infty, c,  $\eta$)-2V^{(0)}(\infty, c-$\eta$^{-1},  $\eta$)=0.

On the other hand, as is shown in Appendix A of [4], V^{(0)}(t, c,  $\eta$) has the following

homogeneity:

V^{(0)}(r^{-2/3}t, r^{-1}c, r $\eta$)=V^{(0)}(t, c,  $\eta$) (r\neq 0) .

Therefore, the limit V^{(0)} (_{;} c,  $\eta$ ) satisfies

 V^{(0)}(\infty, r^{-1}c, r $\eta$)=V^{(0)}(\infty, c,  $\eta$) (r\neq 0) .

This implies that V^{(0)} (_{;} c,  $\eta$ ) is a formal power series of the form

(4.10)  V^{(0)}(_{;} c,  $\eta$)=\displaystyle \sum_{n\geq 1}v_{n}(c $\eta$)^{-n},
where v_{n}\in \mathbb{C} is independent of c(n\geq 1) . Then it follows from (4.9) and (4.10) that

V^{(0)}(\infty, c,  $\eta$)=0 . Since U^{(0)}(t, c,  $\eta$) also tends to 0 in the limit t\rightarrow\infty_{B} by definition,
we have (4.7). \square 

Now we derive the connection formulas describing the parametric Stokes phenom‐
ena at t=t_{1} by using the explicit expressions of the Stokes multipliers of (SL) in the
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above lists. If the Borel sums of the 1‐parameter solution  $\lambda$(t, c,  $\eta$; $\alpha$) for \arg c= $\pi$/2- $\epsilon$
and that of  $\lambda$(t, c,  $\eta$;\tilde{ $\alpha$}) for \arg c= $\pi$/2+ $\epsilon$ coincide, then the corresponding Stokes

multipliers represented by \mathfrak{s}_{j}(c,  $\eta$; $\alpha$) and \mathfrak{s}_{j}'(c,  $\eta$;\tilde{ $\alpha$}) of (SL) should coincide; that is,

(4.11) S_{\arg c= $\pi$/2- $\epsilon$}[\mathfrak{s}_{j}(c,  $\eta$; $\alpha$)]=S_{\arg c= $\pi$/2+ $\epsilon$}[\mathfrak{s}_{j}'(c,  $\eta$;\tilde{ $\alpha$})] (1\leq j\leq 6)

should hold. Comparing the Borel sums of \mathfrak{s}_{j}(c,  $\eta$; $\alpha$) and \mathfrak{s}_{j}'(c,  $\eta$;\tilde{ $\alpha$}) given by (4.4), those

are Stokes multipliers corresponding to the 1‐parameter solution $\lambda$_{\infty} ,
we find that the

equalities (4.11) hold if and only if

(4.12)  $\alpha$=\sim.

Similarly, in the case that $\lambda$_{$\tau$_{1}}(t, c,  $\eta$; $\alpha$) being substituted, we have the same conclusion

as (4.12) because the P‐Voros coefficient W_{$\Gamma$_{B}}(c,  $\eta$) equals to 0 by Theorem 3.1. The

result (4.12) is consistent with (3.29); that is, parametric Stokes phenomena do not

happen to both $\lambda$_{$\tau$_{1}} and $\lambda$_{\infty} . The relation  $\alpha$=\tilde{ $\alpha$} obtained above is consistent with that

in Theorem 3.6, and hence, it indicates the validity of Theorem 3.6.

Figure 17. Stokes curves of Figure 19. Stokes curves of
Figure 18. Stokes curves of

(SL) at t=t_{0} when c= (SL) at t=t_{0} when c=

(SL) at t=t_{0} when c=i.
i+0.25. i-0.25.

Remark 4. As is shown in [4], if we consider a parametric Stokes phenomenon
at t=t_{0} through the computation of the Stokes multipliers of (SL_{\mathrm{I}\mathrm{I}}) ,

we can derive

another connection formula (3.28). The reason is that, at t=t_{0} ,
we obtain the following

explicit representation of the Voros coefficient V instead of Theorem 4.1:

(4.13) 2V(t, c,  $\eta$; $\alpha$)-U(t, c,  $\eta$; $\alpha$)=-\displaystyle \sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}(c $\eta$)^{1-2n},
where B_{2n} is the 2\mathrm{n}‐th Bernoulli number defined by (3.12). Furthermore, there is a

difference in the Stokes geometry of (SL) between t=t_{0} and t_{1} . Figure 17\sim 19
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describes the Stokes curves of (SL) at t=t_{0} . In this case, the P‐Stokes geometry of

(P_{\mathrm{I}\mathrm{I}}) and the Stokes geometry of (SL) degenerates simultaneously. This phenomenon
does not observed at t=t_{1}.

Appendix A. Another example: the third Painlevé equation of type D_{6}

We will make a brief report on results about the Voros coefficients of the third

Painlevé equation of the type D_{6} (in the sense of [12]) with a large parameter  $\eta$ in the

following form:

(P_{\mathrm{I}\mathrm{I}\mathrm{I}'}):\displaystyle \frac{d^{2} $\lambda$}{dt^{2}}=\frac{1}{ $\lambda$}(\frac{d $\lambda$}{dt})^{2}-\frac{1}{t}\frac{d $\lambda$}{dt}+$\eta$^{2}(\frac{$\lambda$^{3}}{t^{2}}-\frac{c_{\infty}$\lambda$^{2}}{t^{2}}+\frac{c_{0}}{t}-\frac{1}{ $\lambda$}) .

Here c_{\infty} and c_{0} are complex parameters. We assume that they satisfy

(A.1) c_{\infty}, c_{0}, c_{\infty}\pm c_{0}\neq 0,

so that all P‐turning points are simple. See [9, Definition 4.5] for the definitions of

P‐turning points and P‐Stokes curves of (P_{\mathrm{I}\mathrm{I}\mathrm{I}'}) .

We can also construct 1‐parameter solutions of (P_{\mathrm{I}\mathrm{I}\mathrm{I}}) in the following form:

 $\lambda$(t, \mathrm{c},  $\eta$; $\alpha$)=$\lambda$^{(0)}(t, \mathrm{c},  $\eta$)+ $\alpha \eta$^{-1/2}$\lambda$^{(1)}(t, \mathrm{c},  $\eta$)e^{ $\eta \phi$_{ $\Pi$ \mathrm{I}'}}+( $\alpha \eta$^{-1/2})^{2}$\lambda$^{(2)}(t, \mathrm{c},  $\eta$)e^{2 $\eta \phi$_{ $\Pi$ \mathrm{I}'}}+\cdots .

Here \mathrm{c}=(c_{\infty}, c_{0}) ,
 $\alpha$ is a free parameter,  $\lambda$^{(k)}(t, \mathrm{c},  $\eta$)=$\lambda$_{0}^{(k)}(t, \mathrm{c})+$\eta$^{-1}$\lambda$_{1}^{(k)}(t, \mathrm{c})+

$\eta$^{-2}$\lambda$_{2}^{(k)}(t, \mathrm{c})+\cdots is a formal power series (k\geq 0) and

(A.2) $\phi$_{\mathrm{I}\mathrm{I}\mathrm{I}'}= $\phi$ \displaystyle \mathrm{m}\prime(t, \mathrm{c})=\int^{t}\sqrt{\triangle(t,\mathrm{c})}dt, \displaystyle \triangle(t, \mathrm{c})=\frac{3$\lambda$_{0}^{2}}{t^{2}}-\frac{2c_{\infty}$\lambda$_{0}^{2}}{t^{2}}+\frac{1}{$\lambda$_{0}^{2}},
where $\lambda$_{0} (which is nothing but $\lambda$_{0}^{(0)} ) is an algebraic function satisfying

(A.3) \displaystyle \frac{$\lambda$_{0}^{3}}{t^{2}}-\frac{c_{\infty}$\lambda$_{0}^{2}}{t^{2}}+\frac{c_{0}}{t}-\frac{1}{$\lambda$_{0}}=0.
Figures 20\sim 22 describe P‐Stokes curves of (P_{\mathrm{I}\mathrm{I}\mathrm{I}}) near \mathrm{c}=(2,2-i) . We can observe

that degeneration of P‐Stokes geometry happens when \mathrm{c}=(2,2-i) .

Similarly to (P_{\mathrm{I}\mathrm{I}}) , parametric Stokes phenomena relevant to the degeneration can

be analyzed by investigating P‐Voros coefficients of (P_{\mathrm{I}\mathrm{I}\mathrm{I}}) defined by the following

integral:

(A.4) W(\displaystyle \mathrm{c},  $\eta$)=\int_{ $\tau$}^{\infty}(R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t, \mathrm{c},  $\eta$)- $\eta$ R_{-1}(t, \mathrm{c}))dt.
Here  $\tau$ is a  P‐turning point of (P_{\mathrm{I}\mathrm{I}\mathrm{I}'}) , R_{\mathrm{o}\mathrm{d}\mathrm{d}}(t, \mathrm{c},  $\eta$) is the odd part of a formal power

series solution R(t, \mathrm{c},  $\eta$) of the following equation:

(A.5) R^{2}+\displaystyle \frac{dR}{dt}=(\frac{2}{ $\lambda$(0)}\frac{d$\lambda$^{(0)}}{dt}-\frac{1}{t})R-(\frac{1}{ $\lambda$(0)}\frac{d$\lambda$^{(0)}}{dt})^{2}+$\eta$^{2}(\frac{3$\lambda$^{(0)^{2}}}{t^{2}}-\frac{2c_{\infty}$\lambda$^{(0)}}{t^{2}}+\frac{1}{ $\lambda$(0)^{2}}) ,
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Figure 20. \mathrm{c}=(2-0.1,2-i) . Figure 21. \mathrm{c}=(2,2-i) . Figure 22. \mathrm{c}=(2+0.1,2-i) .

which is the Riccati equation associated with the Fréchet derivative of (P_{\mathrm{I}\mathrm{I}\mathrm{I}}) at the

0‐parameter solution $\lambda$^{(0)}(t, \mathrm{c},  $\eta$) ,
and R_{-1}(t, \mathrm{c})=\sqrt{\triangle(t,\mathrm{c})} is the leading term of R_{\mathrm{o}\mathrm{d}\mathrm{d}}.

(In this article we do not discuss about the choice of the branch of R_{-1}=\sqrt{\triangle(t,\mathrm{c})}. )

Theorem A.l. P‐VO ros coefficient (A.4) integrated along the P ‐Stokes curve  $\Gamma$

in Figure 21 has the following explicit representation:

(A.6)  W(c,  $\eta$)=\displaystyle \sum_{n=1}^{\infty}\frac{2^{1-2n}-1}{2n(2n-1)}B_{2n}(\frac{c_{\infty}-c_{0}}{2} $\eta$)^{1-2n},
where B_{2n} is the 2n‐th Bernoulli number defined by (3.12).

The explicit form (A.6) of the P‐Voros coefficient closely resembles to (3.10). In

this case the factor (c_{\infty}-c_{0})/2 plays the role of c in the analysis of the parametric
Stokes phenomenon of (P_{\mathrm{I}\mathrm{I}}) . Let $\lambda$_{ $\tau$}(t, \mathrm{c},  $\eta$; $\alpha$) be the 1‐parameter solution normalized

at P‐turning point  t= $\tau$
,

which is defined similar to the case of (P_{\mathrm{I}\mathrm{I}}) . Theorem A.1

and Corollary 3.3 imply that we have have the following connection formula for this

1‐parameter solution:

Connection formula for the 1‐parameter solution $\lambda$_{ $\tau$} . Let  $\epsilon$ be a sufficiently
small positive number. If we take parameters as

(A.7) \tilde{ $\alpha$}=(1+e^{ $\pi$ i(c_{\infty}-c_{0}) $\eta$}) $\alpha$,

then the generalized Borel sum of the 1‐parameter solution $\lambda$_{ $\tau$}(t, c,  $\eta$; $\alpha$) when c=(2-
 $\epsilon$, 2-i) and that of $\lambda$_{ $\tau$}(t, c,  $\eta$;\tilde{ $\alpha$}) when c=(2+ $\epsilon$, 2-i) coincide.

We have also computed explicit representations of P‐Voros coefficients with all

other choices of the integration paths in (A.4). The results will be presented in another

article.
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