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Instanton-type solutions with free (m + 1)-parameters
for the m-th member of the first Painlevé hierarchy

By

YOKO UMETA®

Abstract

A construction of instanton-type solutions with holomorphic functions as coefficients is
discussed for the m-th member of the first Painlevé hierarchy with a large parameter. The
solutions constructed here contain free (m + 1)-parameters.

§1. Introduction

The first Painlevé hierarchy with a large parameter 7 is a family of systems of
non-linear equations whose first member is the traditional first Painlevé equation with
n. For m =1, 2, ..., the m-th member (P),, of the hierarchy given in [9] consists of
2m-differential equations with unknown functions u; and v; of ¢:

d
_1%:2?}]5 .7:]-5 25 , M,
(1.1)
_lde i
EZQ(U]'+1+U1U]'+U)]‘), 17=1,2,...,m,

where w; is defined recursively by

(1.2) wj = = UpUjt1—k + UpWj_f — = VEVj—k + ¢j + Ojmt.
2 k=1 k=1 2 k=1

Here c; is a constant and ¢, stands for the Kronecker’s delta and u,,1 is assumed to
be zero.
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In the paper [3], T. Aoki, N. Honda and the author have rewritten (P),, itself in
the form

2V 0
d (U#
1.3 R = e

with generating functions defined by

(1.4) U0) :=> wb®, V(0):=> wb* C0):= (ck+ okmt)0"*",
k=1 k=1 k=1

where 6 denotes an independent variable and by A = B we mean that A — B is zero
modulo §™12. Note that, with the condition that the coefficients of §™*! of U and
V' are zero, instanton-type solutions for (1.3) give ones for (1.1). Hence it suffices to
construct instanton-type solutions for (1.3) by multiple-scale analysis.

Now we recall the solution space for (1.3) constructed in [3]. Let o := —% and
7 := (11, ..., Tm) be m-independent, variables. We denote by  an open subset in C;
satisfying some conditions (see Section 2) and by M (Q)[[0]] (resp. O(Q2)[[0]]) the set of
formal power series in 6 with coefficients in multi-valued holomorphic functions with a
finite number of branching points and poles (resp. holomorphic functions) on 2. Then
we define the rings

Ly e e e e e |

A9(Q) = (O@Q)[[0]]) Hn e e e—ﬁ,...,nae—m”

We also define A, (Q) (resp. A2(Q)) by the subset in Aq () (resp. A2(2)) consisting
of a formal power series of order less than or equal to o with respect to 7.

To obtain an instanton-type solution of (P;),,, we computed the system of partial
differential equations in A2 (Q) := (A, (Q))? associated with (1.3) and constructed its
solution (u, v) € A2(Q) with free 2m-parameters in [3]. In this article, taking param-
eters suitably, we prove that the solution (u, v) with free (m + 1)-parameters can be
constructed in (A9 (D))? where D C C, is a specific region described in Section 3.

Acknowledgements. The author would like to express her sincere gratitude to Pro-
fessors Naofumi Honda and Takashi Aoki for many helpful suggestions and discussions.

§ 2. Preparations

In this section, we briefly review some results in [3] which are needed later. For
any = € A (Q), we define o?(x) (resp. o] (x)) by the coefficient of 6 (resp. 7/*) in =
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(i, 7 > 1). We consider the linearized equation of (1.3) along (g, 09) given by

1+2C
2.1 o =1— ) ——— io = 0.
(2.1) 4o 1420000 °

Here 15 ¢ is taken so that the coefficient of ™1 in g is zero. We define (u, v) € A2 (Q)
by

(2.2) u:zzz i jal Jo  and v::ZZ i, jol

where u; jo and v; jo (4, j > 1) denote unknown functions of the variable ¢. Then (1.3)
is transformed by a change of (U, V) = (4o + (1 — do)u, 99 + (1 — do)v) into the system
of non-linear equations for (u, v):

(i) ()= ()=o)
(23) - (“ (Zaffwu) b (u» ’
+n ' <p+ ;) <u> 0

(2.4) S(u, v) == %(—v, u)@ (ZZ) +30%(uw)ud and p:= %(log(l — Ug)).

with

Here the map Q : (06)? — ©2 is defined by

0\ yo
(2.5) Q (y9> =2 ((1+2ﬂ1709)$—0?(x)0>

o0 o0

for any x = Z z;0" and y = Z ;0" in ©, where O is the set of formal power series of
i=1 i=1

0 without constant terms.

As the principal parts of (2.3) are expressed by the map @, we construct the
solution (u, v) so that it is a linear combination of eigenvector A(\)’s of ). Here A())
is said to be the eigenvector corresponding to an eigenvalue A\ of @ if A(\) satisfies
Q(AN)E) = AA(N)0. We can see that the eigenvalue A of @ is a root of the algebraic
equation

(2.6) AN, t) Z =0, g\ =7,
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where 1, o denote the coefficient of 6* in 7 given by (2.1). Note that A(), t) is an even
function of A\. Let vii(t), ..., v, (t) be the roots of the algebraic equation (2.6) of A
with convention v, = —v_; (1 < k < m). We denote by E the set of turning points of
(P1)m, i.e. the zero set of the discriminant of (2.6). Let 2 be an open subset in C \ F

and we consider our problem on . For any ¢(71,...,7m, t, 0, n) € /la(ﬂ), we define
the morphism ¢ by
¢ t
(27) )= (0 [ va(o)ds, oo [ vm(o)ds,1.0.)
and the operator P is defined by
0 0

. P = _— PR m—— — .

(2:8) v o1 L OTm @

Then we obtain the partial differential equation associated with (2.3) given by [3]:
()= () - ()
29) (o) + o (e ) (1))
+n <p + %) (5) 6.

Here S(u, v) and p have been given by (2.4). Let us recall the definition of instanton-
type solutions for (Pr)n,.

Definition 2.1 (|3]). A formal solution (U, V) on Q of (1.3) is called of instanton-
type if (U, V) has the form (i, 90) 4 (1 — @io)(¢(u), ¢(v)) for which (u, v) € A2(Q) is a
solution of (2.9).

The main theorem in [3] is as follows.

Theorem 2.1 ([3, Theorem 5.3]).  Let Q be an open subset in C\ E. Then
we have instanton-type solutions for (Pr),, with free 2m-parameters (B_n,, ..., Bm) €
C2™[[n~1)]. Especially, we can construct the solution (u, v) in A2(Q) for (2.9) of the
form

(2.10) (Z)z D el ) Aw)

1<|k|<m
with
(2.11) A(vg) = (wf(”’“) ) a(v) = — = ig(yk)jem
- al) |7 L—gw)t =
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and

(2.12) felr tim) = > Fope)e?™ | n 2.

j=1 \£>0, peZ™, 2¢+|p|=j

Here g(vi) has been defined by (2.6).

The following lemma shows the more explicit form of the leading term fj 1 of fx
in (2.10) with respect to 7.
Lemma 2.1 (|3, Lemma 4.1 and Proposition 4.10]). We have

(2.13) fio 1 =wre™ (1 < |k| <m),

vy

N

where wi, w_i (1 < k < m) are multi-valued holomorphic functions on Q in the form

t 1 m ‘ "
wi = B exp / o>l 7808 exp (—2/ hjdt> “hy | dt ],
J=1

(2.14)
W R PP t
w_p = B, exp / —V—ngo(k, 7)B; 7B exp —2/ hjdt | — hy | dt
et
with free 2m-parameters (ﬁ(_l,)n, e %)) € C?>™. Here o(k, j) are rational functions of

the variables vy (1 < £ < m) and hy are multi-valued holomorphic functions of finite

determination in Q with the conditions
(2.15) ok, j)=e(=k j) (1<ji<m), hgp=h_.

The strict forms of ¢(k, j) and hy are also given in [3].

§ 3. Existence of instanton-type solutions with holomorphic functions as

coefficients

In this section, we prove that we have a solution (u, v) € (A9 (D))? containing free
(m + 1)-parameters for (2.9), where D(C C;) is a specific region described below. In
what follows we use the same notations as those in Section 2. For any 1 < 7 < m, we
define D; by

(3.1)  Dj:= () Dj: with Dj ;= {t € C;v;(t) # kv;(t) for any k € R\ {0}}.

i=1,

i#]
From now on, we consider the case of j = 1. For any ¢t € D\ E, theline L := {kv,(t); k €
R} divides the complex plane C into two half-planes. Noticing the relation v_; = —uvj
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(1 <k <m), we see that each half-plane contains m — 1 eigenvalues. We may assume
that eigenvalues contained in the same half-plane are (vs, ..., v,) and (v_2, ..., V_p,)
respectively. Then, putting (5931, ey ﬁ(_lg)) = (0, ..., 0) in (2.14), we have the leading
term (o1(u), ol1(v)) of (u, v) with m + 1 free parameters in the form

(3.2) A(v)wie™ + A(v_q)w_1e” ™ + Z A(vg)wie™.
k=2

Here wy, has been defined by (2.14). Generally, putting (8_,, ..., f—2) = (0, ..., 0) in
(B—m, - Bm) constructed in Theorem 2.1, we can construct the solution (u, v) with
free (m + 1)-parameters in C™*1[[n~]] for (2.9).

Next, let us specify a domain on which the solution (u, v) with holomorphic func-
tions as coefficients is defined. By the definition of the operator P, for any 1 < < m
and (q1, @2, -, gm) € (Z x ZZ31), we see

P(A(Vi)GQITI+(12T2+"’+(1m,T'm)

(3.3)
= (i1 + @va + - + qmVm) — Vi) A(Vi)eqlTl‘F(Ing—F-u—quTm'

Therefore it suffices to take a domain so that ((¢1v1 + gav2 + -+ - + @mVm) — V4) is never
zero for any (q1, g2, ..., qm) € (Z x ZZ;") except for ¢; = 1 and g = 0 (k # i).

Let us denote by H one of half planes divided by the line L. Then, as v;’s
(2 < i < m) belong to the same half-plane H, we have qavo + -+ + gy € H for
any (g2, -+, Gm) € Z’Qo_l \ {0}. Hence q1v1 + qav2 + - - - + ¢V, is never zero for any
(q1,92,---,qm) € (Z x_Z’QO_ 1)\ {0}. By these observations, we see that the zero set of
(11 + qava + + + Gmim) — 1) in (3.3) is contained in the union of subsets defined
by the following equations.

(3.4) Qv+ qre+ -+ QioaVic1 F QipVigr o @ =V, 2<1<m

with convention v,,+1 := 0. Let K7 be a compact subset in D; \ E and K 1 is defined by
(3.5)

Ei=JJlte Kuiqn(t) + - + qimavic1(8) + qisrviga (t) + - + g (t) = vi(1)}
=2 q

Here ¢ runs through (¢1,...,¢i—1, ¢it1,---,qm) € Z X Z’;O_Q. Let ® be the projective
map from the half-plane H to L := {kv/—1v1(t);k € R} N H for any ¢t € K;. We set M
and m by

M = max{max;cx, |[P(vi(t))[}i2y and m = min{min,cx, |P(r;(t))|}iZs,
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respectively. If ¢ € K, we have Z |®(qjv;(t))] = |P(vi(t))| for some 2 < i < m. Hence
=
Uik

m(q2 + -+ + gm) < M. Therefore the second union with respect to ¢ of (3.5) is finite.

As, for t € Ky '\ I?l, the ((q1v1 + gove + -+ + gmVm) — ;) in (3.3) never become zero,
all coefficients in f5 of (2.10) are holomorphic on a connected component of K; \ K.
Note that, by the same arguments, we have the similar result as above when we put
(B2, .-+, Bm) = (0, ..., 0) instead of (B_m, ..., B—2) = (0, ..., 0). Summing up, we
have the theorem below.

For any compact subset K; in D; \ E (1 < j <m), we set

(3.6)

Kj = U U {t e Kj;qun(t) + -+ qi—1vim1(t) + Giprvipa (8) + -+ + g (t) = vi(0)},
=1, ¢q
i#£]

where the ¢; runs through Z and the other ¢; (k # j) runs through Z>¢ and v, 1 := 0.

Theorem 3.1.  For any 1 < j < m, we have instanton-type solutions of (P1)m,
which are defined on Q; = K; \ K; with free (m + 1)-parameters in C™1[[n~1]].
Especially, we can construct the solution (u, v) in (A2())? for (2.9) of the form
(2.10).
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