Instanton-type solutions with free (m+1)-parameters for the m-th member of the first Painlevé hierarchy

By

Үоко Имета*

Abstract

A construction of instanton-type solutions with holomorphic functions as coefficients is discussed for the m-th member of the first Painlevé hierarchy with a large parameter. The solutions constructed here contain free (m+1)-parameters.

§ 1. Introduction

The first Painlevé hierarchy with a large parameter η is a family of systems of non-linear equations whose first member is the traditional first Painlevé equation with η . For $m = 1, 2, \ldots$, the m-th member $(P_{\rm I})_m$ of the hierarchy given in [9] consists of 2m-differential equations with unknown functions u_j and v_j of t:

(1.1)
$$\begin{cases} \eta^{-1} \frac{du_j}{dt} = 2v_j, & j = 1, 2, \dots, m, \\ \eta^{-1} \frac{dv_j}{dt} = 2(u_{j+1} + u_1 u_j + w_j), & j = 1, 2, \dots, m, \end{cases}$$

where w_i is defined recursively by

(1.2)
$$w_j := \frac{1}{2} \sum_{k=1}^j u_k u_{j+1-k} + \sum_{k=1}^{j-1} u_k w_{j-k} - \frac{1}{2} \sum_{k=1}^{j-1} v_k v_{j-k} + c_j + \delta_{jm} t.$$

Here c_j is a constant and δ_{jm} stands for the Kronecker's delta and u_{m+1} is assumed to be zero.

Received April 15, 2012, Accepted July 30, 2012.

²⁰¹⁰ Mathematics Subject Classification(s): 34E20, 34M40, 76M45

Key Words: the first Painlevé hierarchy, instanton-type solutions, multiple-scale analysis

Supported by JSPS International Training Program (ITP)

^{*}Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan.

^{© 2013} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

214 Yoko Umeta

In the paper [3], T. Aoki, N. Honda and the author have rewritten $(P_{\rm I})_m$ itself in the form

(1.3)
$$\eta^{-1} \frac{d}{dt} \begin{pmatrix} U\theta \\ V\theta \end{pmatrix} \equiv \begin{pmatrix} 2V\theta \\ -(1+2u_1\theta)(1-U) + \frac{1+2C-\theta V^2}{1-U} \end{pmatrix}$$

with generating functions defined by

(1.4)
$$U(\theta) := \sum_{k=1}^{\infty} u_k \theta^k, \ V(\theta) := \sum_{k=1}^{\infty} v_k \theta^k, \ C(\theta) := \sum_{k=1}^{\infty} (c_k + \delta_{km} t) \theta^{k+1},$$

where θ denotes an independent variable and by $A \equiv B$ we mean that A - B is zero modulo θ^{m+2} . Note that, with the condition that the coefficients of θ^{m+1} of U and V are zero, instanton-type solutions for (1.3) give ones for (1.1). Hence it suffices to construct instanton-type solutions for (1.3) by multiple-scale analysis.

Now we recall the solution space for (1.3) constructed in [3]. Let $\alpha := -\frac{1}{2}$ and $\tau := (\tau_1, \ldots, \tau_m)$ be m-independent variables. We denote by Ω an open subset in \mathbb{C}_t satisfying some conditions (see Section 2) and by $\mathcal{M}(\Omega)[[\theta]]$ (resp. $\mathcal{O}(\Omega)[[\theta]]$) the set of formal power series in θ with coefficients in multi-valued holomorphic functions with a finite number of branching points and poles (resp. holomorphic functions) on Ω . Then we define the rings

(1.5)
$$\mathcal{A}_{\alpha}(\Omega) := (\mathcal{M}(\Omega)[[\theta]]) \left[\left[\eta^{\alpha} e^{\tau_{1}}, \dots, \eta^{\alpha} e^{\tau_{m}}, \eta^{\alpha} e^{-\tau_{1}}, \dots, \eta^{\alpha} e^{-\tau_{m}} \right] \right],$$

$$\mathcal{A}_{\alpha}^{\mathcal{O}}(\Omega) := (\mathcal{O}(\Omega)[[\theta]]) \left[\left[\eta^{\alpha} e^{\tau_{1}}, \dots, \eta^{\alpha} e^{\tau_{m}}, \eta^{\alpha} e^{-\tau_{1}}, \dots, \eta^{\alpha} e^{-\tau_{m}} \right] \right].$$

We also define $\hat{\mathcal{A}}_{\alpha}(\Omega)$ (resp. $\hat{\mathcal{A}}_{\alpha}^{\mathcal{O}}(\Omega)$) by the subset in $\mathcal{A}_{\alpha}(\Omega)$ (resp. $\mathcal{A}_{\alpha}^{\mathcal{O}}(\Omega)$) consisting of a formal power series of order less than or equal to α with respect to η .

To obtain an instanton-type solution of $(P_1)_m$, we computed the system of partial differential equations in $\hat{\mathcal{A}}^2_{\alpha}(\Omega) := (\hat{\mathcal{A}}_{\alpha}(\Omega))^2$ associated with (1.3) and constructed its solution $(u, v) \in \hat{\mathcal{A}}^2_{\alpha}(\Omega)$ with free 2m-parameters in [3]. In this article, taking parameters suitably, we prove that the solution (u, v) with free (m + 1)-parameters can be constructed in $(\hat{\mathcal{A}}^{\mathcal{O}}_{\alpha}(D))^2$ where $D \subset \mathbb{C}_t$ is a specific region described in Section 3.

Acknowledgements. The author would like to express her sincere gratitude to Professors Naofumi Honda and Takashi Aoki for many helpful suggestions and discussions.

§ 2. Preparations

In this section, we briefly review some results in [3] which are needed later. For any $x \in \hat{\mathcal{A}}_{\alpha}(\Omega)$, we define $\sigma_i^{\theta}(x)$ (resp. $\sigma_{i\alpha}^{\eta}(x)$) by the coefficient of θ^i (resp. $\eta^{j\alpha}$) in x

 $(i, j \ge 1)$. We consider the linearized equation of (1.3) along (\hat{u}_0, \hat{v}_0) given by

(2.1)
$$\hat{u}_0 = 1 - \sqrt{\frac{1 + 2C}{1 + 2\hat{u}_{1,0}\theta}}, \qquad \hat{v}_0 = 0.$$

Here $\hat{u}_{1,0}$ is taken so that the coefficient of θ^{m+1} in \hat{u}_0 is zero. We define $(u, v) \in \hat{\mathcal{A}}^2_{\alpha}(\Omega)$ by

(2.2)
$$u := \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} u_{i,j\alpha}(t) \, \theta^i \, \eta^{j\alpha} \quad \text{and} \quad v := \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} v_{i,j\alpha}(t) \, \theta^i \, \eta^{j\alpha},$$

where $u_{i,j\alpha}$ and $v_{i,j\alpha}$ $(i, j \ge 1)$ denote unknown functions of the variable t. Then (1.3) is transformed by a change of $(U, V) = (\hat{u}_0 + (1 - \hat{u}_0)u, \hat{v}_0 + (1 - \hat{u}_0)v)$ into the system of non-linear equations for (u, v):

(2.3)
$$\left(\eta^{-1} \frac{d}{dt} - Q\right) \begin{pmatrix} u\theta \\ v\theta \end{pmatrix} \equiv \left(\begin{pmatrix} \eta^{-1} \rho\theta \\ S(u, v) \end{pmatrix} - uQ \begin{pmatrix} u\theta \\ v\theta \end{pmatrix}\right)$$
$$- \left(u \begin{pmatrix} \eta^{-1} \rho \\ 2\sigma_1^{\theta}(u)u \end{pmatrix} + \eta^{-1} \rho \begin{pmatrix} u \\ v \end{pmatrix}\right) \theta$$
$$+ \eta^{-1} u \left(\rho + \frac{d}{dt}\right) \begin{pmatrix} u \\ v \end{pmatrix} \theta$$

with

(2.4)
$$S(u, v) := \frac{1}{2}(-v, u)Q\begin{pmatrix} u\theta \\ v\theta \end{pmatrix} + 3\sigma_1^{\theta}(u)u\theta \text{ and } \rho := \frac{d}{dt}(\log(1 - \hat{u}_0)).$$

Here the map $Q:(\Theta\theta)^2\longrightarrow\Theta^2$ is defined by

(2.5)
$$Q\begin{pmatrix} x \theta \\ y \theta \end{pmatrix} := 2 \begin{pmatrix} y\theta \\ (1 + 2\hat{u}_{1,0}\theta) x - \sigma_1^{\theta}(x)\theta \end{pmatrix}$$

for any $x = \sum_{i=1}^{\infty} x_i \theta^i$ and $y = \sum_{i=1}^{\infty} y_i \theta^i$ in Θ , where Θ is the set of formal power series of θ without constant terms.

As the principal parts of (2.3) are expressed by the map Q, we construct the solution (u, v) so that it is a linear combination of eigenvector $A(\lambda)$'s of Q. Here $A(\lambda)$ is said to be the eigenvector corresponding to an eigenvalue λ of Q if $A(\lambda)$ satisfies $Q(A(\lambda)\theta) = \lambda A(\lambda)\theta$. We can see that the eigenvalue λ of Q is a root of the algebraic equation

(2.6)
$$\Lambda(\lambda, t) := g(\lambda)^m - \sum_{k=1}^m \hat{u}_{k, 0} g(\lambda)^{m-k} = 0, \quad g(\lambda) := \frac{\lambda^2 - 8\hat{u}_{1, 0}}{4},$$

216 Yoko Umeta

where $\hat{u}_{k,0}$ denote the coefficient of θ^k in \hat{u}_0 given by (2.1). Note that $\Lambda(\lambda, t)$ is an even function of λ . Let $\nu_{\pm 1}(t), \ldots, \nu_{\pm m}(t)$ be the roots of the algebraic equation (2.6) of λ with convention $\nu_k = -\nu_{-k}$ ($1 \le k \le m$). We denote by E the set of turning points of $(P_1)_m$, i.e. the zero set of the discriminant of (2.6). Let Ω be an open subset in $\mathbb{C} \setminus E$ and we consider our problem on Ω . For any $\psi(\tau_1, \ldots, \tau_m, t, \theta, \eta) \in \hat{\mathcal{A}}_{\alpha}(\Omega)$, we define the morphism ι by

(2.7)
$$\iota(\psi) = \psi\left(\eta \int_{-t}^{t} \nu_1(s)ds, \dots, \eta \int_{-t}^{t} \nu_m(s)ds, t, \theta, \eta\right)$$

and the operator P is defined by

(2.8)
$$P := \nu_1 \frac{\partial}{\partial \tau_1} + \dots + \nu_m \frac{\partial}{\partial \tau_m} - Q.$$

Then we obtain the partial differential equation associated with (2.3) given by [3]:

(2.9)
$$P\begin{pmatrix} u\theta \\ v\theta \end{pmatrix} \equiv \begin{pmatrix} \begin{pmatrix} \eta^{-1}\rho\theta \\ S(u,v) \end{pmatrix} + u \ P\begin{pmatrix} u\theta \\ v\theta \end{pmatrix} \end{pmatrix} - \begin{pmatrix} u \begin{pmatrix} \eta^{-1}\rho \\ 2\sigma_1^{\theta}(u)u \end{pmatrix} + \eta^{-1} \left(\rho + \frac{\partial}{\partial t}\right) \begin{pmatrix} u \\ v \end{pmatrix} \theta + \eta^{-1} u \left(\rho + \frac{\partial}{\partial t}\right) \begin{pmatrix} u \\ v \end{pmatrix} \theta.$$

Here S(u, v) and ρ have been given by (2.4). Let us recall the definition of instanton-type solutions for $(P_{\rm I})_m$.

Definition 2.1 ([3]). A formal solution (U, V) on Ω of (1.3) is called of instanton-type if (U, V) has the form $(\hat{u}_0, \hat{v}_0) + (1 - \hat{u}_0)(\iota(u), \iota(v))$ for which $(u, v) \in \hat{\mathcal{A}}^2_{\alpha}(\Omega)$ is a solution of (2.9).

The main theorem in [3] is as follows.

Theorem 2.1 ([3, Theorem 5.3]). Let Ω be an open subset in $\mathbb{C} \setminus E$. Then we have instanton-type solutions for $(P_{\mathrm{I}})_m$ with free 2m-parameters $(\beta_{-m}, \ldots, \beta_m) \in \mathbb{C}^{2m}[[\eta^{-1}]]$. Especially, we can construct the solution (u, v) in $\hat{\mathcal{A}}^2_{\alpha}(\Omega)$ for (2.9) of the form

with

(2.11)
$$A(\nu_k) := \begin{pmatrix} a(\nu_k) \\ \frac{\nu_k}{2} a(\nu_k) \end{pmatrix}, \quad a(\nu_k) := \frac{\theta}{1 - g(\nu_k)\theta} = \sum_{j=0}^{\infty} g(\nu_k)^j \theta^{j+1}$$

and

(2.12)
$$f_k(\tau, t; \eta) = \sum_{j=1}^{\infty} \left(\sum_{\ell \ge 0, \ p \in \mathbb{Z}^m, \ 2\ell + |p| = j} f_{k,p,\ell}(t) e^{p \cdot \tau} \right) \eta^{-\frac{j}{2}}.$$

Here $g(\nu_k)$ has been defined by (2.6).

The following lemma shows the more explicit form of the leading term $f_{k,\frac{1}{2}}$ of f_k in (2.10) with respect to η .

Lemma 2.1 ([3, Lemma 4.1 and Proposition 4.10]). We have

(2.13)
$$f_{k,\frac{1}{2}} = \omega_k e^{\tau_k} \quad (1 \le |k| \le m),$$

where ω_k , ω_{-k} $(1 \leq k \leq m)$ are multi-valued holomorphic functions on Ω in the form

(2.14)
$$\omega_{k} = \beta_{k}^{(1)} \exp\left(\int^{t} \left(\frac{1}{\nu_{k}} \sum_{j=1}^{m} \varphi(k, j) \beta_{j}^{(1)} \beta_{-j}^{(1)} \exp\left(-2 \int^{t} h_{j} dt\right) - h_{k}\right) dt\right),$$

$$\omega_{-k} = \beta_{-k}^{(1)} \exp\left(\int^{t} \left(-\frac{1}{\nu_{k}} \sum_{j=1}^{m} \varphi(k, j) \beta_{j}^{(1)} \beta_{-j}^{(1)} \exp\left(-2 \int^{t} h_{j} dt\right) - h_{k}\right) dt\right)$$

with free 2m-parameters $(\beta_{-m}^{(1)}, \ldots, \beta_m^{(1)}) \in \mathbb{C}^{2m}$. Here $\varphi(k, j)$ are rational functions of the variables ν_{ℓ} $(1 \leq \ell \leq m)$ and h_k are multi-valued holomorphic functions of finite determination in Ω with the conditions

(2.15)
$$\varphi(k, j) = \varphi(-k, j) \quad (1 \le j \le m), \quad h_k = h_{-k}.$$

The strict forms of $\varphi(k, j)$ and h_k are also given in [3].

§ 3. Existence of instanton-type solutions with holomorphic functions as coefficients

In this section, we prove that we have a solution $(u, v) \in (\hat{\mathcal{A}}_{\alpha}^{\mathcal{O}}(D))^2$ containing free (m+1)-parameters for (2.9), where $D(\subset \mathbb{C}_t)$ is a specific region described below. In what follows we use the same notations as those in Section 2. For any $1 \leq j \leq m$, we define D_j by

(3.1)
$$D_j := \bigcap_{\substack{i=1,\\i\neq j}}^m D_{j,i} \text{ with } D_{j,i} := \{t \in \mathbb{C}; \nu_i(t) \neq k\nu_j(t) \text{ for any } k \in \mathbb{R} \setminus \{0\}\}.$$

From now on, we consider the case of j=1. For any $t \in D_1 \setminus E$, the line $L := \{k\nu_1(t); k \in \mathbb{R}\}$ divides the complex plane \mathbb{C} into two half-planes. Noticing the relation $\nu_{-k} = -\nu_k$

218 Yoko Umeta

 $(1 \leq k \leq m)$, we see that each half-plane contains m-1 eigenvalues. We may assume that eigenvalues contained in the same half-plane are (ν_2, \ldots, ν_m) and $(\nu_{-2}, \ldots, \nu_{-m})$ respectively. Then, putting $(\beta_{-m}^{(1)}, \ldots, \beta_{-2}^{(1)}) = (0, \ldots, 0)$ in (2.14), we have the leading term $(\sigma_{\alpha}^{\eta}(u), \sigma_{\alpha}^{\eta}(v))$ of (u, v) with m+1 free parameters in the form

(3.2)
$$A(\nu_1)\omega_1 e^{\tau_1} + A(\nu_{-1})\omega_{-1} e^{-\tau_1} + \sum_{k=2}^m A(\nu_k)\omega_k e^{\tau_k}.$$

Here ω_k has been defined by (2.14). Generally, putting $(\beta_{-m}, \ldots, \beta_{-2}) = (0, \ldots, 0)$ in $(\beta_{-m}, \ldots, \beta_m)$ constructed in Theorem 2.1, we can construct the solution (u, v) with free (m+1)-parameters in $\mathbb{C}^{m+1}[[\eta^{-1}]]$ for (2.9).

Next, let us specify a domain on which the solution (u, v) with holomorphic functions as coefficients is defined. By the definition of the operator P, for any $1 \le i \le m$ and $(q_1, q_2, \ldots, q_m) \in (\mathbb{Z} \times \mathbb{Z}_{\geq 0}^{m-1})$, we see

(3.3)
$$P(A(\nu_i)e^{q_1\tau_1+q_2\tau_2+\dots+q_m\tau_m}) = ((q_1\nu_1+q_2\nu_2+\dots+q_m\nu_m)-\nu_i) A(\nu_i)e^{q_1\tau_1+q_2\tau_2+\dots+q_m\tau_m}.$$

Therefore it suffices to take a domain so that $((q_1\nu_1 + q_2\nu_2 + \cdots + q_m\nu_m) - \nu_i)$ is never zero for any $(q_1, q_2, \dots, q_m) \in (\mathbb{Z} \times \mathbb{Z}_{>0}^{m-1})$ except for $q_i = 1$ and $q_k = 0$ $(k \neq i)$.

Let us denote by H one of half planes divided by the line L. Then, as ν_i 's $(2 \leq i \leq m)$ belong to the same half-plane H, we have $q_2\nu_2 + \cdots + q_m\nu_m \in H$ for any $(q_2, \dots, q_m) \in \mathbb{Z}_{\geq 0}^{m-1} \setminus \{0\}$. Hence $q_1\nu_1 + q_2\nu_2 + \cdots + q_m\nu_m$ is never zero for any $(q_1, q_2, \dots, q_m) \in (\mathbb{Z} \times \mathbb{Z}_{\geq 0}^{m-1}) \setminus \{0\}$. By these observations, we see that the zero set of $((q_1\nu_1 + q_2\nu_2 + \cdots + q_m\nu_m) - \nu_i)$ in (3.3) is contained in the union of subsets defined by the following equations.

$$(3.4) q_1\nu_1 + q_2\nu_2 + \dots + q_{i-1}\nu_{i-1} + q_{i+1}\nu_{i+1} + \dots + q_m\nu_m = \nu_i, \ 2 \le i \le m$$

with convention $\nu_{m+1} := 0$. Let K_1 be a compact subset in $D_1 \setminus E$ and \widehat{K}_1 is defined by (3.5)

$$\widehat{K}_1 := \bigcup_{i=2}^m \bigcup_q \left\{ t \in K_1; q_1 \nu_1(t) + \dots + q_{i-1} \nu_{i-1}(t) + q_{i+1} \nu_{i+1}(t) + \dots + q_m \nu_m(t) = \nu_i(t) \right\}.$$

Here q runs through $(q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_m) \in \mathbb{Z} \times \mathbb{Z}_{\geq 0}^{m-2}$. Let Φ be the projective map from the half-plane H to $\widehat{L} := \{k\sqrt{-1}\nu_1(t); k \in \mathbb{R}\} \cap H$ for any $t \in K_1$. We set M and m by

$$M = \max\{\max_{t \in K_1} |\Phi(\nu_i(t))|\}_{i=2}^m \quad \text{and} \quad m = \min\{\min_{t \in K_1} |\Phi(\nu_i(t))|\}_{i=2}^m,$$

respectively. If $t \in \widehat{K}_1$, we have $\sum_{\substack{j=2,\\j\neq i}}^m |\Phi(q_j\nu_j(t))| = |\Phi(\nu_i(t))|$ for some $2 \le i \le m$. Hence

 $m(q_2 + \cdots + q_m) \leq M$. Therefore the second union with respect to q of (3.5) is finite. As, for $t \in K_1 \setminus \widehat{K}_1$, the $((q_1\nu_1 + q_2\nu_2 + \cdots + q_m\nu_m) - \nu_i)$ in (3.3) never become zero, all coefficients in f_k of (2.10) are holomorphic on a connected component of $K_1 \setminus \widehat{K}_1$. Note that, by the same arguments, we have the similar result as above when we put $(\beta_2, \ldots, \beta_m) = (0, \ldots, 0)$ instead of $(\beta_{-m}, \ldots, \beta_{-2}) = (0, \ldots, 0)$. Summing up, we have the theorem below.

For any compact subset K_j in $D_j \setminus E$ $(1 \le j \le m)$, we set (3.6)

$$\widehat{K}_j := \bigcup_{\substack{i=1, \\ i \neq j}}^m \bigcup_{q} \left\{ t \in K_j; q_1 \nu_1(t) + \dots + q_{i-1} \nu_{i-1}(t) + q_{i+1} \nu_{i+1}(t) + \dots + q_m \nu_m(t) = \nu_i(t) \right\},\,$$

where the q_j runs through \mathbb{Z} and the other q_k $(k \neq j)$ runs through $\mathbb{Z}_{\geq 0}$ and $\nu_{m+1} := 0$.

Theorem 3.1. For any $1 \leq j \leq m$, we have instanton-type solutions of $(P_1)_m$ which are defined on $\Omega_j := K_j \setminus \widehat{K}_j$ with free (m+1)-parameters in $\mathbb{C}^{m+1}[[\eta^{-1}]]$. Especially, we can construct the solution (u, v) in $(\hat{\mathcal{A}}^{\mathcal{O}}_{\alpha}(\Omega_j))^2$ for (2.9) of the form (2.10).

References

- [1] T. Aoki, Multiple-scale analysis for Painlevé transcendents with a large parameter, Banach Center Publications 39 (1997) 11–17.
- [2] T. Aoki, Multiple-Scale Analysis for Higher-Order Painlevé Equations, RIMS Kôkyûroku Bessatsu B5 (2008) 89–98.
- [3] T. Aoki, N. Honda and Y. Umeta, On a construction of general formal solutions for equations of the first Painlevé hierarchy I, Adv. in Math. 235 (2013) 496–524.
- [4] N. Honda, On the Stokes geometry of the Noumi-Yamada system, RIMS Kôkyûroku Bessatsu B2 (2007) 45–72.
- [5] T. Kawai, T. Koike, Y. Nishikawa and Y. Takei, On the Stokes geometry of higher order Painlevé equations, Astérisque 297 (2004) 117–166.
- [6] T. Kawai and Y. Takei, Algebraic Analysis of Singular Perturbation Theory, Translations of Mathematical Monographs, Amer. Math. Soc. 227 (2005) 1–129.
- [7] Y. Takei, Singular-perturbative reduction to Birkhoff normal form and instantontype formal solutions of Hamiltonian systems, Publ. RIMS, Kyoto Univ. 34 (1998) 601–627.
- [8] Y. Takei, An explicit description of the connection formula for the first Painlevé equation, Kyoto Univ. Press (2000) 271–296.
- [9] Y. Takei, Instanton-type formal solutions for the first Painlevé hierarchy, Algebraic Analysis of Differential Equations, Springer-Verlag (2008) 307–319.