
RIMS Kôkyûroku Bessatsu
B40 (2013), 147162

Characterization of Stokes graphs and Voros

coefficients of hypergeometric differential equations
with a large parameter

By

Takashi AOKI * and Mika Tanda**

Abstract

Characterization of types of Stokes curves is given in terms of parameters for hypergeo‐
metric differential equations. Voros coefficients of these equations are defined and an explicit
form of one of them is given.

§1. Introduction

The purpose of this paper is to characterize the types of Stokes geometry and

to give an explicit form of Voros coefficients for hypergeometric differential equations
with a large parameter. The notion of Voros coefficients, or Voros symbols, had been

introduced by [14] and effectively used to describe Stokes phenomena with respect to

parameters for WKB solutions of Schrödinger equations with polynomial potentials

([4], [5]). Here the parameters mean those contained in the potentials or the energy

parameters. Recently explicit forms of Voros coefficients have been obtained for Weber

equations ([11], [12]) and for Whittaker equations ([9]). Note that those literatures

studied differential equations with irregular singularities. We define and study Voros

coefficients for hypergeometric differential equations and we give an explicit form of

them for a special case. Voros coefficients play a role in analyzing Stokes phenomena
of WKB solutions with respect to parameters in differential equations. As a matter of
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fact, Voros coefficients undertake such Stokes phenomena through Borel resummation

method. To analyze Stoke phenomena of Voros coefficients, we must know how the types
of Stokes graphs depend on the parameters. Hence we give a characterization of types
Stokes graphs in terms of the parameters. This characterization had been originally
observed by numerical experiments in [13]. We give a proof of this observation in this

paper. Next we define Voros coefficients for hypergeometric equations and give an

explicit form of them for a special configuration of Stokes curves.

§2. Hypergeometric differential equations with a large parameter

We consider the hypergeometric differential equation:

(2.1) x(1-x)\displaystyle \frac{d^{2}w}{dx^{2}}+(c-(a+b+1)x)\frac{dw}{dx}-abw =0,
where a, b and c are complex parameters. We introduce a large parameter  $\eta$ by setting

 a=1/2+ $\eta \alpha$, b=1/2+ $\eta \beta$,  c=1+ $\eta \gamma$ with complex parameters  $\alpha$,  $\beta$ and  $\gamma$ . We regard

 $\eta$ being real positive and large. Next we eliminate the first‐order term by taking

(2.2)  $\psi$=x^{\frac{1}{2}+\frac{ $\eta \gamma$}{2}}(1-x)^{\frac{1}{2}+\frac{ $\eta$( $\alpha$+ $\beta$- $\gamma$)}{2}}w

as unknown function. Then we have

(2.3) (-\displaystyle \frac{d^{2}}{dx^{2}}+$\eta$^{2}Q) $\psi$=0
with

(2.4) Q=Q_{0}+$\eta$^{-2}Q_{1},

(2.5) Q_{0}=\displaystyle \frac{( $\alpha$- $\beta$)^{2}x^{2}+2(2 $\alpha \beta$- $\alpha \gamma$- $\beta \gamma$)x+$\gamma$^{2}}{4x^{2}(x-1)^{2}},

(2.6) Q_{1}=-\displaystyle \frac{x^{2}-x+1}{4x^{2}(x-1)^{2}}.
Equation (2.3) has formal solutions of the form

(2.7) $\psi$_{\pm}=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{a_{h}}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx) ,

which are called WKB solutions. Here a_{h}(h=0,1) is one of the turning points of

(2.3), that is, zeros of Q_{0} and S_{\mathrm{o}\mathrm{d}\mathrm{d}} denotes the odd‐order part of the formal solution

S=\displaystyle \sum_{j=-1}^{\infty}$\eta$^{-j}S_{j} of the Riccati equation

(2.8) \displaystyle \frac{dS}{dx}+S^{2}=$\eta$^{2}Q
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associated with (2.3). We define involutions $\iota$_{j}(j=0,1,2) in the space of parameters

as follows:

$\iota$_{0} : ( $\alpha$,  $\beta$,  $\gamma$) \mapsto( $\beta$,  $\alpha$,  $\gamma$)

(2.9) $\iota$_{1} : ( $\alpha$,  $\beta$,  $\gamma$) \mapsto( $\gamma$- $\alpha$,  $\gamma$- $\beta$,  $\gamma$)

$\iota$_{2} : ( $\alpha$,  $\beta$,  $\gamma$) \mapsto(- $\alpha$, - $\beta$, - $\gamma$)

The potential Q is invariant under those involutions. A Stokes curve emanating from

the turning point a_{h}(h=0,1) is a curve defined by

(2.10) {\rm Im}\displaystyle \int_{a_{h}}^{x}\sqrt{Q_{0}}dx=0
with

(2.11) \displaystyle \sqrt{Q_{0}}=\frac{( $\alpha$- $\beta$)\sqrt{(x-a_{0})(x-a_{1})}}{2x(x-1)}.
A Stokes curve flows into a singular point or a turning point. We say that the Stokes

geometry of (2.3) is non‐degenerate if any Stokes curve does not flow into a turning

point. If the Stokes geometry is non‐degenerate, we can associate a graph with it. The

Stokes graph ([1]) of (2.3) is, by definition, a two‐colored sphere graph consisting of all

Stokes curves (emanating from a_{0} and a_{1} ) as edges, \{a_{0}, a_{1}\} as vertices of the first color

and b_{0}=0, b_{1}=1,  b_{2}=\infty as vertices of the second color. The Stokes graph of (2.1) is,

by definition, that of (2.3).

§3. Characterization of Stokes graphs of hypergeometric differential

equations

In this section we give a topological classification of Stokes graphs of (2.3) in term

of the parameters (;  $\beta$,  $\gamma$) . We define that the sets E_{j}(j=0,1,2) of the parameters

 $\alpha$,  $\beta$,  $\gamma$ as follows:

(3.1)  E_{0}=\{( $\alpha$,  $\beta$,  $\gamma$)\in \mathbb{C}^{3}| $\alpha$\cdot $\beta$\cdot $\gamma$\cdot( $\alpha$- $\beta$) ( $\alpha$- $\gamma$) ( $\beta$- $\gamma$) ( $\alpha$+ $\beta$- $\gamma$)=0\},

(3.2) E_{1}=\{( $\alpha$,  $\beta$,  $\gamma$)\in \mathbb{C}^{3}|{\rm Re} $\alpha$\cdot{\rm Re} $\beta$\cdot{\rm Re}( $\gamma$- $\alpha$)\cdot{\rm Re}( $\gamma$- $\beta$)=0\},

(3.3) E_{2}=\{( $\alpha$,  $\beta$,  $\gamma$)\in \mathbb{C}^{3}|{\rm Re}( $\alpha$- $\beta$)\cdot{\rm Re}( $\alpha$+ $\beta$- $\gamma$)\cdot{\rm Re} $\gamma$=0\}.

If ( $\alpha$,  $\beta$,  $\gamma$) is not contained in E_{0} ,
the turning points and the singular points of (2.1)

are mutually distinct. Moreover, if (;  $\beta$,  $\gamma$) is not contained in E_{1}\cup E_{2} ,
then the Stokes

geometry is non degenerate as the second author has proved the following theorem.

Theorem 3.1. ([13], Theorem 3.1) We assume that (;  $\beta$,  $\gamma$) is not contained in

E_{0}.
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(i) If two distinct turning points are connected by a Stokes curve, then (;  $\beta$,  $\gamma$) belongs
to E_{1}.

(ii) If a Stokes curve forms a closed curve with a single turning point as the base point,
then (;  $\beta$,  $\gamma$) belongs to E_{2}.

We assume that (;  $\beta$,  $\gamma$) is not contained in the sets E_{0}\cup E_{1}\cup E_{2} . We note that the

topological type of a Stokes graph is characterized by its order sequence \hat{n}=(n_{0}, n_{1}, n_{2}) ,

where n_{j} is the number of Stokes curves which flow into the singularity b_{j}(j=0,1,2) .

By the definition, we have n_{0}+n_{1}+n_{2}=6 . Some examples are given in Fig. 3.1 and

Fig. 3.2.

(;  $\beta$,  $\gamma$)=(0.1,2,1) , \hat{n}=(2,2,2) (;  $\beta$,  $\gamma$)=(0.5,0_{:}995_{;}1) , \hat{n}=(4,1,1)
Fig. 3.1

(;  $\beta$,  $\gamma$)=(1.01,2,1) , \hat{n}=(1,1,4) (;  $\beta$,  $\gamma$)=(-0.03,2,1) , \hat{n}=(1,4,1)
Fig. 3.2

Here bullets and white bullets designate turning points and singular points, respectively.
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Next we define the sets $\omega$_{k}(k=1,2,3,4) of the parameters  $\alpha$,  $\beta$,  $\gamma$ as follows:

(3.4)  $\omega$_{1}=\{( $\alpha$,  $\beta$,  $\gamma$)\in \mathbb{C}^{3}|0<{\rm Re} $\alpha$<{\rm Re} $\gamma$<{\rm Re} $\beta$\},

(3.5) $\omega$_{2}=\{( $\alpha$,  $\beta$,  $\gamma$)\in \mathbb{C}^{3}|0<{\rm Re} $\alpha$<{\rm Re} $\beta$<{\rm Re} $\gamma$<{\rm Re} $\alpha$+{\rm Re} $\beta$\},

(3.6) $\omega$_{3}=\{( $\alpha$,  $\beta$,  $\gamma$)\in \mathbb{C}^{3}|0<{\rm Re} $\gamma$<{\rm Re} $\alpha$<{\rm Re} $\beta$\},

(3.7) $\omega$_{4}=\{( $\alpha$,  $\beta$,  $\gamma$)\in \mathbb{C}^{3}|{\rm Re} $\gamma$-{\rm Re} $\beta$<{\rm Re} $\alpha$<0\}

and $\Pi$_{k} by

(3.8) $\Pi$_{k}=\displaystyle \bigcup_{r\in G}r($\omega$_{k}) (k=1,2,3,4) ,

where G is the group generated by $\iota$_{j}(j=0,1,2) . We characterize the types of Stokes

graphs in terms of the parameters. The following theorem had been claimed as a

conjecture based on numerical experiments in [13] and announced in [2].

Theorem 3.2. Let \hat{n} denote the order sequence of the Stokes graph with param‐

eters (;  $\beta$,  $\gamma$) .

(1) If (;  $\beta$,  $\gamma$)\in$\Pi$_{1} ,
then \hat{n}=(2,2,2) .

(2) If (;  $\beta$,  $\gamma$)\in$\Pi$_{2} ,
then \hat{n}=(4,1,1) .

(3) If (;  $\beta$,  $\gamma$)\in$\Pi$_{3} ,
then \hat{n}=(1,4,1) .

(4) If (;  $\beta$,  $\gamma$)\in$\Pi$_{4} ,
then \hat{n}=(1,1,4) .

Remark. For a fixed {\rm Re} $\gamma$>0 , configurations of $\omega$_{k} �s and $\Pi$_{k} �s in the real  $\alpha$- $\beta$

plane are shown in Fig. 3.3.

{\rm Re} {\rm Re} $\beta$

{\rm Re} {\rm Re} $\alpha$

Fig. 3.3

Proof. First we note that \hat{n} is constant on each $\Pi$_{k} since any Stokes curve depends
on (;  $\beta$,  $\gamma$) continuously there. This can be seen as follows. The turning points are

written explicitly in the forms

(3.9) a_{0}, a_{1}=\displaystyle \frac{ $\beta \gamma$+ $\gamma \alpha$-2 $\alpha \beta$\pm 2\sqrt{ $\alpha \beta$( $\gamma$- $\alpha$)( $\gamma$- $\beta$)}}{( $\alpha$- $\beta$)^{2}}.
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The denominator and the real part of inside of the square root of (3.9) never vanishes

in $\Pi$_{k} . Hence they are continuous functions of (;  $\beta$,  $\gamma$) on $\Pi$_{k} . We take a segment

connecting a_{0} and a_{1} as a branch cut and fix a branch of \sqrt{Q_{0}} . We may write

(3.10) \sqrt{Q_{0}}=\sqrt{x-a_{0}}R_{0}(x) ,

where we set

(3.11) R_{0}(x)=\displaystyle \frac{( $\alpha$- $\beta$)\sqrt{x-a_{1}}}{2x(x-1)}.
There are three Stokes curves emanating from a_{0} and the initial angles $\theta$_{0}, $\theta$_{1}, $\theta$_{2} of these

curves are given by

(3.12) $\theta$_{j}=\displaystyle \frac{2}{3}(j $\pi-\phi$_{0}) (j=0,1,2) .

Here we set $\phi$_{0}=\arg R_{0}(a_{0})=\tan^{-1}{\rm Im} R_{0}(a_{0})/{\rm Re} R_{0}(\mathrm{a}_{0}) . Since {\rm Re} R(a) never

vanishes on $\Pi$_{k}, $\phi$_{0} is a continuous function. Therefore $\theta$_{j} are continuous functions

of (;  $\beta$,  $\gamma$) in $\Pi$_{k} . Each Stokes curve emanating from a_{0} flows into one of regular

singularities. It follows from Lemmas 4.7 and 4.9 in [10] that the destination of each

Stokes curves do not change under any small perturbation of the parameters. This is

also true for Stokes curves emanating from a_{1} . Hence \hat{n} does not change under small

perturbations. Since $\Pi$_{k} is an open set, \hat{n} is constant on the set.

Next we look at a point on the boundary of $\Pi$_{k} , say, (;  $\beta$,  $\gamma$)=(0,2,1) ,
which is

located on the boundary between $\Pi$_{1} and $\Pi$_{4} . For these values of parameters, we have

(3.13) Q_{0}(x)=\displaystyle \frac{(x-\frac{1}{2})^{2}}{(x(x-1))^{2}}.
Then a:=a_{0}=a_{2}=1/2 is a double turning point. Stokes curves are defined by the

equation

(3.14) {\rm Im}\displaystyle \int_{\frac{1}{2}}^{x}\frac{x-\frac{1}{2}}{x(x-1)}dx=\frac{1}{2}{\rm Im}\log(4x(1-x))=0.
Setting x=u+iv(u, v\in \mathbb{R}) ,

we have

(3.15) x(1-x)=v^{2}-u^{2}-u+iv(1-2u) .

(3.16) S=\{u+iv|0<u<1, v=0\}\cup\{u+iv

Hence (3.14) yields the semialgebraic set

u=\displaystyle \frac{1}{2} ,

which consider of one straight line and one segment (cf. Fig. 3.4).
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Fig. 3.4

More precisely, we have four Stokes curves:

(3.17) s_{0}=\displaystyle \{u+iv \frac{1}{2}\leq u<1, v=0\},
(3.18) s_{1}=\displaystyle \{u+iv u=\frac{1}{2}, v\geq 0\},
(3.19) s_{2}=\displaystyle \{u+iv 0<u\leq\frac{1}{2}, v=0\},
(3.20) S3=\displaystyle \{u+iv u=\frac{1}{2}, v\leq 0\}
Note that we have taken

(3.21) \displaystyle \sqrt{Q_{0}}=\frac{x-\frac{1}{2}}{x(x-1)}.
Let f and g denote the real part and the imaginary part of (3.21), respectively. It is

easy to see that s_{0} and s_{2} are the integral curves of the system of differential equations

(3.22) \displaystyle \frac{du}{dt}=-\frac{f}{\sqrt{f^{2}+g^{2}}},
(3.23) \displaystyle \frac{dv}{dt}=\frac{g}{\sqrt{f^{2}+g^{2}}}
with the initial condition (u(0), v(0))=(1/2,0) and the boundary conditions

(3.24) \displaystyle \lim_{t\rightarrow+0}(\frac{du}{dt}, \frac{dv}{dt})=(1,0)
and

(3.25) \displaystyle \lim_{t\rightarrow+0}(\frac{du}{dt}, \frac{dv}{dt})=(-1,0) ,

respectively. On the other hand, s_{1} and S3 are integral curves of

(3.26) \displaystyle \frac{du}{dt}=\frac{f}{\sqrt{f^{2}+g^{2}}},
(3.27) \displaystyle \frac{dv}{dt}=-\frac{g}{\sqrt{f^{2}+g^{2}}}
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with the same initial condition and the boundary conditions

(3.28) \displaystyle \lim_{t\rightarrow+0}(\frac{du}{dt}, \frac{dv}{dt})=(0,1)
and

(3.29) \displaystyle \lim_{t\rightarrow+0}(\frac{du}{dt}, \frac{dv}{dt})=(0, -1) ,

respectively.
Now we consider the Stokes curve s_{2} and analyze the behavior of the curve under

small perturbations of  $\alpha$ . Let  $\epsilon$ be a small positive number and we set (;  $\beta$,  $\gamma$)=( $\epsilon$, 2,1) .

Then the potential turns out to be

(3.30) Q_{0, $\epsilon$}(x)=\displaystyle \frac{( $\epsilon$-2)^{2}x^{2}+2(3 $\epsilon$-2)x+1}{4(x(x-1))^{2}}.
There are two distinct turning simple points a_{0, $\epsilon$} and a_{1, $\epsilon$} . We take a_{0, $\epsilon$} so that the

imaginary part is positive:

(3.31) a_{0, $\epsilon$}=\displaystyle \frac{2-3 $\epsilon$+2\sqrt{2}\sqrt{ $\epsilon$(1- $\epsilon$)}i}{(2- $\epsilon$)^{2}}
(3.32) =\displaystyle \frac{1}{2}+\frac{i}{\sqrt{2}}\sqrt{ $\epsilon$}+O( $\epsilon$)
It is clear that a_{1, $\epsilon$} has a negative imaginary part and

(3.33) a_{1, $\epsilon$}=\displaystyle \frac{1}{2}-\frac{i}{\sqrt{2}}\sqrt{ $\epsilon$}+O( $\epsilon$) .

We see that ( $\epsilon$, 2,1)\in$\Pi$_{1} and hence the Stokes geometry is non‐degenerate. To fix

a branch of \sqrt{Q_{0, $\epsilon$}(x)} , we take two straight segments respectively connecting a_{0, $\epsilon$} and

a=1/2, a_{1, $\epsilon$} and a . The union of these segments will be a branch cut, which will de

denoted by  $\kappa$ . We take the branch so that \sqrt{Q_{0, $\epsilon$}(x)}\sim(1- $\epsilon$/2)/x for sufficiently large

positive x . Then \sqrt{Q_{0, $\epsilon$}(x)} converges locally uniformly to \sqrt{Q_{0}(x)} as  $\epsilon$\rightarrow 0 outside

the branch cut and the singularities. We denote the real part and the imaginary part

of \sqrt{Q_{0, $\epsilon$}(x)} by f_{ $\epsilon$} and g_{ $\epsilon$} , respectively.
There are three Stokes curves emanating from a_{0, $\epsilon$} (resp. a_{1, $\epsilon$} ). The initial direc‐

tions of the curves are computed as follows. Let R(x) denote the function

(3.34) R_{0, $\epsilon$}(x)=\displaystyle \frac{(2- $\epsilon$)\sqrt{x-a_{1, $\epsilon$}}}{2x(x-1)}.
Then we have

(3.35) \sqrt{Q_{0, $\epsilon$}(x)}=\sqrt{x-a_{0, $\epsilon$}}R_{0, $\epsilon$}(x) .
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Here the branches of \sqrt{x-a_{0, $\epsilon$}} and \sqrt{x-a_{1, $\epsilon$}} are taken for which they are asymptot‐

ically the same as \sqrt{x} for positive large x . Let $\phi$_{ $\epsilon$,0} be the argument of R_{0, $\epsilon$}(a_{0, $\epsilon$}) .

Since

(3.36) R_{0, $\epsilon$}(a_{0, $\epsilon$})=-2^{\frac{7}{4}}(1+i)$\epsilon$^{\frac{1}{4}}+O($\epsilon$^{\frac{5}{4}}) ,

we observe that $\phi$_{ $\epsilon$,0}=-\displaystyle \frac{3}{4} $\pi$+O( $\epsilon$) . An initial angle  $\theta$ of Stokes curves satisfies

(3.37) \displaystyle \sin(\frac{3}{2} $\theta$+$\phi$_{ $\epsilon$,0})=0.
Hence we have three initial angles  $\theta$=$\theta$_{j}(j=0,1,2) satisfying

(3.38) $\theta$_{0}=-\displaystyle \frac{1}{6} $\pi$+O( $\epsilon$) ,

(3.39) $\theta$_{1}=\displaystyle \frac{1}{2} $\pi$+O( $\epsilon$) ,

(3.40) $\theta$_{2}=-\displaystyle \frac{5}{6} $\pi$+O( $\epsilon$) .

These three initial angles yield three Stokes curves s_{0, $\epsilon$}, s_{1, $\epsilon$} and s_{2, $\epsilon$}:s_{0, $\epsilon$} and s_{2, $\epsilon$} are

solution curves of

(3.41) \displaystyle \frac{du}{dt}=-\frac{f_{ $\epsilon$}}{\sqrt{f_{ $\epsilon$}^{2}+g_{ $\epsilon$}^{2}}},
(3.42) \displaystyle \frac{dv}{dt}=\frac{g_{ $\epsilon$}}{\sqrt{f_{ $\epsilon$}^{2}+g_{ $\epsilon$}^{2}}}
with the initial condition (u(0), v(0))=({\rm Re} a_{0, $\epsilon$}, {\rm Im} a_{0, $\epsilon$}) and the boundary conditions

(3.43) \displaystyle \lim_{t\rightarrow+0}(\frac{du}{dt}, \frac{dv}{dt})=(\cos$\theta$_{0}, \sin$\theta$_{0})
and

(3.44) \displaystyle \lim_{t\rightarrow+0}(\frac{du}{dt}, \frac{dv}{dt})=(\cos$\theta$_{2}, \sin$\theta$_{2}) ,

respectively. On the other hand, s_{1, $\epsilon$} is the solution curve of

(3.45) \displaystyle \frac{du}{dt}=\frac{f_{ $\epsilon$}}{\sqrt{f_{ $\epsilon$}^{2}+g_{ $\epsilon$}^{2}}},
(3.46) \displaystyle \frac{dv}{dt}=-\frac{g_{ $\epsilon$}}{\sqrt{f_{ $\epsilon$}^{2}+g_{ $\epsilon$}^{2}}}
with the same initial condition as above and the boundary condition

(3.47) \displaystyle \lim_{t\rightarrow+0}(\frac{du}{dt}, \frac{dv}{dt})=(\cos$\theta$_{1}, \sin$\theta$_{1}) .
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Intuitively, it is clear that s_{2, $\epsilon$} tends to s_{2} as  $\epsilon$\rightarrow+0 . To see this, we investigate the

behavior of s_{2, $\epsilon$} near a_{0, $\epsilon$} . Recall that the Stokes curves emanating from a_{0, $\epsilon$} are defined

by

(3.48) {\rm Im}\displaystyle \int_{a_{0 $\epsilon$}}^{x},\sqrt{Q_{0, $\epsilon$}(x)}dx=0.
We may write R(s) in the form

(3.49) R_{0, $\epsilon$}(x)=R_{0, $\epsilon$}(a_{0, $\epsilon$})+(x-a_{0, $\epsilon$})\tilde{R}(x) .

Here we set

\displaystyle \tilde{R}(x)=\frac{2- $\epsilon$}{2x(x-1)}\{\frac{1}{\sqrt{x-a_{1, $\epsilon$}}+\sqrt{a_{0, $\epsilon$}-a_{1, $\epsilon$}}}
(3.50) − \displaystyle \frac{\sqrt{a_{0, $\epsilon$}-a_{1, $\epsilon$}}}{a_{0, $\epsilon$}(a_{0, $\epsilon$}-1)}(x-1+a_{0, $\epsilon$})\}
Using (3.49), we can rewrite the left‐hand side of (3.48) to

(3.51) {\rm Im}(\displaystyle \frac{2}{3}R_{0, $\epsilon$}(a_{0, $\epsilon$})(x-a_{0, $\epsilon$})^{\frac{3}{2}}+(x-a_{0, $\epsilon$})^{\frac{5}{2}}\int_{0}^{1}t^{\frac{3}{2}}\tilde{R}(a_{0, $\epsilon$}+t(x-a_{0, $\epsilon$}))dt) .

We use the polar coordinates: x=a_{0, $\epsilon$}+re^{i $\theta$} . Then we have a defining equation of the

Stokes curves emanating from a_{0, $\epsilon$} of the form

(3.52) \displaystyle \sin(\frac{3}{2} $\theta$+$\phi$_{ $\epsilon$,0})+r $\Phi$(r,  $\theta$)=0.
Here we set

(3.53)  $\Phi$(r,  $\theta$)=\displaystyle \frac{3}{2|R_{0, $\epsilon$}(a_{0, $\epsilon$})|}{\rm Im}(e^{i\frac{5}{2} $\theta$}\int_{0}^{1}t^{\frac{3}{2}}\tilde{R}(a_{0, $\epsilon$}+rte^{i $\theta$})dt)
Let B(z,  $\delta$) denote the open disk of radius  $\delta$>0 with center at z . We set

(3.54) \displaystyle \tilde{B}_{ $\epsilon$}=\bigcup_{z\in $\kappa$}B(Z, \sqrt{\frac{ $\epsilon$}{2}})
and

(3.55) D_{ $\epsilon$}=\displaystyle \{x 0\leq{\rm Re} x\leq\frac{1}{2}, 0\leq{\rm Im} x\leq\sqrt{\frac{ $\epsilon$}{2}}\}-B(0, $\delta$_{0})\cup\tilde{B}_{ $\epsilon$},
where  $\kappa$ is the branch cut we have taken and  $\delta$_{0} a small positive number. By the

definition of \tilde{R} and (3.32), (3.33), we see that

(3.56) \displaystyle \sup_{x\in D_{ $\epsilon$}}|\tilde{R}(x)|=O($\epsilon$^{-\frac{1}{4}})
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and hence, by using (3.36), we have

(3.57) \displaystyle \sup_{x\in D_{ $\epsilon$}}| $\Phi$(r,  $\theta$)|=O($\epsilon$^{-\frac{1}{2}}) .

It follows from the implicit function theorem that equation (3.52) for  $\theta$ has a solution  $\theta$=

$\theta$_{j}(r) near x=a_{0, $\epsilon$} . Clearly  $\theta$=$\theta$_{j}(r) and its continuation represent s_{j, $\epsilon$} . Combining

(3.52) and (3.57) yields

(3.58) $\theta$_{j}-$\theta$_{j}(r)=O(\displaystyle \frac{r}{$\epsilon$^{\frac{1}{2}}})
We consider three points z_{0}, z_{1} and z_{2} defined by

(3.59) z_{0}=a_{0, $\epsilon$}+r_{0}e^{i$\theta$_{2}(r_{0})},
(3.60) z_{1}=a_{0, $\epsilon$}+r_{0}e^{i$\theta$_{2}},

(3.61) z_{2}=\displaystyle \frac{1}{2}-r_{0},
where r_{0} is a positive small number. We can find r_{0} of order \sqrt{ $\epsilon$} so that z_{j}\in D_{ $\epsilon$}
(j=0,1,2) . Note that z_{0}\in s_{2, $\epsilon$} and z_{2}\in s_{2} . Then we have

(3.62) |z_{0}-z_{2}|\leq|z_{0}-z_{1}|+|z_{1}-z_{2}|=O(\sqrt{ $\epsilon$}) .

On the other hand, \sqrt{Q_{0}}-\sqrt{Q_{0, $\epsilon$}} can be rewritten in the form

(3.63) \displaystyle \frac{ $\epsilon$\{(1-\frac{ $\epsilon$}{4})x-\frac{3}{2}\}}{(x-1)(x-\frac{1}{2}+(1-\frac{ $\epsilon$}{2})\sqrt{(x-a_{0, $\epsilon$})(x-a_{1, $\epsilon$})})}
and hence we have

(3.64) \displaystyle \sup_{x\in D_{ $\epsilon$}}|\sqrt{Q_{0}(x)}-\sqrt{Q_{0, $\epsilon$}(x)}|=O(\sqrt{ $\epsilon$}) .

Hence the integral curve of the Cauchy problem (3.41), (3.42) with the initial condi‐

tion (u(0), v(0))=({\rm Re} z_{0}, {\rm Im} z_{0}) and that of (3.22), (3.23) with the initial condition

(u(0), v(0))=({\rm Re} z_{2}, {\rm Im} z_{2}) are very close. Hence s_{2, $\epsilon$} flows into the origin.
We can discuss the Stokes curves emanating from a_{1, $\epsilon$} in a similar way and we find

that s_{2} splits into two Stokes curves which flow into the origin under a small positive

perturbation in  $\alpha$ . Next we consider  s_{0} and the same arguments as above imply s_{0}

splits into two Stokes curves which flow into 1, while s_{1} and S3 are stable under the

perturbation. Thus we conclude that \hat{n}=(2,2,2) if (;  $\beta$,  $\gamma$)\in$\Pi$_{1}.
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Fig. 3.5

Similarly, if we consider a negative perturbation in  $\alpha$
, i.e., take (- $\epsilon$, 2,1) as a

perturbation of (;  $\beta$,  $\gamma$)=(0,2,1) with  $\epsilon$>0 ,
we have \hat{n}=(1,1,4) (cf. Fig. 3.6).

Fig. 3.6

The other cases can be discussed in a similar way if we take (;  $\beta$,  $\gamma$)= (1/2,1,1) and

(;  $\beta$,  $\gamma$)=(1,2,1) for which the Stokes curves are

(3.65) \{x|1<{\rm Re} x, {\rm Im} x=0\}\cup\{x|({\rm Re} x-1)^{2}+({\rm Im} x)^{2}=1, 0<{\rm Re} x\}

and

(3.66) \{x|{\rm Re} x<0, {\rm Im} x=0\}\cup\{x|({\rm Re} x)^{2}+({\rm Im} x)^{2}=1\},

respectively (cf. Fig. 3.7 and Fig. 3.8).

( $\alpha$,  $\beta$,  $\gamma$)=(\displaystyle \frac{1}{2},1- $\epsilon$, 1) (\displaystyle \frac{1}{2},1,1) (\displaystyle \frac{1}{2},1+ $\epsilon$, 1)

Fig. 3.7
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(;  $\beta$,  $\gamma$)=(1- $\epsilon$, 2,1) (1, 2, 1) (1+ $\epsilon$, 2,1)

Fig. 3.8

That is, (;  $\beta$,  $\gamma$)= (\displaystyle \frac{1}{2},2- $\epsilon$, 1) (resp. (\displaystyle \frac{1}{2},2+ $\epsilon$, 1) ) with a small  $\epsilon$>0 yields \hat{n}=(4,1,1)
(resp. \hat{n}=(2,2,2) ) in left‐hand side (resp. right‐hand side) of Fig. 3.7 and (,  $\beta$,  $\gamma$)=
(1- $\epsilon$, 2,1) (resp. (1+ $\epsilon$, 2,1) ) yields \hat{n}=(2,2,2) (resp. \hat{n}=(1,4,1) ) in left‐hand side

(resp. right‐hand side) of Fig. 3.8. This completes the proof of Theorem 3.1.

\square 

§4. Voros coefficients

We consider an integral of the form

(4.1) V=V(,  $\beta$,  $\gamma$) :=\displaystyle \int_{0}^{a_{0}}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ S_{-1})dx,
where one of the turning points, a_{0} is S_{-1}=\sqrt{Q_{0}} and the branch of \sqrt{Q}0 is chosen as

follows: we take a segment connecting the turning points as branch cut and the branch

of \sqrt{Q}0 so that \displaystyle \sqrt{Q_{0}}\sim\frac{ $\beta$- $\alpha$}{x} as  x\rightarrow\infty . Since the residues of  S_{\mathrm{o}\mathrm{d}\mathrm{d}} and  $\eta$ S_{-1} at the origin
coincide (See [7] for the computation of residues of S_{\mathrm{o}\mathrm{d}\mathrm{d}}. ), this integral is well‐defined

for every homotopy class of the path of integration and we have a formal power series

V( $\alpha$,  $\beta$,  $\gamma$) in $\eta$^{-1} . We call V( $\alpha$,  $\beta$,  $\gamma$) the Voros coefficient of (2.3) with respect to (0, a_{0}) .

The Voros coefficient describes the discrepancy between WKB solutions normalized at

a_{0} and those normalized at the origin, that is, when we set

(4.2) $\psi$_{\pm}=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{a_{0}}^{x}S_{\mathrm{o}\mathrm{d}\mathrm{d}}dx)
and

(4.3) $\psi$_{\pm}^{(0)}=\displaystyle \frac{1}{\sqrt{S_{\mathrm{o}\mathrm{d}\mathrm{d}}}}\exp(\pm\int_{0}^{x}(S_{\mathrm{o}\mathrm{d}\mathrm{d}}- $\eta$ S_{-1})dx\pm $\eta$\int_{a_{0}}^{x}S_{-1}dx) ,

we have

(4.4) $\psi$_{\pm}^{(0)}=\exp(\pm V) $\psi$\pm\cdot

Here the paths of integration should be chosen suitably.
We consider the case where (;  $\beta$,  $\gamma$) is sufficiently close to (-0.1,2,1) . In this case

we have two distinct turning points a_{0}, a_{1} on the segment (0,1) in the real axis. We may
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assume 0<{\rm Re} a_{0}<{\rm Re} a_{1}<1 when (;  $\beta$,  $\gamma$) is sufficiently close to (-0.1,2,1) . Then

we can take the segment connecting the origin and a_{0} as the path of integration in (4.1).
When the parameter  $\alpha$ moves from negative to positive, Stokes phenomena occurs for

 $\psi$_{\pm} ,
while no Stokes phenomenon occurs for $\psi$_{\pm}^{(0)} (cf. [8]). That is, V undertakes Stokes

phenomena with respect to parameters.

Theorem 4.1. The Vo ros coefficient with respect to (0, a_{0}) has the following

form:

(4.5) V( $\alpha$,  $\beta$,  $\gamma$)=\displaystyle \frac{1}{2}\sum_{n=2}^{\infty}\frac{B_{n}}{n(n-1)}$\eta$^{1-n}\{(1-2^{1-n})(\frac{1}{( $\gamma$- $\alpha$)^{n-1}}
+\displaystyle \frac{1}{( $\gamma$- $\beta$)^{n-1}}+\frac{1}{$\alpha$^{n-1}}+\frac{1}{$\beta$^{n-1}})+\frac{2}{$\gamma$^{n-1}}\}

Here B_{n}(n=1,2, \cdots) are the Bernoulli numbers defined by

(4.6) \displaystyle \frac{te^{t}}{e^{t}-1}=\sum_{n=0}^{\infty}\frac{B_{n}}{n!}t^{n}

To derive (4.5), basically we use the method developed by Takei [12] and opera‐

tor which give the contiguity relations of solution space of hypergeometric differential

equations [6]:

(4.7) H_{1}(a, b, c)=x\displaystyle \frac{d}{dx}+a:\mathcal{T}(a, b, c)\rightarrow \mathcal{T}(a+1, b, c) ,

(4.8) H_{2}(a, b, c)=x\displaystyle \frac{d}{dx}+b:\mathcal{T}(a, b, c)\rightarrow \mathcal{T}(a, b+1, c) ,

(4.9) B_{3}(a, b, c)=x\displaystyle \frac{d}{dx}+c-1:\mathcal{T}(a, b, c+1)\rightarrow \mathcal{T}(a, b, c) .

Here \mathcal{T}(a, b, c) denotes the solution space of (2.3). These operators yield the following
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system of difference equations for V :

(4.10) V( $\alpha$+$\eta$^{-1},  $\beta$,  $\gamma$)-V( $\alpha$,  $\beta$,  $\gamma$)

=\displaystyle \frac{1}{2}\log\frac{ $\gamma$- $\alpha$-\frac{1}{2}$\eta$^{-1}}{- $\alpha$-\frac{1}{2}$\eta$^{-1}}-\frac{ $\eta$}{2}\{ $\alpha$\log(- $\alpha$)-( $\alpha$+$\eta$^{-1})\log(- $\alpha-\eta$^{-1})
-( $\alpha$- $\gamma$)\log( $\gamma$- $\alpha$)+( $\alpha$+$\eta$^{-1}- $\gamma$)\log( $\gamma$- $\alpha-\eta$^{-1})\},

(4.11) V( $\alpha$,  $\beta$+$\eta$^{-1},  $\gamma$)-V( $\alpha$,  $\beta$,  $\gamma$)

=\displaystyle \frac{1}{2}\log\frac{ $\beta$+\frac{1}{2}$\eta$^{-1}- $\gamma$}{ $\beta$+\frac{1}{2}$\eta$^{-1}}-\frac{ $\eta$}{2}\{ $\beta$\log $\beta$-( $\beta$+$\eta$^{-1})\log( $\beta$+$\eta$^{-1})
-( $\beta$- $\gamma$)\log( $\beta$- $\gamma$)+( $\beta$+$\eta$^{-1}- $\gamma$)\log( $\beta$+$\eta$^{-1}- $\gamma$)\},

(4.12) V( $\alpha$,  $\beta$,  $\gamma$+$\eta$^{-1})-V( $\alpha$,  $\beta$,  $\gamma$)

=\displaystyle \frac{1}{2}\log\frac{ $\gamma$( $\gamma$+$\eta$^{-1})}{( $\gamma$+\frac{1}{2}$\eta$^{-1}- $\alpha$)( $\beta$- $\gamma$-\frac{1}{2}$\eta$^{-1})}-\frac{ $\eta$}{2}\{( $\alpha$- $\gamma-\eta$^{-1})\log(- $\alpha$+ $\gamma$+$\eta$^{-1})
-( $\alpha$- $\gamma$)\log(- $\alpha$+ $\gamma$)+( $\beta$- $\gamma-\eta$^{-1})\log( $\beta$- $\gamma-\eta$^{-1})

-( $\beta$- $\gamma$)\log( $\beta$- $\gamma$)+( $\gamma$+$\eta$^{-1})\log( $\gamma$+$\eta$^{-1})^{2}- $\gamma$\log$\gamma$^{2}\}.
Since the above system contains three variables ( $\alpha$,  $\beta$,  $\gamma$) ,

the method used in [12], [9]
cannot be applied to solve the equation. Thus we employ an argument developed by

Candelpergher‐Coppo‐Delabaere [3]. Main idea is to use a formal differential operator

of infinite order of the form

(4.13) $\eta$^{-1}\displaystyle \partial_{ $\alpha$}(e^{$\eta$^{-1}\partial_{ $\alpha$}}-1)^{-1}=\sum_{n=0}^{\infty}\frac{(-1)^{n}B_{n}}{n!}$\eta$^{-n}\partial_{ $\alpha$}^{n},
where @ $\alpha$=\displaystyle \frac{\partial}{\partial $\alpha$} . The following Lemma plays a role in solving the system.

Lemma 4.2. We have the two formulas:

(4.14) \displaystyle \partial_{ $\alpha$}(e^{$\eta$^{-1}\partial_{ $\alpha$}}-1)^{-1}\log(1+\frac{1}{ $\eta \alpha$})=\frac{1}{ $\alpha$},
(4.15) \displaystyle \partial_{ $\alpha$}(e^{$\eta$^{-1}\partial_{ $\alpha$}/2}-1)^{-1}\log(1+\frac{1}{2 $\eta \alpha$})=\frac{1}{ $\alpha$}.

Detailed computation as well as Voros coefficients with respect other pair of singular

point and turning point or those for other cases of parameters and analysis of Stokes

phenomena for them will be given in our forthcoming paper.
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