
RIMS Kôkyûroku Bessatsu
B40 (2013), 069079

On existence and uniqueness theorems for singular

nonlinear partial differential equations

By

Dennis B. Bacani * and Hidetoshi TAHARA**

Abstract

We present in this survey article all the known results on the existence and uniqueness of

solutions for singular nonlinear partial differential equations of the form

t@u=@t =F (t, x, u, @u=@x) ,

with independent variables (t, x)\in \mathbb{C}\times \mathbb{C} or (t, x)\in \mathbb{R}\times \mathbb{C} ,
and where F(t, x, u, v) is either

holomorphic in (t, x, u, v) or holomorphic in (x, u, v) and only continuous in t.

§1. Introduction

One of the most fundamental results in the theory of partial differential equations
in the complex domain is the Cauchy‐Kowalewski theorem. Let (t, x)\in \mathbb{C}^{2} and consider

the Cauchy problem

(1.1) \displaystyle \frac{\partial u}{\partial t}=F(t, x, u, \frac{\partial u}{\partial x}) , u(0, x)= $\varphi$(x) ,

where F(t, x, u, v) is a holomorphic function in a neighborhood of (0,0, a, b)\in \mathbb{C}_{t}\times
\mathbb{C}_{x}\times \mathbb{C}_{u}\times \mathbb{C}_{v} ,

and  $\varphi$(x) is a holomorphic function in a neighborhood of x=0\in \mathbb{C} that

satisfies  $\varphi$(0)=a and $\varphi$'(0)=b . The theorem asserts that the Cauchy problem (1.1)
has a unique holomorphic solution u(t, x) in a neighborhood of (0,0)\in \mathbb{C}_{t}\times \mathbb{C}_{x}.
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Afterwards, Nagumo [9], Nirenberg [10] and Ovsjannikov [12] extended the study
of the equation (1.1) to the case where F(t, x, u, v) is holomorphic in (x, u, v) and only
continuous in t.

In this survey article, we present all the known results on the existence and unique‐
ness of solutions of the equation

(1.2) t\displaystyle \frac{\partial u}{\partial t}=F(t, x, u, \frac{\partial u}{\partial x})
that fall under the following two categories:

(1) (Holomorphic Category) F(t, x, u, v) is holomorphic in (t, x, u, v) ;

(2) (Continuous Category) F(t, x, u, v) is holomorphic in (x, u, v) but only continu‐

ous in t.

The first category corresponds to the Cauchy‐Kowalewski theorem, while the second

corresponds to the works of [9], [10] and [12].

§2. Holomorphic category

Denote by \mathbb{N} and \mathbb{N}^{*} the sets \{0 , 1, 2, 3, . . : \} and {1, 2, . . . }, respectively. Let (t, x)\in
\mathbb{C}^{2} and consider the singular nonlinear partial differential equation

(2.1) t\displaystyle \frac{\partial u}{\partial t}=F(t, x, u, \frac{\partial u}{\partial x}) .

Suppose that F(t, x, u, v) is a holomorphic function in a neighborhood of the origin

(0,0,0,0)\in \mathbb{C}^{4} and F(0, x, 0,0)\equiv 0 near x=0 . Then, using the Taylor expansion of

F(t, x, u, v) with respect to the variables (t, u, v) ,
we can write the right‐hand side of

equation (2.1) as

F(t, x, u, \displaystyle \frac{\partial u}{\partial x})=a(x)t+ $\lambda$(x)u+b(x)\frac{\partial u}{\partial x}+R_{2}(t, x, u, \frac{\partial u}{\partial x}) ,

where R_{2}(t, x, u, v) is the sum of all the terms in the Taylor expansion whose degrees
with respect to (t, u, v) are at least 2. In this situation, solving (2.1) can be divided into
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three cases:

(C ) b(x)\equiv 0 ;

(C ) b(0)\neq 0 ;

(C_{3}) b(x)=X(x) where  $\gamma$(0)\neq 0 and p\in \mathbb{N}^{*}

In the case (C1), the equation (1.2) is called a Briot‐Bouquet type partial differential

equation with respect to t . Gérard‐Tahara [6] proved the existence and uniqueness of

holomorphic solution of this equation when  $\lambda$(0)\not\in \mathbb{N}^{*} ; Yamazawa [14] then solved the

case  $\lambda$(0)\in \mathbb{N}^{*} . Their results are stated precisely in the following theorem.

Theorem 2.1. Assume that (C) holds. Then, we have the following:

(1) (Gérard‐Tahara [6]) If  $\lambda$(0)\not\in \mathbb{N}^{*} ,
the equation (2.1) has a unique holomorphic

solution u(t, x) in a neighborhood of (0,0)\in \mathbb{C}_{t}\times \mathbb{C}_{x} that satises u(0, x)\equiv 0 near

x=0\in \mathbb{C}.

(2) (Yamazawa [14]) Also in the case  $\lambda$(0)\in \mathbb{N}^{*} but  $\lambda$(x)\neq $\lambda$(0) ,
the equation (2.1) has

a solution u(t, x) in the class \overline{o}_{+} , which is not necessarily holomorphic at (0,0) .

The class \overline{o}_{+} in (2) of Theorem 2.1 is defined as follows. Let \mathcal{R}(\mathbb{C}\backslash \{0\}) be the

universal covering space of \mathbb{C}\backslash \{0\} . Denote by S_{ $\theta$} and D_{r} the sets \{t\in \mathcal{R}(\mathbb{C}\backslash \{0\}) :

|\arg t|< $\theta$\} and \{x\in \mathbb{C} : |x|\leq r\} , respectively. Then \overline{o}_{+} is the set of all holomorphic
functions u(t, x) on \{t\in \mathcal{R}(\mathbb{C}\backslash \{0\}) : 0<|t|< $\rho$(\arg t)\}\times D_{r} for some positive‐valued
continuous function  $\rho$(s) and r>0 that satisfy the condition that for any  $\theta$>0 and

compact subset K of D_{r} ,
there exists a>0 such that

\displaystyle \max_{x\in K}|u(t, x)|=O(|t|^{a}) (as t\rightarrow 0 in S_{ $\theta$} ).

For the second case (C2), by the implicit function theorem we can rewrite (2.1)
into the form

\displaystyle \frac{\partial u}{\partial x}=G(t, x, u, t\frac{\partial u}{\partial t})
and so we can apply the Cauchy‐Kowalewski theorem to this equation with data on

x=0 and arrive at the following result.

Theorem 2.2. Assume that (C) holds. For any holomorphic function  $\phi$(t) with

 $\phi$(0)=0 ,
the equation (2.1) has a unique holomorphic solution u(t, x) in a neighborhood

of (0,0)\in \mathbb{C}_{t}\times \mathbb{C}_{x} that satises u(t, 0)= $\phi$(t) and u(0, x)=0.
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The equation (2.1) is said to be a totally characteristic type partial differential

equation if it satisfies (C_{3}) . In the case where p=1 , Chen‐Tahara [4] and Tahara [13]
established the solvability of the equation when  $\gamma$(0)\in \mathbb{C}\backslash [0, \infty ).

Theorem 2.3. Assume that (C) holds and  p=1 . Then we have the following:

(1) (Chen‐Tahara [4]) If  $\gamma$(0)\in \mathrm{C}[0 ) and i- $\lambda$(0)-j $\gamma$(0)\neq 0 for any (i, j) \in \mathbb{N}^{*}\times \mathbb{N},
then the equation (2.1) has a unique holomorphic solution u(t, x) in a neighborhood

of (0,0)\in \mathbb{C}_{t}\times \mathbb{C}_{x} that satises u(0, x)\equiv 0 near x=0.

(2) (Ta hara [13]) If  $\gamma$(0)\in \mathbb{C}\backslash [0, \infty ), then the equation (2.1) has a solution  u(t, x) in

the class 0_{+} ,
which is not necessarily holomorphic at (0,0) .

On the other hand, for p\geq 2 , Chen‐Luo‐Tahara [5] studied Gevrey type estimates of

formal solutions, and Luo‐Chen‐Zhang [8] showed the solvability in a sectorial domain

by using the summability theory. Before we state their results, let us recall what is

meant by the formal Gevrey class. Let us write the equation (2.1) in the form

t\displaystyle \frac{\partial u}{\partial t}=a(x)t+ $\lambda$(x)u+b(x)\frac{\partial u}{\partial x}+\sum_{i+j+ $\alpha$\geq 2}a_{i,j, $\alpha$}(x)t^{i}u^{j}(\frac{\partial u}{\partial x})^{ $\alpha$}
Set J=\{(i, j,  $\alpha$);i+j+ $\alpha$\geq 2,  $\alpha$>0, a_{i,j, $\alpha$}(0)\neq 0\} and denote by \mathbb{C}[[t, x]] the ring of

formal power series in (t, x) . For s\geq 1 and  $\sigma$\geq 1 ,
the formal Gevrey class, denoted by

\mathbb{C}\{t, x\}_{(s, $\sigma$)} ,
is defined to be the set of all formal power series u(t, x)=\displaystyle \sum_{i\geq 0,j\geq 0}u_{i,j}t^{i}x^{j}

in \mathbb{C}[[t, x]] that satisfy the property:

\displaystyle \sum_{i\geq 0,j\underline{>}0}(i!)^{s-1}(j!)^{ $\sigma$-1}\underline{u_{i,jt^{i}x^{j}}} is convergent.

Theorem 2.4. Assume that (C) holds forp\geq 2 . Then we have the following:

(1) (Chen‐Luo‐Tahara [5]) If  $\lambda$(0)\not\in \mathbb{N}^{*} ,
the equation (2.1) has a unique formal solution

u(t, x) with u(0, x)\equiv 0 that belongs to the formal Gevrey class \mathbb{C}\{t, x\}_{(s, $\sigma$)} for any

(s,  $\sigma$) satisfy ing

(2.2) s\displaystyle \geq 1+\max[0, \displaystyle \sup_{(i,j, $\alpha$)\in J}(\frac{1}{(p-1)(i+j+ $\alpha$-1)})]
and  $\sigma$\geq p/(p-1) .
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(2) In addition, if

(2.3) a_{i,j, $\alpha$}(0)=0 for all  $\alpha$,

then we have  J=\emptyset , and hence, we can take  s=1 and  $\sigma$=p/(p-1) . In this case,

the formal solution u(t, x) is convergent in t and divergent in x of Gevrey order

 $\sigma$=1+1/k (with k=p-1) .

(3) (Luo‐Chen‐Zhang [8]) In (2), the formal solution u(t, x) is k ‐summable in all di‐

rections in the x ‐plane except at most a countable directions belonging to the set

(2.4) \displaystyle \bigcup_{ $\nu$=0}^{k-1}\{ \displaystyle \frac{\arg(z)+2v $\pi$}{k};z\in\{\frac{1}{ $\gamma$}, \frac{1- $\lambda$}{ $\gamma$}, \frac{2- $\lambda$}{ $\gamma$}, \frac{3- $\lambda$}{ $\gamma$}, \}\},
where  $\lambda$= $\lambda$(0) and  $\gamma$= $\gamma$(0) . (As to the meaning of k ‐summability, refeer to [2

In [8], the existence of analytic solution of (2.1) in a sectorial domain is established

without the condition (2.3), but this result is only an application of (3) of Theorem

2.4. At present, it is still open whether it is possible to get a summability result of the

formal solution without assuming (2.3).

§3. Continuous category

In this section, we consider the equation

(3.1) t\displaystyle \frac{\partial u}{\partial t}=F(t, x, u, \frac{\partial u}{\partial x}) ,

where (t, x)\in \mathbb{R}\times \mathbb{C} and F(t, x, u, v) is holomorphic with respect to the variables (x, u, v)
but only continuous in t . We shall state all the known existence and uniqueness results

for the equation (3.1) that correspond to each of the three cases discussed in section 2.

The first attempt for the case (C) under the continuous category was done by
Baouendi‐Goulaouic [3]. They formulated existence and uniqueness theorems for the

equation

t\displaystyle \frac{\partial u}{\partial t}= $\lambda$(x)u+f(t, x)+tG(t, x, u, \frac{\partial u}{\partial x})
in an abstract setting and gave several applications. Their result was then extended to a

wider class of equations by Lope‐Roque‐Tahara [7] using a concept of weight functions.
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A function  $\mu$(t) is said to be a weight function on (0, T] if it is a continuous,

nonnegative, increasing function on (0, T], and

(3.2) \displaystyle \int_{0}^{T}\frac{ $\mu$(s)}{s}ds<+\infty.
Examples of such functions are t^{ $\eta$}

,
1 \log t)^{1+ $\eta$} and 1 \log t ) (\log(-\log t))^{ $\eta$} for any

 $\eta$>0 . Note that for any such weight function  $\mu$(t) , \displaystyle \lim_{t\rightarrow 0} $\mu$(t)=0 . Moreover, the

condition (3.2) allows us to define the function

 $\varphi$(t)=\displaystyle \int_{0}^{t}\frac{ $\mu$(s)}{s}ds, 0\leq t\leq T.
For any r>0, T>0 and R>0 ,

we define the sets D_{R}, W_{r}, X(W) and X(W)
as follows:

D_{R}=\{x\in \mathbb{C};|x|<R\} ;

W_{r}=\{(t, x):0\leq t\leq T and |x|+\displaystyle \frac{ $\varphi$(t)}{r}<R\} ;

X_{0}(W_{r})= {w(t, x)\in C^{0}(W_{r}):w is holomorphic in x for any fixed t };

X_{1}(W_{r})=X_{0}(W_{r})\cap C^{1}(W_{r}\cap\{t>0

Let F(t, x, u, v) be a function on \triangle_{0}=[0, T_{0}]\times D_{R_{0}}\times D_{$\rho$_{0}}\times D_{$\rho$_{0}} for some T_{0}>0,

R_{0}>0 and $\rho$_{0}>0 . Let 0<T<T_{0} and 0<R<R_{0} . Consider the equation (3.1)
under the following conditions:

(A_{1})F(t, x, u, v) is continuous in t and holomorphic in (x, u, v) ;

(A_{2})F(t, x, 0,0)=O((t)) uniformly on D_{R} (as t\rightarrow+0 );

(A_{3})F_{v}(t, x, 0,0)=O((t)) uniformly on D_{R} (as t\rightarrow+0 );

(A_{4}){\rm Re} F_{u}(t, x, 0,0)<-L on [0, T]\times D_{R} for some L>0.

Set a(t, x)=F(t, x, 0,0) ,  $\lambda$(t, x)=F_{u}(t, x, 0,0) and b(t, x)=F_{v}(t, x, 0,0) . Then, using
the Taylor expansion of F(t, x, u, v) with respect to the variables (u, v) ,

we may write

equation (3. 1) as

t\displaystyle \frac{\partial u}{\partial t}=a(t, x)+ $\lambda$(t, x)u+b(t, x)\frac{\partial u}{\partial x}+G_{2}(t, x, u, \frac{\partial u}{\partial x}) ,

where G_{2}(t, x, u, v) is the sum of all the terms in the Taylor expansion whose degrees
with respect to (u, v) are at least 2.
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Theorem 3.1 (Lope‐Roque‐Tahara [7]). Assume that (Al)-(A4) hold. Then

there exist R>0, r>0, M>0 and T>0 with M $\mu$(T)<$\rho$_{0} such that the equa‐

tion (3.1) has a unique solution u(t, x) in X(W) that satises

|u(t, x)|\leq M $\mu$(t) and |\displaystyle \frac{\partial u}{\partial x}(t, x)|\leq M $\mu$(t) on W_{r}.

Remark 3.2. The equation discussed by Baouendi and Goulaouic in [3] corre‐

sponds to the case  $\mu$(t)=t . Since they were interested mainly in getting a solution of

C^{\infty} class with respect to t
,

this restricted case was sufficient for their purpose.

In the case (C2), if we apply the implicit function theorem to equation (3.1), then

the equation can be written in the form

\displaystyle \frac{\partial u}{\partial x}=G(t, x, u, t\frac{\partial u}{\partial t}) ,

where G(t, x, u, v) is holomorphic in (x, u, v) but only continuous in t . At present, we

have no good references that deal with such type of equation.

In the case (C) with p=1 ,
the authors succeeded in getting a good result. We

state this result and give an outline of its proof.

Again, we let 0<T<T_{0}, 0<R<R_{0} ,
and F(t, x, u, v) be a function on \triangle_{0}.

Consider equation (3.1) under the following assumptions:

(B_{1})F(t, x, u, v) is continuous in t and holomorphic in (x, u, v) ;

(B_{2})F(t, x, 0,0)=O((t)) uniformly on D_{R} (as t\rightarrow+0 );

(B_{3})F_{v}(t, 0,0,0)=O((t)) (as t\rightarrow+0 );

(B_{4})F_{v}(0, x, 0,0)=X(x) and {\rm Re} $\gamma$(x)<- $\delta$ on  D_{R} for some  $\delta$>0 ;

(B_{5}){\rm Re} F_{u}(t, x, 0,0)<-L on [0, T]\times D_{R} for some L>0.

Set a(t, x)=F(t, x, 0,0) ,  $\lambda$(t, x)=F_{u}(t, x, 0,0) , b(t)=F_{v}(t, 0,0,0) ,
and c(t, x)=

(F_{v}(t, x, 0,0)-F_{v}(t, 0,0,0))/x . Then, using the Taylor expansion of F(t, x, u, v) with

respect to the variables (u, v) ,
the equation (3.1) may be written as

(3.3) t\displaystyle \frac{\partial u}{\partial t}=a(t, x)+ $\lambda$(t, x)u+(b(t)+xc(t, x))\frac{\partial u}{\partial x}+G_{2}(t, x, u, \frac{\partial u}{\partial x}) ,

where G_{2}(t, x, u, v) represents the sum of all the terms in the Taylor expansion whose

degrees with respect to (u, v) are at least 2.
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Theorem 3.3 (Bacani‐Tahara [1]). Assume that (B_{1})-(B) hold. Then there

exist R>0, r>0, M>0 and T>0 with M $\mu$(T)<$\rho$_{0} such that the equation (3.1)
has a unique solution u(t, x) in X(W) that satises

|u(t, x)|\leq M $\mu$(t) and |\displaystyle \frac{\partial u}{\partial x}(t, x)|\leq M $\mu$(t) on W_{r}.

In [1], Theorem 3.3 is proved using the Banach fixed point theorem (also known as

the contraction mapping principle). Here, we show briefly that this result can also be

proved using the method of Nirenberg [10] and Nishida [11], in a similar manner as it

was used in [7].

Proof of Theorem 3.3. For simplicity, we set

a=a(t, x) ,

\displaystyle \mathcal{P}=t\frac{\partial}{\partial t}- $\lambda$(t, x)-xc(t, x)\frac{\partial}{\partial x}
and

 $\Phi$[u]=b(t)\displaystyle \frac{\partial u}{\partial x}+G_{2}(t, x, u, \frac{\partial u}{\partial x})
Then equation (3.3) may be expressed as

(3.4) \mathcal{P}u=a+ $\Phi$[u].

To solve equation (3.4), we construct a sequence of approximate solutions u_{k}(t, x)
(k=0,1,2, . . where u_{0}(t, x) is a solution of

(3.5) \mathcal{P}u_{0}=a,

and u_{k}(t, x)(k\geq 1) is a solution of

(3.6) \mathcal{P}u_{k}=a+ $\Phi$[u_{k-1}].

The following result guarantees that we can solve equations (3.5) and (3.6).

Proposition 3.4. Let  $\Omega$=\{(s, t, x) : 0<s\leq t and (t, x)\in(0, T]\times D_{R}\}.
For any given g(t, x)\in X_{0}(W_{r}) ,

the equation \mathcal{P}u=g has a unique solution u(t, x) in

X_{1}(W_{r}) ,
and it is given by

w(t, x)=\displaystyle \int_{0}^{t}\exp[\int_{s}^{t} $\lambda$( $\tau$,  $\phi$( $\tau$, t, x))\frac{d $\tau$}{ $\tau$}]g(s,  $\phi$(s, t, x))\frac{ds}{s},
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where  $\phi$(s, t, x) is the unique solution of

(3.7) \left\{\begin{array}{l}
t\frac{\partial $\phi$}{\partial t}-xc(t, x)\frac{\partial $\phi$}{\partial x}=0 on  $\Omega$,\\
 $\phi$(s, s, x)=x on (0, T]\times D_{R}.
\end{array}\right.
Moreover, the following estimates hold on W_{r,R} given any nondecreasing, nonnegative

function  $\psi$(t) :

(a) If |g(t, x)|\leq K $\psi$(t) $\mu$(t) ,
then |w(t, x)|\leq K $\psi$(t) $\varphi$(t) .

(b) If |g(t, x)|\leq K $\psi$(t) and jt; x ) |\leq K_{1} $\psi$(t) ,
then for some H>0 ,

we have

|w(t, x)|\displaystyle \leq\frac{K}{L} $\psi$(t) and |\displaystyle \frac{\partial w}{\partial x}(t, x)|\leq(\frac{K_{1}}{L}+\frac{ $\Lambda$ K}{L^{2}})H $\psi$(t) .

(c) If |g(t, x)|\displaystyle \leq\frac{K $\psi$(t) $\mu$(t)}{R-|x|- $\varphi$(t)/r} ,
then for some Q>0 ,

we have

|w(t, x)|\displaystyle \leq\frac{K $\psi$(t)r}{R-|x|- $\varphi$(t)/r} and |\displaystyle \frac{\partial w}{\partial x}(t, x)|\leq\frac{(4+ $\Lambda$ Q)HK $\psi$(t)r}{R-|x|- $\varphi$(t)/r}.
Now, let 0< $\rho$<$\rho$_{0} and \triangle=[0, T_{0}]\times D_{R}\times D_{ $\rho$}\times D_{ $\rho$} . Suppose that |b(t, x)|\leq

 B(t) on [0, T] for some B>0 ,
and the second order partial derivatives F_{uu}(t, x, u, v) ,

F_{uv}(t, x, u, v) and F_{vv}(t, x, u, v) are bounded by B_{0}, B_{1} and B_{2} , respectively, on \triangle . Set

 C=C_{1}\cdot C_{2} where C_{1}=(B+B_{0}+2B_{1}+B_{2})/ $\mu$(T) and C_{2}=\displaystyle \max\{1, (4+ $\Lambda$ Q)H\} . Then,
choose a sequence \{r_{k}\}_{k=0}^{\infty} that satisfies 0<2Cr_{0}<1 and r_{k}=r_{k-1}(1-(2Cr)) for

k\geq 1 ; this is a decreasing sequence of numbers converging to a positive limit r_{\infty}.

To show the existence of a solution, we first apply (b) of Proposition 3.4 to (3.5)
to obtain a unique solution u_{0}\in X(W) satisfying

jt; x) |\displaystyle \leq\frac{A}{L} $\mu$(t) and |\displaystyle \frac{\partial u_{0}}{\partial x}(t, x)|\leq(\frac{1}{L}+\frac{ $\Lambda$}{L^{2}})AH $\mu$(t) ,

for some A>0 . Next, we choose T>0 sufficiently small so that

(3.8) \displaystyle \max\{|u_{0}|, |\displaystyle \frac{\partial u_{0}}{\partial x}|\}\leq\frac{M $\mu$(t)}{2} on W_{r_{0}},

where M= $\rho$/ $\mu$(T) . Then, we use the following result, which is analogous to Proposition
3.1 in [7], to prove that the approximate solutions converge to a desired solution of (3.1)
on W_{r_{\infty}}.
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Proposition 3.5. For k\geq 1 ,
the following statements hold:

(a) There exists a unique u_{k} in X(W) that satises the equation (3.6).

(b) On W_{r_{k-1}} ,
we have

\displaystyle \max\{|u_{k}-u_{k-1}|, |\displaystyle \frac{\partial}{\partial x}(u_{k}-u_{k-1})|\}\leq\frac{1}{2} . \displaystyle \frac{CM(Cr_{0})^{k-1} $\varphi$(t) $\mu$(t)}{R-|x|- $\varphi$(t)/r_{k-1}}.
(c) On W_{r_{k}} ,

we have

\displaystyle \max\{|u_{k}-u_{k-1}|, |\frac{\partial}{\partial x}(u_{k}-u_{k-1})|\}\leq\frac{M $\mu$(t)}{2^{k+1}}.
(d) On W_{r_{k}} ,

we have

\displaystyle \max\{|u_{k}|, |\frac{\partial u_{k}}{\partial x}|\}\leq\frac{(2^{k+1}-1)M $\mu$(t)}{2^{k+1}}.
The uniqueness of solution of (3.1) in X(W) can be proved in the same way as

in [7]. \square 

In the case (C) with p\geq 2 ,
we have no references at present.
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