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On oscillatory integrals with C^{\infty} phases

By

Joe Kamimoto * and Toshihiro Nose **

§1. Introduction

The purpose of this article is to announce a part of recent results in [10] (see also

[14]). We consider the asymptotic behavior of oscillatory integrals, that is, integrals of

the form

(1.1) I( $\tau$)=\displaystyle \int_{\mathbb{R}^{n}}e^{i $\tau$ f(x)} $\varphi$(x)dx,
for large values of the real parameter  $\tau$ . Here  f is a real valued C^{\infty} smooth function

defined on \mathbb{R}^{n} and  $\varphi$ is a real‐valued  C^{\infty} smooth function whose support is contained

in a small neighborhood of the origin in \mathbb{R}^{n} . Here f and  $\varphi$ are called the phase and the

amplitude, respectively.

Suppose that  f has a critical point at the origin, that is \nabla f(0)=(0, . . :; 0) . By

using famous Hironaka�s resolution of singularities, the following deep results can be

obtained (c.f. [13]). If f is real analytic on a neighborhood of the origin and the

support of  $\varphi$ is contained in a sufficiently small neighborhood of the origin, then the

integral  I() has an asymptotic expansion of the form

(1.2) I( $\tau$)\displaystyle \sim e^{i $\tau$ f(0)}\sum_{ $\alpha$}\sum_{k=1}^{n}C_{ $\alpha$ k}( $\varphi$)$\tau$^{ $\alpha$}(\log $\tau$)^{k-1} as  $\tau$\rightarrow+\infty,

where  $\alpha$ runs through a finite number of arithmetic progressions, not depending on the

amplitude  $\varphi$ ,
which consist of negative rational numbers.

Since we are interested in the largest  $\alpha$ occurring in the asymptotic expansion (1.2),
let us recall important quantities: oscillation index and its multiplicity. Let  S(f) be the
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set of pairs (; k) such that for each neighborhood of the origin in \mathbb{R}^{n}
,
there exists a C^{\infty}

function  $\varphi$ with support in this neighborhood for which  C_{ $\alpha$ k}( $\varphi$)\neq 0 in the asymptotic

expansion (1.2). We denote by ( $\beta$(f),  $\eta$(f)) the maximum of the set S(f) under the

lexicographic ordering, i.e.,  $\beta$(f) is the maximum of values  $\alpha$ for which we can find  k so

that (; k) belongs to S(f); $\eta$(f) is the maximum of integers k satisfying that ( $\beta$(f), k)
belongs to S(f) . We call  $\beta$(f) the oscillation index of f and  $\eta$(f) the multiplicity of its

index.

There have been many interesting studies about the above oscillation index and its

multiplicity ([17],[4],[15],[5],[6],[7],[8],[9], [3], etc.). In particular, an important work of

Varchenko [17] shows that under a certain nondegeneracy condition of the real analytic

phase, the oscillation index can be estimated or exactly determined by using the theory
of toric varieties based on the geometry of the Newton polyhedra of f (see Theorem 3.1

in Section 3). Since his study, the investigation of the behavior of oscillatory integrals
has been more closely linked with the theory of singularities. Refer to the excellent

expositions [1], [12] for studies in this direction.

The purpose of our study is to generalize the above results of Varchenko [17] to

the case that the phase is contained in a certain class of C^{\infty} functions including the

real analytic functions. This class is denoted by \mathcal{E}(U) . In the above investigation
of Varchenko, the function  $\gamma$‐part, which corresponds to each face  $\gamma$ of the Newton

polyhedron, plays an important role. In the real analytic case, the  $\gamma$‐part is easily
defined as a function for every face  $\gamma$ ,

but this definition cannot be directly generalized
to the case of noncompact face in the  C^{\infty} case. From the convex geometrical points of

view (c.f. [18]), we give another definition of the  $\gamma$‐part, which is a natural generalization
of the definition in the real analytic case. We remark that not all smooth functions admit

the  $\gamma$‐part for every face  $\gamma$ of their Newton polyhedra in our sense. The class \mathcal{E}(U) is

defined to be the set of C^{\infty} functions admitting the  $\gamma$‐part for every face  $\gamma$ of  $\Gamma$_{+}(f) .

Many kinds of C^{\infty} functions are contained in \mathcal{E}(U) . In particular, it contains the

Denjoy‐Carleman quasianalytic classes, which are interesting classes of C^{\infty} functions

and have been studied from various points of view (c.f. [2],[16]). We can construct a

toric resolution of singularities in the class \hat{\mathcal{E}}(U) and we succeed to generalize the above

result of Varchenko.

It is known (c.f. [1], [12]) that the asymptotic analysis of oscillatory integral (1.1)
can be reduced to an investigation of the poles of the local zeta function

Z(s)=\displaystyle \int_{\mathbb{R}^{n}}|f(x)|^{s} $\varphi$(x)dx,
where f,  $\varphi$ are the same as in (1.1) with  f(0)=0 . Our substantial analysis is to

investigate the properties of poles of the local zeta function Z(s) where f belongs to

the class \mathcal{E}(U) .



On oscillatory integrals with  c\infty phases 33

Notation and symbols.

(i) We denote by \mathbb{Z}_{+}, \mathbb{Q}+, \mathbb{R}_{+} the subsets consisting of all nonnegative numbers in

\mathbb{Z}, \mathbb{Q}, \mathbb{R}
, respectively.

(ii) We use the multi‐index as follows. For x=(x\mathrm{l}, . ::, x_{n}) , y=(y\mathrm{l}, . ::, y_{n})\in \mathbb{R}^{n},
 $\alpha$=($\alpha$_{1}, \ldots, $\alpha$_{n})\in \mathbb{Z}_{+}^{n} ,

define

|x|=\sqrt{|x_{1}|^{2}++|x_{n}|^{2}}, \langle x, y\rangle=x_{1}y_{1}+\cdots+x_{n}y_{n},

x^{ $\alpha$}=x_{1}^{$\alpha$_{1}}\displaystyle \cdots x_{n}^{$\alpha$_{n}}, \partial^{ $\alpha$}=(\frac{\partial}{\partial x_{1}})^{$\alpha$_{1}}\cdots(\frac{\partial}{\partial x_{n}})^{$\alpha$_{n}},
\langle $\alpha$\rangle=$\alpha$_{1}+\cdots+$\alpha$_{n},  $\alpha$!=$\alpha$_{1}!\cdots$\alpha$_{n}! (0!=1!=1) .

(iii) For A, B\subset \mathbb{R}^{n} and c\in \mathbb{R} ,
we set

A+B= { a+b\in \mathbb{R}^{n};a\in A and b\in B }, c\cdot A=\{ca\in \mathbb{R}^{n};a\in A\}.

§2. Newton polyhedra and the classes \mathcal{E}[P](U) and \mathcal{E}(U)

§2.1. Polyhedra

Let us explain fundamental notions in the theory of convex polyhedra, which are

necessary for our study. Refer to [18], etc. for general theory of convex polyhedra.
For (a, l)\in \mathbb{R}^{n}\times \mathbb{R} ,

let H(a, l) and H^{+}(a, l) be a hyperplane and a closed half space

in \mathbb{R}^{n} defined by

H(a, l):=\{x\in \mathbb{R}^{n};\langle a, x\rangle=l\},

H^{+}(a, l):=\{x\in \mathbb{R}^{n};\langle a, x\rangle\geq l\},

respectively. \mathrm{A} (convex rational) polyhedron is an intersection of closed halfspaces: \mathrm{a}

set P\subset \mathbb{R}^{n} presented in the form P=\displaystyle \bigcap_{j=1}^{N}H^{+}(a^{j}, l_{j}) for some a^{1}
,

.

::, a^{N}\in \mathbb{Z}^{n} and

l_{1} ,
. . .

, l_{N}\in \mathbb{Z}.

Let P be a polyhedron in \mathbb{R}^{n} . A pair (a, l)\in \mathbb{Z}^{n}\times \mathbb{Z} is said to be valid for P if

P is contained in H^{+}(a, l). A fa ce of P is any set of the form F=P\cap H(a, l) ,
where

(a, l) is valid for P . Since (0,0) is always valid, we consider P itself as a trivial face of

P ; the other faces are called proper faces. Conversely, it is easy to see that any face is

a polyhedron. Considering the valid pair (0, -1) ,
we see that the empty set is always a

face of P . Indeed, H^{+}(0, -1)=\mathbb{R}^{n} ,
but  H(0, -1)=\emptyset . The dimension of a face  F is

the dimension of its affine hull of F (i.e., the intersection of all affine flats that contain

F) ,
which is denoted by \dim(F) . The faces of dimensions 0 ,

1 and \dim(P)-1 are called
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vertices, edges and facets, respectively. The boundary of a polyhedron P
,

denoted by
\partial P ,

is the union of all proper faces of P . For a face F, \partial F is similarly defined.

§2.2. Newton polyhedra

Let f be a real‐valued C^{\infty} function defined on a neighborhood of the origin in \mathbb{R}^{n}.

Denote by \hat{f}(x) the Taylor series of f at the origin, i.e.,

\displaystyle \hat{f}(x)=\sum_{ $\alpha$\in \mathbb{Z}_{+}^{n}}c_{ $\alpha$}x^{ $\alpha$}
with c_{ $\alpha$}=\displaystyle \frac{\partial^{ $\alpha$}f(0)}{ $\alpha$!}.

The Newton polyhedron of f is the integral polyhedron:

$\Gamma$_{+}(f)= the convex hull of the set \cup\{ $\alpha$+\mathbb{R}_{+}^{n};c_{ $\alpha$}\neq 0\} in \mathbb{R}_{+}^{n}

(i.e., the intersection of all convex sets which contain \cup\{ $\alpha$+\mathbb{R}_{+}^{n};c_{ $\alpha$}\neq 0 It is known

(cf. [18]) that the Newton polyhedron $\Gamma$_{+}(f) is a polyhedron. The union of the compact

faces of the Newton polyhedron $\Gamma$_{+}(f) is called the Newton diagram  $\Gamma$(f) of f ,
while

the boundary of $\Gamma$_{+}(f) is denoted by @  $\Gamma$ (f). The principal part of  f is defined by

f_{0}(x)=\displaystyle \sum_{ $\alpha$\in $\Gamma$(f)\cap \mathbb{Z}_{+}^{n}}c_{ $\alpha$}x^{ $\alpha$}.
A function f is said to be convenient if the Newton polyhedron $\Gamma$_{+}(f) intersects

all the coordinate axes.

Let q_{0} be the point at which the line $\alpha$_{1}=\cdots=$\alpha$_{n} in \mathbb{R}^{n} intersects the boundary
of $\Gamma$_{+}(f) . The coordinate of q_{0} is called the Newton distance of $\Gamma$_{+}(f) ,

which is denoted

by d(f) , i.e., q_{0}=(d(f), . . :; d(f)) . The face whose relative interior contains q_{0} is called

the principal fa ce of $\Gamma$_{+}(f) ,
which is denoted by $\tau$_{0} . The codimension of $\tau$_{0} is called the

Newton multiplicity of $\Gamma$_{+}(f) ,
which is denoted by m(f) . Here, when q_{0} is a vertex of

$\Gamma$_{+}(f) ,
we consider that $\tau$_{0} is the point q_{0} and m(f)=n.

§2.3. The  $\gamma$‐part

Let  f be a real‐valued C^{\infty} function on a neighborhood V of the origin in \mathbb{R}^{n},

P\subset \mathbb{R}_{+}^{n} a nonempty polyhedron containing $\Gamma$_{+}(f) and  $\gamma$ a face of  P . Note that the

condition: $\Gamma$_{+}(f)\subset P implies that P+\mathbb{R}_{+}^{n}\subset P and, moreover, every valid pair for P is

contained in the set \mathbb{Z}_{+}^{n}\times \mathbb{Z}_{+} . We say that f admits the  $\gamma$ ‐part on an open neighborhood
 U\subset V of the origin if for any x\in U the limit:

(2.1) \displaystyle \lim_{t\rightarrow 0}\frac{f(t^{a_{1}}x_{1},\ldots,t^{a_{n}}x_{n})}{t^{l}}
exists for all valid pairs (a, l)=(a_{1}, . ::, a_{n}, l)\in \mathbb{Z}_{+}^{n}\times \mathbb{Z}_{+} defining  $\gamma$(\mathrm{i}.\mathrm{e}., H(a, l)\cap P= $\gamma$) .

We remark that when f admits the  $\gamma$‐part, the above limits take the same value for any

(a, l) ,
which is denoted by f_{ $\gamma$}(x) . We consider f_{ $\gamma$} as the function on U ,

which is called

the  $\gamma$‐part of  f on U.
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Remark 1. We give many remarks on the  $\gamma$‐part.

(i) The readers might feel that �all� is too strict in the above definition of the admission

of the  $\gamma$‐part. Actually, even if �all� is replaced by �some� in the definition, this

exchange does not affect our analysis.

(ii) The above  $\gamma$‐part  f_{ $\gamma$} is a C^{\infty} function defined on U.

(iii) When  $\gamma$=P, f always admits the  $\gamma$‐part on  V and fp=f . (Consider the case

when (a, l)=(0,0

(iv) When  $\gamma$ is contained in some coordinate plane,  f always admits the  $\gamma$‐part on  U.

Indeed, for any pair (a, l) defining  $\gamma$ ,
we have  l=0 and the limit (2.1) exists.

(v) For a face  $\gamma$ of  P
,

the condition  $\gamma$\cap$\Gamma$_{+}(f)=\emptyset does not always mean that  f admits

the  $\gamma$‐part:  f_{ $\gamma$}\equiv 0 . (See Section 2.5.)

(vi) If f admits the  $\gamma$‐part  f_{ $\gamma$} on U ,
then f_{ $\gamma$} has the quasihomogeneous property:

f_{ $\gamma$}(t_{X;}. ::, t^{a_{n}}x_{n})=t^{l}f(x) for 0<t<1 and x\in U,

where (a, l) is a valid pair defining  $\gamma$.

(vii) For a compact face  $\gamma$ of  $\Gamma$_{+}(f) , f always admits the  $\gamma$‐part near the origin and

 f(x) equals the polynomial \displaystyle \sum_{ $\alpha$\in $\gamma$\cap \mathbb{Z}_{+}^{n}}c_{ $\alpha$}x^{ $\alpha$} ,
which coincides with the definition of

the  $\gamma$‐part of  f in [17].

(viii) Let  $\gamma$ be a noncompact face of  $\Gamma$_{+}(f) . If f admits the  $\gamma$‐part  f_{ $\gamma$} on U ,
then the

Taylor series at the origin of f_{ $\gamma$} is \displaystyle \sum_{ $\alpha$\in $\gamma$\cap \mathbb{Z}_{+}^{n}}c_{ $\alpha$}x^{ $\alpha$}.
(ix) If f is real analytic near the origin and  $\gamma$ is a face of  $\Gamma$_{+}(f) ,

then there exists an

open neighborhood U of the origin such that f admits the  $\gamma$‐part  f_{ $\gamma$} on U and,

moreover, f_{ $\gamma$} is equal to a convergent power series \displaystyle \sum_{ $\alpha$\in $\gamma$\cap \mathbb{Z}_{+}^{n}}c_{ $\alpha$}x^{ $\alpha$} on U.

§2.4. The classes \mathcal{E}[P](U) and \mathcal{E}(U)
Let P\subset \mathbb{R}_{+}^{n} be a polyhedron (possibly an empty set) satisfying P+\mathbb{R}_{+}^{n}\subset P if

 P\neq\emptyset and  U an open neighborhood of the origin. Denote by \mathcal{E}[P](U) the set of C^{\infty}

functions defined on U whose Newton polyhedra are contained in P . Moreover, when

 P\neq\emptyset ,
we denote by \mathcal{E}[P](U) the set of the elements f of \mathcal{E}[P](U) for which f admits

the  $\gamma$‐part on  U for any face  $\gamma$ of  P . We set \mathcal{E}[\emptyset](U)=\{0\} , i.e., the set consisting of

only the function identically equaling zero on U . We define

\mathcal{E}(U)=\{f\in C^{\infty}(U);f\in \mathcal{E}[$\Gamma$_{+}(f)](U)\}.
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Remark 2. In the definition of \mathcal{E}[P](U) , �any face� can be replaced by �any

noncompact facet�

Remark 3. The class \mathcal{E}(U) contains many kinds of C^{\infty} functions. Here U is some

open neighborhood of the origin.

(i) The function identically equaling zero on U is contained in \hat{\mathcal{E}}(U) . (This easily
follows from the definition.)

(ii) Every real analytic function defined on U belongs to \hat{\mathcal{E}}(U) . (From Remark 1 (ix).)

(iii) Every convenient C^{\infty} function defined on U belongs to \mathcal{E}(U) . (From Remark 1

(iv),(vii).)

(iv) In the one‐dimensional case, every C^{\infty} function defined on U ,
whose Newton poly‐

hedron is nonempty, belongs to \mathcal{E}(U) . (This is a particular case of the above (iii).)

(v) The Denjoy‐Carleman classes are contained in \mathcal{E}(U) .

More detailed properties of the classes \hat{\mathcal{E}}[P](U) and \hat{\mathcal{E}}(U) are investigated in [10].

Remark 4. The classes \mathcal{E}[P](U) and \mathcal{E}(U) are useful for the investigation of the

behavior of weighted oscillatory integrals:

ĩ (t;  $\varphi$)=\displaystyle \int_{\mathbb{R}^{n}}e^{itf(x)}g(x) $\varphi$(x)dx,
where f,  $\varphi$ are the same as in (1.1) and  g is a weight function satisfying some conditions

(see [11],[14]).

§2.5. Examples

Let us consider the following two‐dimensional example.

f(x)=f(x_{1}, x_{2})=x_{1}^{2}x_{2}^{2}+x_{1}^{k}e^{-1/x_{2}^{2}} k\in \mathbb{Z}_{+} ;
(2.2)

P=\{($\alpha$_{1}, $\alpha$_{2})\in \mathbb{R}_{+}^{2};$\alpha$_{1}\geq 1, $\alpha$_{2}\geq 1\}.

Here, the value of e^{-1/x_{2}^{2}} at x_{2}=0 is defined by 0 . The set of the proper faces of $\Gamma$_{+}(f)
and P consists of $\gamma$_{1}, $\gamma$_{2}, $\gamma$_{3} and $\tau$_{1}, $\tau$_{2}, $\tau$_{3} ,

where

$\gamma$_{1}=\{(2, $\alpha$_{2});$\alpha$_{2}\geq 2\}, $\gamma$_{2}=\{(2,2 $\gamma$_{3}=\{($\alpha$_{1},2);$\alpha$_{1}\geq 2\},
(2.3)

$\tau$_{1}=\{(1, $\alpha$_{2});$\alpha$_{2}\geq 1\}, $\tau$_{2}=\{(1,1 $\tau$_{3}=\{($\alpha$_{1},1);$\alpha$_{1}\geq 1\}.

It is easy to see that f admits the $\gamma$_{j} ‐part and $\tau$_{j} ‐part, j=2 , 3, near the origin and they
are written as f_{$\gamma$_{2}}(x)=f_{$\gamma$_{3}}(x)=x_{1}^{2}x_{2}^{2} and f_{$\tau$_{2}}(x)=f_{$\tau$_{3}}(x)\equiv 0 . Consider the $\gamma$_{1} ‐part

and $\tau$_{1} ‐part of f . The situation depends on the parameter k as follows.
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\bullet (k=0)f_{$\gamma$_{1}} and f_{$\tau$_{1}} cannot be defined.

\bullet (k=1)f_{$\gamma$_{1}} cannot be defined but f_{$\tau$_{1}}(x)=x_{1}e^{-1/x_{2}^{2}}.

\bullet (k=2)f_{$\gamma$_{1}}(x)=f(x) and f_{$\tau$_{1}}(x)\equiv 0.

\bullet (k\geq 3)f_{$\gamma$_{1}}(x)=x_{1}^{2}x_{2}^{2} and f_{$\tau$_{1}}(x)\equiv 0.

From the above, we see that f\in \mathcal{E}(U) if and only if k\geq 2;f\in \mathcal{E}[P](U) if and only
if k\geq 1 . Notice the case of  k=1;$\tau$_{1}\cap$\Gamma$_{+}(f)=\emptyset but  f_{$\tau$_{1}}(x)=x_{1}e^{-1/x_{2}^{2}}\not\equiv 0 (see
Remark 1 (\mathrm{v}) ).

§3. Main results

Let us explain our results relating to the behavior of the oscillatory integral I()
in (1.1) as  $\tau$\rightarrow+\infty.

Throughout this section, the functions f,  $\varphi$ satisfy the following conditions:

(A)  f : U\rightarrow \mathbb{R} is a C^{\infty} function satisfying that f(0)=0, \nabla f(0)=(0, . ::, 0) and

$\Gamma$_{+}(f)\neq\emptyset ,
where  U is an open neighborhood of the origin in \mathbb{R}^{n} ;

(B)  $\varphi$ : \mathbb{R}^{n}\rightarrow \mathbb{C} is a C^{\infty} function whose support is contained in U.

A C^{\infty} function f is said to be nondegenerate over \mathbb{R} with respect to the Newton

polyhedron $\Gamma$_{+}(f) if for every compact face  $\gamma$ of  $\Gamma$_{+}(f) ,
the polynomial f_{ $\gamma$} satisfies

\displaystyle \nabla f_{ $\gamma$}=(\frac{\partial f_{ $\gamma$}}{\partial x_{1}}, \ldots, \frac{\partial f_{ $\gamma$}}{\partial x_{n}})\neq(0, \ldots, 0) on the set \{x\in \mathbb{R}^{n};x_{1}. . .x_{n}\neq 0\}.
As mentioned in the Introduction, it is known that, if f is real analytic near the

origin, then the oscillatory integral (1.1) has an asymptotic expansion of the form (1.2).
More precisely, Varchenko in [17] and Arnold, Gusein‐Zade and Varchenko [1] obtained

the following results.

Theorem 3.1 ([17],[1]). If f is real analytic on U and is nondegenerate over \mathbb{R}

with respect to its Newton polyhedron, then we have the following.

(i) The progression \{\} in (1.2) belongs to finitely many arithmetic progressions, which

are obtained by using the theory of toric varieties based on the geometry of the

Newton polyhedron $\Gamma$_{+}(f) ;

(ii)  $\beta$(f)\leq-1/d(f) ;

(iii) If at least one of the following conditions is satisfied:
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(a) d(f)>1 ;

(b) f is nonnegative or nonpositive on U ;

(c) 1/d(f) is not an odd integer and f_{$\tau$_{0}} does not vanish on U\cap(\mathbb{R}\backslash \{0\})^{n},

then  $\beta$(f)=-1/d(f) and  $\eta$(f)=m(f) .

Now, let us explain our results. They need the following condition:

(C) f belongs to the class \mathcal{E}(U) and is nondegenerate over \mathbb{R} with respect to its Newton

polyhedron.

Theorem 3.2. If f satisfies the condition (C) and the support of  $\varphi$ is contained

in a sufficiently small neighborhood of the origin, then we have

(3.1)  I( $\tau$)\displaystyle \sim\sum_{ $\alpha$}\sum_{k}C_{ $\alpha$ k}( $\varphi$)$\tau$^{ $\alpha$}(\log $\tau$)^{k-1} as  $\tau$\rightarrow+\infty,

where \{\} belongs to the same progressions as in the case of f_{0} ,
which is the principal

part of f . (Since f_{0} is a polynomial, the precise progressions in the case of f_{0} can be

constructed by using toric resolution as in [17].)

From the above theorem, for a given f satisfying the condition (C), the oscillation

index  $\beta$(f) and its multiplicity  $\eta$(f) can be defined in a similar fashion to the real

analytic case as in the Introduction.

The following theorem shows that the oscillation index  $\beta$(f) can be accurately
estimated by using the Newton distance d(f) .

Theorem 3.3. If f satisfies the condition (C) and the support of  $\varphi$ is contained

in a sufficiently small neighborhood of the origin, then there exists a positive constant

 C( $\varphi$) depending on  $\varphi$ but being independent of  $\tau$ such that

|I( $\tau$)|\leq C( $\varphi$)$\tau$^{-1/d(f)}(\log $\tau$)^{m(f)-1} for  $\tau$\geq 1.

This implies  $\beta$(f)\leq-1/d(f) .

Remark 5. The above theorem is not only a generalization to (ii) in Theorem 3.1

but also is a slightly stronger result even if f is real analytic. Indeed, from the argument
in [17],[1], we obtain the estimate |I( $\tau$)|\leq C( $\varphi$)$\tau$^{-1/d(f)}(\log $\tau$)^{m(f)} for  $\tau$\geq 1 ,

but more

delicate computation of coefficients in the asymptotic expansion (3.1) can improve this.

Next, let us consider the case that the equations  $\beta$(f)=-1/d(f) and  $\eta$(f)=m(f)
hold.
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Theorem 3.4. If f satisfies the condition (C) and at least one of the following
three conditions is satisfied:

(a) d(f)>1 ;

(b) f is nonnegative or nonpositive on U ;

(c) 1/d(f) is not an odd integer and f_{$\tau$_{0}} does not vanish on U\cap(\mathbb{R}\backslash \{0\})^{n},

then the equations  $\beta$(f)=-1/d(f) and  $\eta$(f)=m(f) hold.

Outline of proofs of the above theorems. By careful investigation of the prop‐

erties of functions satisfying the condition (C), we can construct a toric resolution of

singularities for these functions. Once this resolution is obtained, the assertions in the

theorems can be shown through the arguments in Varchenko [17].
In [10], we give not only complete proofs but also more detailed results about the

behavior of oscillatory integrals under the same hypotheses.
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