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Singularity propagation of compressible
perfect fluid in a complex domain

By

KeiSUke UChikOShi *

Abstract

This is a report of an approach to the following problem: Considering a compressible
perfect fluid, how do the singularities propagate in a complex domain?

§1. Introduction

We consider a 2‐D compressible perfect fluid in a complex domain. Let x=

(x_{0}, x_{1}, x_{2})\in \mathrm{C}^{3} . We denote the velocity of the fluid by u(x)=(u_{1}(x), u(x)) and

the density by  $\rho$(x) . We assume that the pressure p is determined by the density

 $\rho$ due to some physical law. Therefore we assume  p=p( $\rho$(x)) . Denoting Lf(x) =

\partial_{x_{0}}f+u_{1}\partial_{x_{1}}f+u_{2}\partial_{x_{2}}f ,
we consider the following Cauchy problem for the Euler sys‐

tem:

(1.1) \left\{\begin{array}{ll}
L $\rho$ =- $\rho$ \mathrm{d}\mathrm{i}\mathrm{v}u, &  $\rho$(0, x_{1}, x_{2}) =$\rho$^{0}(x_{1}, x_{2}) ,\\
Lu_{1}=-\frac{p'( $\rho$)}{ $\rho$}\partial_{x_{1}} $\rho$, & u_{1}(0, x_{1}, x_{2})=u_{1}^{0}(x_{1}, x_{2}) ,\\
Lu_{2}=-\frac{p'( $\rho$)}{ $\rho$}\partial_{x_{2}} $\rho$, & u_{2}(0, x_{1}, x_{2})=u_{2}^{0}(x_{1}, x_{2}) .
\end{array}\right.
Let  $\omega$\subset \mathrm{C}^{3} be a small neighborhood of the origin, and let

$\omega$^{0}= $\omega$\cap\{x_{0}=0\} \subset $\omega$,
Z=$\omega$^{0}\cap\{x_{1}=0\}\subset$\omega$^{0}.

We assume that the initial values $\rho$^{0}, u_{1}^{0}, u_{2}^{0} are holomorphic on the universal covering

space \mathcal{R}($\omega$^{0}\backslash Z) of $\omega$^{0}\backslash Z ,
and they have some regularity up to Z.
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Precisely speaking, we define

\mathcal{O}(\mathcal{R}($\omega$^{0}\backslash Z)) = {holomorphic functions on \mathcal{R}($\omega$^{0}\backslash Z

\mathcal{O}^{j-q}(\mathcal{R}($\omega$^{0}\backslash Z))=\{f(x)\in \mathcal{O}(\mathcal{R}($\omega$^{0}\backslash Z)) ;

\partial_{x}^{ $\alpha$}f(x) is bounded if | $\alpha$|\leq j-1,

x_{1}^{q}\partial_{x}^{ $\alpha$}f(x) is bounded if | $\alpha$|=j }

for j\in \mathrm{Z}_{+}, 0<q<1 . We remark that if f(x_{1}, x_{2})\in \mathcal{O}^{1-q}(\mathcal{R}($\omega$^{0}\backslash Z)) ,
then we can

naturally define the trace f (0, x_{2}) on Z . We assume the following:

A1 We have $\rho$^{0}, u_{1}^{0}, u_{2}^{0}\in \mathcal{O}^{3-q}(\mathcal{R}($\omega$^{0}\backslash Z

A2 p() is holomorphic near  $\rho$= $\rho$(0) ,
and we have

 $\rho$(0)p'( $\rho$(0))\neq 0.

We want to show that the singularities of the solution to (1.1) appear on three complex

hypersurfaces Z_{-}, Z_{0},  Z_{+}\subset $\omega$ ,
which start from  Z at x_{0}=0 . The propagation velocity

of Z_{0} coincides with the fluid velocity, and those of z_{\pm} coincide with (fluid velocity) \pm

(sonic velocity).

Remark. (a) J.‐M. Delort [3] and the author [4] studied the case of an incompressible

perfect fluid, and proved that the singularities are contained in  Z_{0} , propagating at the

fluid velocity.

(b) The author [5] considered the case for irrotational perfect fluid (i.e. the case of

rot u=0) ,
and proved that the singularities are contained in Z_{+}\cup Z_{-} , propagating with

the sonic velocity \sqrt{p'( $\rho$)} forwards and backwards (relative to the fluid movement).
(c) J.‐Y. Chemin [1] considered a compressible perfect fluid in a real space, and

proved that if the initial values are smooth outside of the origin, then the singularities
of the solution propagates on Y\cup Y' . Here Y is the orbit of the fluid issuing from the

origin at the initial time, and Y' is a cone spreading around Y at the sonic velocity.

Remark. From (1.1) we can naturally define \partial_{x_{0}}^{i}u_{j}(0, x_{1}, x_{2}) , \partial_{x_{0}}^{i} $\rho$(0, x_{1}, x_{2})\in \mathcal{O}^{3-i-q}(\mathcal{R}($\omega$^{0}\backslash 
Z)) for 0\leq i\leq 2.

§2. Characteristics

Let \nabla f(x)= (@f(x); | $\alpha$|\leq j) . We denote v(x)=(v_{0}, v_{1}, v_{2})= (; u_{1}, u_{2}) . From

(1.1) we have

(2.1) \left\{\begin{array}{ll}
L(L^{2}-p'(v_{0})\triangle)v=Q(\nabla^{2}v) , & \\
\partial_{x_{0}}^{i}v(0, x_{1}, x_{2})=v^{i}(x_{1}, x_{2}) , & 0\leq i\leq 2.
\end{array}\right.
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Here Q=(Q_{0}, Q_{1}, Q_{2}) is determined by \nabla^{2}v ,
and v^{i}(x_{1}, x_{2})=\partial_{x_{0}}^{i}v(0, x_{1}, x_{2}) is natu‐

rally determined by (1.1). The principal symbol of the above equation is L(L^{2}-p'(v_{0})\triangle) ,

and we define three characteristic functions $\varphi$_{i}(x) for i=-1, 0 ,
1 by the following three

characteristic equations:

(2.2) \left\{\begin{array}{l}
L$\varphi$_{i}(x)=i\sqrt{p'(v_{0})\{(\partial_{x_{1}}$\varphi$_{i}(x))^{2}+(\partial_{x_{2}}$\varphi$_{i}(x))^{2}\}},\\
$\varphi$_{i}(0, x_{1}, x_{2})=x_{1}.
\end{array}\right.
We define Z_{i}=\{x\in $\omega$;$\varphi$_{i}(x)=0\} ,

and sometimes also denote as z_{\pm}=z_{\pm 1} . It follows

that Z_{0} moves at the fluid velocity. To the contrary,  L^{2}-p'(v_{0})\triangle is the wave operator

of the sound, and thus the propagation velocities of  z_{\pm} coincide with the sonic velocity.

Remark. It is well‐known that the characteristic variety of the Euler system is  Z_{-}\cup

 Z_{0}\cup Z_{+}(\mathrm{c}.\mathrm{f}. [2]) .

Remark. Unfortunately, we cannot determine $\varphi$_{i}(x)=0 until we know the solution v.

On the other hand, the solution should be singular along Z_{-}\cup Z_{0}\cup Z_{+} ,
and we cannot

determine the domain of definition for v
,

until we know the characteristic function $\varphi$_{i}.

To avoid such an circular reasoning, we shall use the characteristic coordinate system
below.

At first, we make the following approximation. We have \partial_{x_{2}}$\varphi$_{i}(0, x_{1}, x_{2})=0 ,
and

thus the solution should satisfy

\partial_{x_{2}}$\varphi$_{i}, v(x)-v(0)=\mathrm{O}(|x|) .

It follows that

L$\varphi$_{i} \sim L'$\varphi$_{i}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}(\partial_{x_{0}}+v_{1}(0)\partial_{x_{1}})$\varphi$_{i},

\sqrt{p'(v_{0})}\sim a_{0} \mathrm{d}\mathrm{e}\mathrm{f}=\sqrt{p'(v_{0}(0))}
\neq 0.

We consider the following approximate characteristic equation:

(2.3) \partial_{x_{0}}$\varphi$_{i}'(x)+v_{1}(0)\partial_{x_{1}}$\varphi$_{i}'(x)=ia_{0}\partial_{x_{1}}$\varphi$_{i}'(x) .

The solution is $\varphi$_{i}'(x)=x_{1}+(-v_{1}(0)+ia_{0})x_{0} . We introduce new complex coordinate

system:

\left\{\begin{array}{l}
y_{0}=x_{0},\\
y_{1}=$\varphi$_{i}'(x)/a_{0}=a_{0}^{-1}x_{1}-v_{1}(0)x_{0},\\
y_{2}=x_{2}.
\end{array}\right.
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Then we can expect

Z_{i}=\{$\varphi$_{i}=0\}\subset Z_{i}'=\{|y_{1}+iy_{0}|\leq R|y_{0}

Our purpose is the following:

(a) We want to solve the Euler system at least on the universal covering space \mathcal{R}(X)
of X=C^{3}\backslash Z_{-1}'\backslash Z\'{O}\backslash Z\'{i} =\{|y_{1}+iy_{0}|>R|y_{0}|(-1\leq i\leq 1)\} (near the origin).

(b) For each i_{0}\in\{-1, 0, 1\} and for each \tilde{x}\in \mathcal{R}(X) near Z_{i_{0}}' ,
we want to determine the

characteristic hypersurface Z_{i_{0}}\subset Z_{i_{0}}' ,
and solve the equation outside of Z_{i_{0}}.

In the rest of this report, we explain an approach as follows: We fix an arbitrary
number i_{0}\in\{-1, 0, 1\} . We want to consider another approximation which makes no

errors according to the singularities on Z_{i_{0}} . Afterwards, we prepare a discussion about

the universal covering space, which will be necessary to study many branches of the

solution. For the sake of simplicity, from now on we explain our approach for the case

i_{0}=0.

t_{0}\in C

Figure 1. Domain X
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§3. An approach of approximation

We introduce another coordinate system:

\left\{\begin{array}{l}
t_{0}=x_{0},\\
t_{1}=$\varphi$_{0}/a_{0},\\
t_{2}=x_{2}.
\end{array}\right.
Then we have

(3.1) \left\{\begin{array}{l}
\partial_{x_{0}}=\partial_{t_{0}}+\partial_{x_{0}}$\varphi$_{0}\cdot@_{t_{1}},\\
\partial_{x_{1}}=\partial_{x_{1}}$\varphi$_{0}\cdot\partial_{t_{1}},\\
\partial_{x_{2}}=\partial_{t_{2}}+\partial_{x_{2}}$\varphi$_{0}\cdot@_{t_{1}},
\end{array}\right.
Here $\varphi$_{0}(x) is an unknown function, but if it exists, then we should have

\displaystyle \frac{\partial t}{\partial x}=\left(\begin{array}{lll}
1 & 0 & 0\\
\partial_{x_{0}}$\varphi$_{0} & \partial_{x_{1}}$\varphi$_{0} & \partial_{x_{2}}$\varphi$_{0}\\
0 & 0 & 1
\end{array}\right)
Since \partial_{x_{1}}$\varphi$_{0}\sim 1 ,

this matrix is invertible and we have

\displaystyle \frac{\partial x}{\partial t}=\frac{1}{\partial_{x_{1}}$\varphi$_{0}}\left(\begin{array}{lll}
\partial_{x_{1}}$\varphi$_{0} & 0 & 0\\
-\partial_{x_{0}}$\varphi$_{0} & 1 & -\partial_{x_{2}}$\varphi$_{0}\\
0 & 0 & \partial_{x_{1}}$\varphi$_{0}
\end{array}\right) .

If we can express x as a function x(t) of t
,

then we should have

\left\{\begin{array}{l}
\partial_{t_{0}}x_{1}=-\partial_{x_{0}}$\varphi$_{0}/\partial_{x_{1}}$\varphi$_{0},\\
\partial_{t_{1}}x_{1}=1/\partial_{x_{1}}$\varphi$_{0},\\
\partial_{t_{2}}x_{1}=-\partial_{x_{2}}$\varphi$_{0}/\partial_{x_{1}}$\varphi$_{0}.
\end{array}\right.
Therefore we have

\left\{\begin{array}{l}
\partial_{x_{0}}$\varphi$_{0}=-\partial_{t_{0}}x_{1}/\partial_{t_{1}}x_{1},\\
\partial_{x_{1}}$\varphi$_{0}=1/\partial_{t_{1}}x_{1},\\
\partial_{x_{2}}$\varphi$_{0}=-\partial_{t_{2}}x_{1}/\partial_{t_{1}}x_{1}.
\end{array}\right.
This means that we should rewrite (2.2) (for i=0 ) by

\left\{\begin{array}{l}
-\partial_{t_{0}}x_{1}+v_{1}-v_{2}\partial_{t_{2}}x_{1}=0,\\
x_{1}(0, t_{1}, t_{2})=t_{1}.
\end{array}\right.
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From (2.2), (3.1) we have

L=\partial_{t_{0}}+v_{2}\partial_{t_{2}}+(\partial_{x_{0}}$\varphi$_{0}+v_{1}\partial_{x_{1}}$\varphi$_{0}+v_{2}\partial_{x_{2}}$\varphi$_{0})\partial_{t_{1}}

=\partial_{t_{0}}+v_{2}\partial_{t_{2}},

By a direct calculation we can prove

L(L^{2}-p'(v_{0})\triangle)f=\partial_{t_{0}}(\partial_{t_{0}}^{2}-\partial_{t_{1}}^{2})f

+\displaystyle \sum_{| $\alpha$|=3}(A_{ $\alpha$}\partial_{t}^{ $\alpha$}f+B_{ $\alpha$}\partial_{t}^{ $\alpha$}x_{1})+C.
Here we can neglect A_{ $\alpha$}, B_{ $\alpha$}, C in the following sense: A_{ $\alpha$} is determined by v(t) , X(t)
and the first order derivatives of x_{1}(t) :

A_{ $\alpha$}=A_{ $\alpha$}(v, x_{1}) =A_{ $\alpha$}(v(t), \nabla_{t}^{1}x_{1}(t)) .

B_{ $\alpha$} is determined by v(t) , x_{1}(t) , f(t) ,
and the first order derivatives of x_{1}(t) :

B_{ $\alpha$}=B_{ $\alpha$}(v, x_{1}, f)=B_{ $\alpha$}(v(t), \nabla_{t}^{1}x_{1}(t), f(t)) .

C is determine by v(t) , x_{1}(t) , f(t) ,
and their derivatives of order at most 2:

C=C(v, x_{1}, f) =C(\nabla_{t}^{2}v(t), \nabla_{t}^{2}x_{1}(t), \nabla_{t}^{2}f(t)) .

Furthermore, we have

(3.2) \left\{\begin{array}{l}
A_{ $\alpha$}=B_{ $\alpha$}=0,  $\alpha$=(3,0,0) \mathrm{o}\mathrm{r} (0,3,0),\\
{[}A_{ $\alpha$}]_{x=0}=0,  $\alpha$=(2,1,0) \mathrm{o}\mathrm{r} (1, 2, 0)
\end{array}\right.
This means the following. We can regard t_{2} as a holomorphic parameter, and it does

not affect the singularity propagation. In this sense we can say

L(L^{2}-p'(v_{0})\displaystyle \triangle)f\sim\partial_{t_{0}}(\partial_{t_{0}}^{2}-\partial_{t_{1}}^{2})f+| $\alpha$|=3\sum_{$\alpha$_{2}=0}(A_{ $\alpha$}\partial_{t}^{ $\alpha$}f+B_{ $\alpha$}\partial_{t}^{ $\alpha$}x_{1})
without affecting the singularity propagation. Sometimes X(t) is more temperate than

f(t) ,
and from (3.2) we can say

L(L^{2}-p'(v_{0})\triangle)f\sim\partial_{t_{0}}(\partial_{t_{0}}^{2}-\partial_{t_{1}}^{2})f

without affecting the singularity propagation along \{t_{1}=0\} at all, and along other

singularity sets too much. Let $\Lambda$_{j}=\partial_{t_{0}}-j\partial_{t_{1}} for j=-1, 0 ,
1. Therefore we have
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$\Lambda$_{-1}$\Lambda$_{0}$\Lambda$_{1}=\partial_{t_{0}}(\partial_{t_{0}}^{2}-\partial_{t_{1}}^{2}) . We rewrite (2.1) in the following form:

(3.3) \left\{\begin{array}{l}
$\Lambda$_{-1}$\Lambda$_{0}$\Lambda$_{1}v_{j} =-\sum_{| $\alpha$|=3}A_{ $\alpha$}(v, x_{1})\partial_{t}^{ $\alpha$}v_{j}\\
+B_{ $\alpha$}(v, x_{1}, v_{j})\partial_{t}^{ $\alpha$}x_{1}-C(v, x_{1}, v_{j}) ,\\
$\Lambda$_{0}x_{1} =v_{1}-v_{2}\partial_{t_{2}}x_{1},\\
@_{x_{0}}^{i}v(0, x_{1}, x_{2}) =v^{i}(x_{1}, x_{2}) , 0\leq i\leq 2\\
x_{1}(0, t_{1}, t_{2}) =t_{1}.
\end{array}\right.
We regard the right hand side as an error term, and solve the equation by iteration.

Remark. In (3.3) we can replace the initial condition for v by

v(0, t_{1}, t_{2}) =v^{0}(t_{1}, t_{2}) ,

$\Lambda$_{-1}v(0, t_{1}, t_{2}) =v^{1}(t_{1}, t_{2}) ,

$\Lambda$_{1}$\Lambda$_{-1}v(0, t_{1}, t_{2})=v^{2}(t_{1}, t_{2})

changing v^{1} and v^{2} if necessary.

§4. An approach from the geometry

We define

Y=\{|t_{1}\pm t_{0}|>R|t_{0}|/2, t_{1}=0\}.

We remind the reader that

X=\{|y_{1}+iy_{0}|>R|y_{0}|(-1\leq i\leq 1

y=(x_{0}, $\varphi$_{0}'/a_{0}, x_{2}) ,

t=(x_{0}, $\varphi$_{0}/a_{0}, x_{2}) .

From (2.2) and (2.3) we have $\varphi$_{0}- ,Ó =O(|x|^{2}) . Therefore we can expect

X\cap $\omega$\subset Y\cap $\omega$,

if  $\omega$\subset \mathrm{C}^{3} is a small neighborhood of the origin. Therefore we want to solve the

Cauchy problem on \mathcal{R}(Y) ,
instead of \mathcal{R}(X) . Furthermore, Y is the complement of two

approximate singularity sets \{|t_{1}\pm t_{0}|\leq R|t_{0}|/2\} and one true singularity set \{t_{1}=0\}.
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Figure 2. Domain \mathrm{Y}Figure 2.

t\in C

)omain Y

A point \tilde{t}^{*}\in \mathcal{R}(Y) corresponds to the homotopy class [] in Y of a continuous curve

 $\gamma$\subset Y from a base point A(0,  $\epsilon$, 0) to P(t_{0}^{*}, t_{1}^{*}, t_{2}^{*}) .

We can show that an arbitrary curve  $\gamma$ from  A to P is homptopically equivalent to

$\gamma$_{0}+$\gamma$' in Y . Here $\gamma$_{0} is a curve in the initial hyperplane \{t\in Y;t_{0}=0\} from A(0,  $\epsilon$, 0)
to P'(0, t_{1}^{*}, t_{2}^{*}) ,

and $\gamma$_{1} is a curve in \{t\in X;t_{1}=t_{1}^{*}, t_{2}=t_{2}^{*}\} from P'(0, t_{1}^{*}, t_{2}^{*}) to

P(t_{0}^{*}, t_{1}^{*}, t_{2}^{*}) .

In order to calculate the value of the solution at \tilde{t}^{*}
,

we need to continue the solution

along  $\gamma$\sim$\gamma$_{0}+$\gamma$' ,
from A to P . But the value of the solution is given along $\gamma$_{0} from

the beginning as the initial value. Therefore we need to consider how we can continue

the solution along $\gamma$' ,
from P' to P.

As before, we denote  $\Lambda$=$\Lambda$_{-1}$\Lambda$_{0}$\Lambda$_{1} ,
where $\Lambda$_{j}=\partial_{t_{0}}-j\partial_{t_{1}} for j=-1, 0 ,

1. There‐

fore we have  $\Lambda$=\partial_{t_{0}}(\partial_{t_{0}}^{2}-\partial_{t_{1}}^{2}) . \mathrm{W} consider some given functions f(t)=(f_{1}(t), f(t))
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t\in C

Figure 3.

r_{Jpj}\in c

Figure 4. path $\gamma$_{0}+$\gamma$'
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and g(t) on \mathcal{R}(Y\cap $\omega$) ,
and consider the following Cauchy problem there:

(4.1) \left\{\begin{array}{ll}
 $\Lambda$ v & =f,\\
$\Lambda$_{0}x_{1} & =g,\\
v(0, t_{1}, t_{2}) & =v^{0}(t_{1}, t_{2}) ,\\
$\Lambda$_{-1}v(0, t_{1}, t_{2}) & =v^{1}(t_{1}, t_{2}) ,\\
$\Lambda$_{1}$\Lambda$_{-1}v(0, t_{1}, t_{2}) & =v^{2}(t_{1}, t_{2}) ,\\
t_{1}(0, t_{1}, t_{2}) & =t_{1}.
\end{array}\right.
We have

$\Lambda$_{1}$\Lambda$_{-1}v(t^{*})=\displaystyle \int_{0}^{t_{0}^{*}}f(t_{0}, t_{1}^{*}, t_{2}^{*})dt_{0}+v^{0}(t_{1}^{*}, t_{2}^{*}) .

Precisely speaking, the branch corresponding to the above \tilde{t}^{*} is given by

$\Lambda$_{1}$\Lambda$_{-1}v(\displaystyle \tilde{t}^{*})=\int_{$\gamma$'}f(s, t_{1}^{*}, t_{2}^{*})ds+v^{0}(P') .

Here $\gamma$' and P' was previously defined for \tilde{t}^{*} . Similarly we have

x_{1}(\displaystyle \tilde{t}^{*}) =\int_{ $\gamma$}, g(s, t_{1}^{*}, t_{2}^{*})ds+t_{1},

$\Lambda$_{-1}v(\displaystyle \tilde{t}^{*}) =\int_{ $\gamma$},, f(s, t_{1}^{*}-s, t_{2}^{*})ds+v^{0}(P'') ,

v(\displaystyle \tilde{t}^{*}) =\int_{ $\gamma$} f(s, t_{1}^{*}+s, t_{2}^{*})ds+v^{0}(P''')
Here we can determine  $\gamma$  $\gamma$  P P in a similar way as before. The author believes

that if the lengths of these paths are sufficiently small, then the our iteration method

works and we can solve the Cauchy problem for the Euler system.
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