<table>
<thead>
<tr>
<th>Title</th>
<th>Scintigraphical Examination of Inflammatory Joints in Arthritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>TANAKA, SEISUKE; UEO, TOYOJI; HAMAMOTO, KEN</td>
</tr>
<tr>
<td>Citation</td>
<td>日本外科宝函 (1972), 41(2): 85-99</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1972-11-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/207952</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Scintigraphical Examination of Inflammatory Joints in Arthritis

by

SEISUKE TANAKA, TOYOJI UEO and KEN HAMAMOTO

Departments of Orthopaedic Surgery and Radiology,
Faculty of Medicine, Kyoto University

Received for Publication July 5, 1972

Introduction

While radiographic changes are of limited value for clinical evaluation of arthritis at early stages, the use of radioisotope has been of significant value in diagnosing various arthritic conditions. External scintillation counting has been introduced as a sensitive method in detecting joint inflammation. Radioactive iodinated human serum albumin (131I-HSA) and technetium (99mTcO₄⁻) have been used to measure the uptake of intravenously injected isotopes by the joint. Advantages of ⁹⁹ᵐTcO₄⁻ over other isotopes are reproducibility for repeat measurement due to a short half-life, and absence of allergic reactions and side effects in the thyroid. This method reflected therapeutic responses of corticoid and chemotherapy.

In the present report, technetium scintigraphy was made in arthritic patients for an objective evaluation of the progression of the arthritis. Therapeutic responses following gold therapy, radiation synovectomy and surgery were followed up in arthritic patients using technetium scintigraphy.

Methods

Fourty-five patients with various joint conditions (rheumatoid arthritis, 39; osteoarthritis, 4; systemic lupus erythematosus, 1; pigmented vilonodular synovitis, 1) were included in this study. Rheumatoid arthritis was defined according to the diagnostic criteria of the American Rheumatism Association. ⁹⁹ᵐTcO₄⁻ was injected intravenously in a dose of 5 mCi. Radioactivity was recorded in chronological sequence for approximately one hour using a 2 x 2" NaI (T1) crystalline directed scintillation counter. As shown in Fig. 1, radioactivity in the affected joint increased immediately and reached a plateau 15 minutes following injection. Thirty minutes after injection, radioactivity of the joint was recorded using a pho/gamma III scintillation camera.
Fig. 1 Radioactivity of knee joint area was recorded using a crystalline directed scintillation counter. Increasing radioactivity on the affected side was more predominant.
Fig. 2 Scintigram 15 minutes after radioisotope injection showed a very different pattern from that of 30 minutes after where radioactivity was markedly increased.

with a 4000 hole parallel collimeter and then was converted to signals X and Y axis for digitalization by a pulse height analyzer with a 1600 channel core memory. As a control for activity in vascular bed and soft tissue, counts were obtained at skin contact over mid forearm or mid thigh. Scintigram was demonstrated in monochrom density gradient which was graded by digitalized value. The outline of joint can also be seen as it corresponded to the scintiphotograph. Antero-posterior and lateral projections were used for elbow, knee and ankle joints in scintigraphy. Scintigraphy were performed in the joint before and after therapy in order to assess therapeutic effects. Repeated scintigraphy, therefore, must be done under equal conditions such as same dose of injection and interval after intravenous injection of isotope. Although radioactivity of the joint was almost the same level after 15 minutes as shown in Fig. 1, scintigram of 15 minutes showed a very different pattern from that of 30 minutes as seen in Fig. 2.

Results

The following cases illustrate the pattern of localization of increased radioactivity
Fig. 3 Scintiphotograph. A: Increasing uptake of radioisotope in the intercarpal joint of left hand, and radiocarpal, intercarpal and carpometacarpal joints, MP joints of middle, ring and little fingers, and PIP joint of index finger of the right hand. B: No increasing radioactivity in knee joints. C, D and E: Note increasing radioactivity in left ankle joint in antero-posterior projection (C), where was confirmed to be Chopart and Lisfranc joints in lateral projection (D and E). (Case 1).
in scintigraphy.

Case 1. A 53-year-old female with definite rheumatoid arthritis, class 2, stage 2, had pain in both wrist joints, metacarpophalangeal (MP) joints of right middle and ring fingers, proximal interphalangeal (PIP) joint of right index finger and left ankle joint. Scintiphotograph showed same localization at the sites of complaints. It was clarified in lateral projection that increased radioactivity was not seen in talocrural or subtalar joint but in Chopart and Lisfranc joints (Fig. 3). Scintigram also showed the same pattern as the scintiphotograph yet was more distinct in the localization and intensity of increased radioactivity than the scintiphotograph (Fig. 4).

Case 2. In a 62-year-old female with definite rheumatoid arthritis, class 1, stage 1, the scintigram showed positive localization in the left knee. Infrapatellar and posterior capsules were more positive than suprapatellar pouch (Fig. 5).

Case 3. A 64-year-old female was diagnosed as having osteoarthritis of the knee joints with persistent effusion. Scintigram did not reveal any increased radioactivity.

Case 4. A 42-year-old female with classical rheumatoid arthritis, class 1, stage 2, had complaints of swelling and pain of ankle joints and MP joint of left 2nd and 3rd toes. Scintigram showed talocrural, subtalar and Chopart joints of right foot, and
left Lisfranc joint and MP joint of left 2nd and 3rd toes (Fig. 6).

In the next cases, changes in scintigraphy were studied utilizing various treatments.

Case 5. A 41-year-old female with classical rheumatoid arthritis, class 2, stage 4. With therapy of gold thiomalate the pain and swelling in both hands diminished. Scintigram before therapy was strongly positive in the wide region from radiocarpal joint to MP joints in both hands. Scintigram in a maintenance therapy dose for 6 months after initial 1000mg of gold thiomalate showed markedly decreased radioactivity remaining only in intercarpal joint (Fig. 7).

Case 6. A 54-year-old female with definite rheumatoid arthritis, class 2, stage 2. The positive localization seen in the scintigram before gold thiomalate therapy corresponded to the pain and swelling areas. Scintigram at 1000mg of gold showed excellent results. Scintigram in therapy of maintenance dose for 8 months after initial 1000mg of gold revealed recurrence of localization without complaints of pain and swelling (Fig. 8).

Case 7. A 52-year-old male with classical rheumatoid arthritis, class 2, stage 2, had complaints of pain and swelling which were relieved by injection of 5 mCi of...
Fig. 6 Scintigram showed increasing radioactivity in talocrural, subtalar and Chopart joints of right foot and also in left Lisfranc joint and MP joint of 2nd and 3rd toes. (Case 4).

colloidal 198Au in both wrist joints. Scintigram showed excellent effect of treatment reflected in even non-injected areas (Fig. 9).

Case 8. A 59-year-old female with classical rheumatoid arthritis, class 2, stage 3. The fingers of the left hand to the ulnar side. Synovectomy in both wrist joints and MP joints of each finger of the left hand with Swanson's silastic prosthesis in MP joints of index and middle fingers was performed. The hand deformity was satisfactorily corrected and the pain relieved. The patients complaints before and after surgery corresponded to scintigraphy (Figs. 10 and 11).

Discussion

Alarcon-Segovia and others1) have reported that isotope scanning of joints using technetium showed a higher uptake by inflamed joints than by normal and degenerated joints. McCarty and others2) have demonstrated a higher correlation between
Fig. 7 A: Scintigram before gold therapy. B: Scintigram following gold therapy showed markedly decreased radioactivity remaining only in intercarpal joint. (Case 5).
Fig. 8 A: Scintigram before gold therapy. B: Scintigram at 1000mg of gold therapy showed excellent results. C: Scintigram in therapy of maintenance dose for 8 months after initial 1000mg of gold revealed recurrence of localization. (Case 6).

Fig. 10 Roentgenogram of right hand. A: Before surgery. Note ulnar deviation of fingers, narrowing of joint space of radiocarpal joint, and MP joint of index and middle fingers, as well as minor destructive changes of metacarpal head of index and middle fingers. B: After surgery. Synovectomy of wrist joint and MP joint of each finger with Swanson's silastic prosthesis replacement in MP joints of index and middle fingers was performed. (Case 8).
Fig. 9 A: Scintigram before radiation synovectomy. B: Scintigram of 6 months after injection of colloidal 198Au into both radiocarpal joints showed excellent effects of treatment reflected in even non-injected areas (Case 7).
Fig. 11 Scintigram (A) before surgery with quite a different pattern from scintigram (B) after surgery, thereby demonstrating excellent results.
scintiphotography and clinical assessment, and mentioned that joint scanning appeared to be one of the most objective tests available for the evaluation of arthritis, particularly in acute stages. The hand has many joints, that is radiocarpal, intercarpal, carpometacarpal, MP, PIP and DIP joints. The foot has also talocrural, subtalar, Chopart, Lisfranc, MP, PIP and DIP joints. Joint scanning is more sensitive in detecting localization of affected areas in several joints than routine roentgenogram, as described by Maxfield and others. Our study made it clear, however, that scintigraphy did not always correlate to clinical findings as there were several cases where uptake of isotope did not increase in affected joints with hydrops. These cases were found more in osteoarthritis in concomitance with hydrops than in rheumatoid arthritis. It is indicated that increasing uptake of radioisotope does reflect active inflammation but not always hydrops.

Changes were observed in the joint before and after treatments such as gold therapy, radiosynovectomy and surgery. As shown in Fig. 7, 8, 9 and 11, joint scintigraphy is a useful means for assessment of inflammation of joint as well as effects of treatment. There was a significant correlation (71%) between clinical findings and scintigraphy, however the sensibility of the latter proved more useful in diagnosis and treatment. It indicates that the scintigraphic method is more useful for patients having inflammatory joints were the x-ray findings or the CRP were negative.

It is considered that the increasing uptake of radioisotope by joints may be due to an increase in soft tissue and blood supply, plus joint effusion when present. Maxfield and others described that the localization is thought to be due to increased permeability of the synovial membrane rather than to increased vascularity. It is reported by Alarcon-Segovia and others, synovial fluid showed moderate radioactivity. As shown in Fig. 12, however, it was clarified that radioactivity in the joint did not decrease by aspiration of synovial fluid within 30 minutes after radioisotope injection and this fluid showed no increased activity.

Fig. 12 Radioactivity in the joint area of both knees was unchanged after aspiration of joint fluid.
Conclusion

It was found that joint scintigraphy was a very useful method for assessment of localization and intensity of joint inflammation. Scintigraphy was also effective in evaluating therapy. Side effects have not been seen with scintigraphy.

Acknowledgements

The authors are indebted to Professors T. Ito and K. Torizuka for their interest in the work and for valuable advice. We also thank to Miss T. Kosaka for excellent technical assistance and Miss M. Ohara for help in the preparation of English manuscript.

References

慢性関節リウマチを含む炎症性関節炎54例に対して，治療の目的，強さ及び治療による炎症の消失を観察的判定することを目的として，放射性同位元素を用いて関節シンチグラフィーを行なった。

用いた核種は 99mTcO₄⁻（半減期6時間）で，その5mCiを静注した。静注後同位元素は直ちに罹患関節に集積し，約30分で最高価に達した。この時点で直径11.5"，4000ホールのコリノメータをもつシンチカメラで同位元素の分布状態を検出した。また同位元素の分布を1600チャンネルのコンピュータをもつ高解像分析器により，X，Y軸の信号を変換してデジタル化し，この数値を階調に応じて色分けしてシンチグラムを作成した。関節の輪郭はシンチカメラでとったシンチ写真と対比して描いた。コントラストとして前腕中央部あるいは大腿中央部をとった。

手では radiocarpal joint, intercarpal joint, carpometacarpal joint, MP関節，PIP関節，DIP関節があり，足では talocarpal joint, subtalar joint, Chopart joint, Lisfranc joint, MP関節，PIP関節，DIP関節と多数の関節があるが，関節シンチグラフィーにより罹患関節の部位と罹患の拡がり及び強さがわかる。慢性関節リウマチでは変性性関節症よりも同位元素は強く集積し，疼痛，腫脹，圧痛等の臨床所見と同じ様を示した。関節シンチグラフィーと臨床所見の一致率は71%であり，シンチグラフィーの方がより敏感である。次に同誌を改めて検査することにより，シンチグラムの所見の確実から炎症の消失をみることが可能である。この際，注射量，99mTcO₄⁻静注後の検査時間を一定にしなければならない。治療として，金療法，198Au や 90Y による radiation synovectomy，手術療法等を行なった症例に対する関節シンチグラフィーから，この方法が炎症の消失をみるために，また治療効果をみるように優れていることを確めた。

次に我々は膝で同位元素が関節に集積した後，関節穿刺を行わない滑液を排除したが，膝関節における同位元素の集積状態が静注後30分以内では変わらず，また排除した滑液中にも放射能の上昇がみられなかったことを確かめた。

99mTcO₄⁻による関節シンチグラフィーにより，副作用を来たした症例は認めなかった。