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Abstract 16 

While neurons in the lateral prefrontal cortex (PFC) encode spatial information during 17 

the performance of working memory tasks, they are also known to participate in 18 

subjective behavior such as spatial attention and action selection. In the present study, 19 

we analyzed the activity of primate PFC neurons during the performance of a free 20 

choice memory-guided saccade task in which the monkeys needed to choose a saccade 21 

direction by themselves. In trials when the receptive field location was subsequently 22 

chosen by the animal, PFC neurons with spatially selective visual response started to 23 

show greater activation before cue onset. This result suggests that the fluctuation of 24 

firing before cue presentation prematurely biased the representation of a certain spatial 25 

location, and eventually encouraged the subsequent choice of that location. In addition, 26 

modulation of the activity by the animal’s choice was observed only in neurons with 27 

high sustainability of activation, and was also dependent on the spatial configuration 28 

of the visual cues. These findings were consistent with known characteristics of PFC 29 

neurons in information maintenance in spatial working memory function. These results 30 

suggest that pre-cue fluctuation of spatial representation was shared and enhanced 31 

through the working memory network in the PFC, and could finally influence the 32 

animal’s free choice of saccade direction. The present study revealed that the PFC 33 

plays an important role in decision-making in a free choice condition, and that the 34 

dynamics of decision-making is constrained by the network architecture embedded in 35 

this cortical area.  36 
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Introduction 41 

Neurophysiological investigations of the prefrontal cortex (PFC) have shown that 42 

neurons in the lateral PFC exhibit a persistent activation during the delay period 43 

(delay-period activity) when the monkey is remembering a particular spatial location 44 

in memory-guided saccade tasks (Funahashi et al. 1989, 1990, 1991, 1993b; 45 

Goldman-Rakic et al. 1990; Constantinidis et al. 2001a, 2001b). This delay-period 46 

activity has been proposed to be a neuronal correlate of active maintenance of 47 

visuospatial information. The role of the PFC in information maintenance has been 48 

further supported by lesion studies in monkeys (Funahashi et al. 1993a; Sawaguchi 49 

and Iba 2001) and humans (D’Esposito and Postle 1999; Mottaghy et al. 2002; Müller 50 

et al. 2002), and by functional brain imaging studies (Courtney et al. 1998; Zarahn 51 

et al. 1999, 2000; Sakai et al. 2002). Thus, the maintenance of task-relevant spatial 52 

information could be one of the key features that could help us to understand the 53 

function of the PFC (Fuster 2008). 54 

Spatially selective activity of PFC neurons has also been proposed to be related to 55 

decision-making process such as response selection (Rowe et al. 2000) and spatial 56 

attention (Lebedev et al. 2004; Messinger et al. 2009). Especially, in human 57 

neuroimaging studies, the PFC has been reported to play a role in self-initiated 58 

behavior and internally-driven decision-making (Frith et al. 1991; Hyder et al. 1997; 59 

Lau et al. 2004a, 2004b; Haynes et al. 2007; Soon et al. 2008). Therefore, the known 60 
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characteristic activation of spatially selective PFC neurons could also be related to 61 

decision-making under these situations. Previous studies have investigated the 62 

neuronal underpinning of decision-making under these situations in the PFC 63 

(Watanabe et al. 2006; Watanabe and Funahashi 2007) and other related areas such as 64 

frontal eye field, supplemental eye field and lateral intraparietal cortex (Coe et al. 65 

2002). These studies reported that the activity of spatially selective neurons is related 66 

to the animal’s own decision about saccade direction. However, in these studies, a 67 

fixed set of spatial locations were repeatedly presented as options for a saccade in a 68 

block of trials. Under this setup, presentation of the spatial cues was less informative 69 

since the available saccade directions were obvious without seeing the actual cue 70 

presentation. The monkey could indeed decide the saccade direction before the 71 

presentation of the visual cues. In addition, due to the predetermined and less various 72 

configuration of the cues, precise analysis about the relationship between neuron’s 73 

receptive field and chosen location was limited. Therefore, further experiment which 74 

enables a close examination of how prefrontal working memory network represents 75 

multiple spatial information and how the activity of PFC neurons is related to the 76 

animal’s own decision about saccade direction is needed. 77 

In the present study, we established a free choice memory-guided saccade task in 78 

which the monkeys by themselves chose the direction of the saccade among multiple 79 

locations changing trial to trial. By varying the options for a choice in each trial, we 80 

could examine the precise time course of decision-making process taken in the 81 
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network of spatially selective PFC neurons. We found that the activity of lateral PFC 82 

neurons could predict the animal’s decision about subsequent eye movement direction 83 

even before cue presentation. This suggests that pre-existing activation state of PFC 84 

neurons immediately before cue presentation influenced the construction of spatial 85 

representation, and eventually biased the animal’s subsequent choice of the saccade 86 

direction. Furthermore, we found that the impact of neuron’s activity on the animal’s 87 

choice was stronger in neurons that showed greater persistent activity in a control 88 

spatial working memory task. In addition, while PFC neurons tended to represent 89 

unchosen spatial location more weakly from the beginning of the trial, this suppression 90 

of unchosen location was modest when chosen and unchosen locations were placed in 91 

the same side of the visual field. This finding was in accord with the known 92 

contralateral organization of spatial working memory network in the PFC. These 93 

results indicate that the role of PFC neurons in a free choice of saccade direction is 94 

linked to their firing property and network background as a neuronal underpinning of 95 

spatial working memory function. Our present study showed a possible overlap of 96 

cellular mechanisms for maintenance and decision-making of spatial information, and 97 

offers a clue to a further investigation on the nature of the spatial information 98 

processing taken place in the PFC. 99 
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Materials and Methods 100 

Animals 101 

We used two female Japanese monkeys (Macaca fuscata; monkeys O and E). The 102 

monkeys were housed in individual stainless steel home cages. Water intake was 103 

restricted in the home cage and provided as a reward in the laboratory. Additional 104 

vegetables and fruits were provided to fulfill the daily requirement of water intake if 105 

necessary. All experimental procedures were conducted in accordance with the 106 

guidelines provided by the Primate Research Institute of Kyoto University and were 107 

approved by the Animal Research Committee at the Graduate School of Human and 108 

Environmental Studies, Kyoto University. 109 

Apparatus 110 

During experimental sessions, the monkey sat in a primate chair in a dark 111 

sound-attenuated room with its head movements restricted by a head-holding 112 

apparatus. We used TEMPO software (Reflective Computing, Olympia, WA, USA) 113 

for task control and data acquisition. Visual stimuli were presented on a 20-inch CRT 114 

monitor (Dell UltraScan D2026T-HS, Dell, Round Rock, TX, USA) that was placed 115 

40 cm from the subject’s face. A scleral search coil system (Enzanshi Kogyo, Tokyo, 116 

Japan) was used to monitor the monkeys’ eye movements (Robinson 1963; Judge et al. 117 

1980). 118 
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Tasks 119 

We used two types of memory-guided saccade tasks (Fig. 1a): an Instructed Choice 120 

Task (ICT) and a Free Choice Task (FCT). The tasks were similar to those used in 121 

previous studies (Watanabe et al. 2006; Watanabe and Funahashi 2007; Mochizuki and 122 

Funahashi 2014). In both tasks, a trial started with the presentation of a fixation point 123 

(white cross, 0.5° in visual angle) at the center of the monitor. After the monkey 124 

maintained fixation on the fixation point for 1.0 s (fixation period), eight peripheral 125 

targets (white cross, 0.75°) were presented at an eccentricity of 13° (0°–315°, 126 

separated by 45°). The monkey had to neglect these targets and keep watching the 127 

fixation point for another 1.0 s (pre-cue period). Next, one or two visual cues (filled 128 

white circle, 2.5°) were briefly blinked over the peripheral targets for 0.5 s (cue 129 

period). In the ICT, one cue was presented at one of the eight target locations. In the 130 

FCT, two identical cues were simultaneously presented at two peripheral locations. 131 

After the cues disappeared, the monkey had to maintain fixation for 1.5–3.0 s random 132 

length of delay (delay period). At the end of the delay period, the fixation point was 133 

turned off, and the monkey was required to make a memory-guided saccade toward the 134 

cued location within 0.5 s. The reward was delivered after the monkey maintained 135 

fixation on the correct target location for 0.3 s. In FCT trials, a saccade to either of the 136 

two locations was regarded as correct. Every correct response was rewarded by a drop 137 

of juice, and there was no difference in the amount of reward regardless of the 138 

monkey’s choice in the FCT or the type of the task. 139 
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The location of the cue in ICT trials was randomly determined as one of the eight 140 

peripheral target locations. Possible cue locations in FCT trials were limited to four 141 

locations (0°, 90°, 180° and 270°) to reduce the number of combinations of cue 142 

locations. In an FCT trial, cues were presented at two of these four possible locations. 143 

Accordingly, trials consisted of eight cue conditions in the ICT and six pair conditions 144 

in the FCT. ICT and FCT trials were intermingled in random order. 145 

During a recording session, we first presented only ICT trials using the eight 146 

possible cue locations as explained above. After we isolated the activity of a single 147 

neuron, we examined whether it had a directionally selective task-related activity 148 

during performance of the ICT. We collected on average 8.3 trials for each of the eight 149 

direction conditions for this screening. We then quantitatively analyzed the activity of 150 

the neuron during several task epochs: cue (0–500 ms after the onset of the cue), early 151 

delay (0–1000 ms after the start of the delay), late delay (1000–500 ms before the end 152 

of the saccade), early response (300–0 ms before the end of the saccade) and late 153 

response (0–300 ms after the end of the saccade). If the neuron exhibited a 154 

significantly different firing rate during any of these epochs compared to the baseline 155 

period (0–1000 ms before the onset of the cue, Dunnett’s test for multiple comparisons, 156 

p<.05), we categorized it as a task-related neuron. The neuron was then further tested 157 

for directional selectivity. We used a modified circular normal distribution (von Mises 158 

distribution) as a tuning curve to evaluate the modulation of the neuron’s firing rate 159 

across the eight cue conditions:  160 
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 161 

where the firing rate of a neuron (f) was determined as a function of the direction of 162 

the cue (d), based on the baseline (0≤B) and magnification (R) factors for the firing 163 

rate, and the location (μ) and concentration (0≤β) factors for the von Mises distribution. 164 

The peak direction estimated as the μ parameter by fitting of the tuning curve during 165 

the epoch in which the firing rate was highest was regarded as the neuron’s preferred 166 

direction. The size of the receptive field was also quantified from the estimated 167 

parameter by 1/ β which can be regarded as an analog of standard deviation 168 

parameter of a normal distribution (σ). If the fitting did not converge, the neuron was 169 

considered to lack directional selectivity. 170 

Once the neuron’s preferred direction was determined, we rotated the cue locations 171 

so that one of the eight possible locations was placed at the neuron’s preferred 172 

direction. The monkey then performed randomly intermingled ICT and FCT trials 173 

using these rotated cue locations. We only used the data recorded in these 174 

post-screening trials with rotated cue locations, except for the estimated receptive field 175 

of the neurons which was calculated from the activity during screening ICT trials. The 176 

four orthogonal cue locations for the FCT are now referred to as Tin, Tipsi, Tcontra and 177 

Topp; where Tin is the neuron’s preferred direction, Tipsi and Tcontra are the 178 

perpendicular directions ipsilateral and contralateral to Tin, respectively, and Topp is 179 
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the opposite direction 180° away from Tin. The directions other than Tin (i.e., Tipsi, 180 

Tcontra and Topp) were also collectively referred to as Tout. 181 

Since the focus of the present study was to determine how the spatial 182 

representation in the PFC was involved in the animal’s own decision-making in 183 

choosing saccade directions, we only analyzed FCT trials that included Tin, where the 184 

neuron being recorded was responsible to represent, as one of the two cues. Therefore, 185 

only three pair conditions (Tin vs Tipsi, Tin vs Tcontra, and Tin vs Topp) out of six 186 

possible pair conditions were considered in the present analysis. For the ICT, we only 187 

used the data for trials in which the visual cue was presented at one of the four 188 

locations appeared in the FCT. Each neuron’s directional selectivity was confirmed by 189 

a post-recording offline analysis as a larger firing rate in Tin cue trials than in Tout cue 190 

trials in the ICT with rotated cue locations (t-test, p<.05). Neurons that did not show 191 

higher activation in Tin than in Tout cue trials in the ICT were excluded from further 192 

analysis. 193 

Surgery and Training Procedure 194 

We implanted a stainless steel head-holding device and a scleral search coil in the 195 

monkeys. A scleral search coil was implanted onto the right eye globe by dissecting 196 

the conjunctiva (Judge et al. 1980). The monkeys were first anesthetized by an 197 

intramuscular injection of ketamine hydrochloride (10 mg/kg) and then an intravenous 198 

injection of pentobarbital sodium (10–15 mg/kg). Heart rate and respiration were 199 
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monitored during the surgery. Stainless steel screws were put into the skull to ensure 200 

firm adhesion of the head-holding device. The connector for the search coil and the 201 

head-holding device were fixed to the skull with dental acrylic. All of the surgical 202 

procedures were performed under aseptic conditions. 203 

After the monkeys recovered from surgery, we started training of the tasks. We 204 

first trained the monkeys with the ICT. When the monkeys learned to perform the ICT 205 

(about 85% correct for more than 5 consecutive experimental sessions), we started to 206 

intermingle FCT trials with ICT trials. 207 

After we completed the task training, we performed the second surgery to implant 208 

a stainless steel cylinder (MO-903E, Narishige, Tokyo) for the recording of neuronal 209 

activity. The monkeys were anesthetized with the same procedure as the first surgery 210 

and then fixed to the stereotaxic apparatus. We made a small hole (20 mm in diameter) 211 

on the skull with a trephine. The stereotaxic coordination of the center of the hole was 212 

set approximately 30.0 mm anterior from the interaural plane and 15.0 mm lateral 213 

from the midline, and determined by referring structural magnetic resonance imaging 214 

(MRI) pictures of the monkey’s brain. We attached the stainless steel cylinder to the 215 

hole with stainless steel screws and dental acrylic. All of the surgical procedures were 216 

performed under aseptic conditions. After the monkeys recovered from surgery, we 217 

started neuronal recordings. 218 
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Data Collection 219 

We recorded single-neuron activity from the cortex within and surrounding the 220 

principal sulcus. The area of the recording in the lateral PFC was determined based on 221 

MRI pictures of the brains. We used glass-coated Elgiloy microelectrodes (0.5–3.0 M 222 

at 1 kHz) to record single-neuron activity. An electrode was advanced with a hydraulic 223 

microdrive (MO-95, Narishige, Tokyo). Raw neuronal activity was amplified using an 224 

amplifier (DAM80, WPI, Sarasota, FL, USA) and monitored on an oscilloscope 225 

(SS-7802, IWATSU, Tokyo) and an audio monitor. During experiments, we isolated 226 

single-neuron activity from raw activity using a window discriminator (DIS-1, BAK 227 

Electronics, Mount Airy, MD, USA) and monitored the isolated single-neuron activity 228 

together with raw activity using an oscilloscope. Single-neuron activity and task events 229 

were stored as a data file on a laboratory computer. 230 

Data Analysis 231 

All statistical analyses and data-plotting were performed using the statistical software 232 

R 3.2.1 (R Core Team 2015). Before testing the difference in central values among 233 

groups, we performed Shapiro-Wilk tests to examine normality of the data in each 234 

group. We also performed Bartlett’s test or Fligner-Killeen test to examine the 235 

homogeneity of variances. Based on the results of these tests, we selected 236 

nonparametric test when appropriate. We used Holm’s correction method for p-values 237 

on statistical results taken from a set of multiple comparisons unless otherwise noted. 238 
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Behavioral Analysis 239 

The proportion correct was calculated separately for the ICT and FCT by dividing the 240 

number of trials with correct target capture by the number of trials in which the animal 241 

reached the response period. 242 

To examine the animal’s preference toward four directions in the FCT, we defined 243 

preference indices based on the proportion of chosen direction. For a given direction, 244 

we calculated the proportion of trials in which that direction was chosen by the animal 245 

from the total number of trials in which that direction was available in the FCT. 246 

Calculated four proportions were then divided by their sum. We call these normalized 247 

proportions of choosing each direction as preference indices. Preference index was 248 

expected to be 0.25 if the animal chose each direction equally in the FCT. Preference 249 

indices were separately calculated for the behavior obtained during recordings of each 250 

neuron because the absolute angles of the four directions differed based on the location 251 

of the receptive field of neurons. 252 

To compare the behaviors in different recording sessions with different cue 253 

configurations, we grouped the absolute directions of responses by eight bins of 45° 254 

width. Then we averaged the preference indices categorized into each bin. We used the 255 

same bins to calculate averaged response times in the ICT and FCT with different 256 

response directions. Response times were measured as the latency from disappearance 257 

of the fixation point to the onset of a saccade detected by the method in a previous 258 

study (Martinez-Conde et al. 2000). We further tested the animal’s task performance in 259 
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the FCT based on the relative directions from each neuron’s receptive fields. For each 260 

of the Tin, Tipsi, Tcontra and Topp directions, we calculated the mean response times in 261 

correct FCT trials. Response times for these relative directions could vary reflecting 262 

the difference in motor execution processes toward different absolute directions. 263 

Therefore, for each of the Tin, Tipsi, Tcontra and Topp directions, we also calculated the 264 

normalized response times by subtracting the mean response time in the ICT from that 265 

in the FCT, and then dividing it by the standard deviation of the response times for that 266 

direction in the ICT. This tested whether the animal’s speed of responses was different 267 

among the four response directions in the FCT, cancelling out the effect of the 268 

difference in motor processes for different absolute saccade directions. 269 

Task-Related Activity and ROC Analysis 270 

We used a 100-ms time window sliding in 25-ms steps to make peri-event time 271 

histograms to examine task-related activities of the neurons. Constructed histograms 272 

were then averaged across neurons to create population histograms. We also used a 273 

receiver operating characteristic (ROC) analysis to compare the strength of neuronal 274 

activity between two different trial conditions (Britten et al. 1992; Shadlen and 275 

Newsome 1996). For each time window, we constructed an ROC curve and calculated 276 

the ROC value (area under the ROC curve) using 100 criterion firing rates. To 277 

evaluate the onset of ROC elevation, we repeatedly tested the significance of 278 

differences in the ROC values of the neurons from 0.5 (one-sample t-test, α=.05). If 279 
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the ROC values were larger than 0.5 in five consecutive bins, the time of the first bin 280 

was regarded as the onset of ROC elevation. 281 

We applied an ROC analysis to the data from both the ICT and FCT. In the ICT, 282 

we compared the neuronal firing between Tin cue trials and Tout cue trials. Therefore, 283 

the calculated ROC value is an index of traditional memory-related activity that 284 

encoded the spatial location of the cue instructed in that trial. In the FCT, we 285 

compared the neuronal firing between Tin choice trials and Tout choice trials in each 286 

pair condition. Therefore, the calculated ROC value is an index of decision-related 287 

activity that encoded the subsequently chosen spatial location from the same set of 288 

cues. 289 

Baseline Sustainability of Firing 290 

Previous studies have suggested that the dynamics of the spontaneous fluctuation in 291 

neural activity reflect the background structural and functional architecture of the 292 

network (Tsodyks et al. 1999; Kenet et al. 2003). In the present study, we were 293 

particularly interested in the relationship between the persistence of spontaneous 294 

activity and the neuron’s role in memory and decision-making functions. To quantify 295 

the persistence of a neuron’s activity at a baseline state, we examined the temporal 296 

correlation of firing rates within a trial (Ogawa and Komatsu 2010). We divided the 297 

first 800 ms of the pre-cue period (1000–200 ms before cue onset) into eight 298 

successive 100-ms time bins. We calculated the trial-to-trial variation in activity within 299 

each bin by subtracting the mean firing rate of the given bin across trials from the 300 
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firing rate for each trial in the same bin. We then calculated the Pearson’s correlation 301 

coefficient of these values between two different bins interposed by a given length of 302 

interval. Seven intervals (0–600 ms in 100-ms steps) were available depending on the 303 

combination of the bins, where “0-ms interval” meant two successive bins and 304 

“600-ms interval” meant the longest interval between the first and the last bins of the 305 

800-ms period used in this analysis. Different pairs of bins with the same interval were 306 

pooled to calculate a single correlation coefficient for each interval length. Therefore, 307 

seven correlation coefficients were calculated, one for each of the interval lengths, for 308 

each neuron. We refer to the calculated correlation coefficient as “baseline 309 

sustainability”, since it reflects how the activity within a time bin could be sustained 310 

until another temporally distant bin. 311 

Serial Correlation of the Inter-Spike Interval 312 

We also measured the sustainability of the activity of each neuron by calculating a 313 

serial correlation of the inter-spike interval (ISI). In this analysis, we first calculated 314 

the ISIs of a neuron using all of the collected data including those from non-task 315 

epochs such as the inter-trial interval. Next, we calculated Pearson’s correlation 316 

coefficient between the lengths of successive ISIs. Since the ISI is a measure of the 317 

momentary level of activation, a stronger serial correlation of ISI indicates that the 318 

activation state once achieved by the neuron tended to persist for a while. 319 
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Dimensional Reduction in Population Activity 320 

We used a dimensional reduction technique with a principal component analysis 321 

(PCA) to compare the activation patterns of PFC neurons among different task 322 

conditions (Briggman et al. 2005; Broome et al. 2006; Churchland et al. 2007; Shenoy 323 

et al. 2013). For each neuron, we first calculated the average firing rate in each task 324 

condition (four conditions for the ICT and six conditions for the FCT) during ±2000 325 

ms from the cue onset. We used 50-ms time bins sliding in 25-ms steps to calculate the 326 

mean firing rates. We then stacked these averaged firing rates for each neuron and 327 

each condition into an M×N matrix, where M is the number of bins in a trial multiplied 328 

by 10 (total number of task conditions) and N is the number of neurons under interest. 329 

We applied a PCA to this matrix. The first three principal components were used to 330 

create the principal component state space. The activation state and its transition were 331 

represented as a trajectory inside the state space. To evaluate how the neuronal 332 

activation patterns differed between the conditions, we calculated the Euclidean 333 

distances between trajectories. 334 

Correlation Analysis between Tasks 335 

To investigate how spatial representation was constructed in the network of PFC 336 

neurons during an FCT trial, we applied a correlation analysis to the activation patterns 337 

of PFC neurons in different tasks. In this analysis, we tested the similarity of the 338 

neuronal activation patterns during the FCT to those at the end of the delay period of 339 

the ICT. At the end of the delay period in an ICT trial, spatially selective PFC neurons 340 
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were expected to represent a sole spatial location to which a saccade was going to be 341 

directed soon thereafter. Therefore, the activation pattern of PFC neurons in this period 342 

could be regarded as a built template when the network had already finished 343 

representing a single spatial location. On the other hand, the pattern of neuronal 344 

activation in the cue period of an FCT trial should be more ambiguous because two 345 

spatial locations are represented in the network. As the delay period progressed in an 346 

FCT trial, the activation pattern should gradually become similar to that in the ICT, 347 

since the monkey was required to prepare a saccade toward only one of the two 348 

locations. By testing how the neuronal activity was similar between these different 349 

periods in different tasks, we tried to examine how the spatial information needed for a 350 

subsequent saccade was constructed from the two locations presented in the FCT. 351 

For the ICT, we used a 500-ms time bin in a pre-response period ranging from 352 

-1000 to -500 ms from the end of the saccade. For the FCT, we used 250-ms time bins 353 

sliding through a trial in 1-ms steps. In a given time bin, we first calculated each 354 

neuron’s average firing rates in each task condition. We then subtracted each neuron’s 355 

grand average firing rate among task conditions in that bin from its firing rates in each 356 

task condition, which gave the discrepancies of each neuron’s firing rates in different 357 

conditions from its average. Finally, we calculated the rank correlation (Kendall’s tau) 358 

between each time bin of the FCT and the pre-response period of the ICT between task 359 

conditions in which the monkey made the same response (e.g., Tipsi cue trials in the 360 

ICT and Tout choice trials in the Tin vs Tipsi pair condition in the FCT). To evaluate 361 
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the onset of significant correlation, we tested the significance of the correlation in each 362 

bin with α=.05. If there was a significant correlation between the FCT and 363 

pre-response period activity in the ICT, and if the correlation remained significant 364 

until the last time bin of the peri-cue period in the FCT, we regarded the onset of the 365 

first bin of these periods as the onset of significant correlation. 366 

We also examined the correlation between the activation patterns in Tout choice 367 

trials in the FCT and those in Tin cue trials in the ICT. These trial conditions differed 368 

with respect to the final saccade direction, and thus were expected to result in different 369 

activation patterns of directionally selective PFC neurons. 370 

Results 371 

Behavioral Performance 372 

We analyzed the behavioral performance of the animals during the recording sessions. 373 

The average proportion of correct performance in the ICT and FCT was 98.0% and 374 

98.3% for monkey O and 99.8% and 99.9% for monkey E, respectively. There was no 375 

statistically significant difference in task performance between the ICT and FCT in 376 

either monkey (paired t-test, corrected p = .50 and .13). In correct ICT and FCT trials, 377 

the mean response time from the disappearance of the fixation point to the onset of a 378 

saccade was 263 ms and 265 ms for monkey O and 231 ms and 232 ms for monkey E, 379 
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respectively. There was also no significant difference in the response time between the 380 

tasks (paired t-test, corrected p = .42 and .50). 381 

We further examined the relationship between the animals’ behavior and response 382 

directions in the tasks. Figure 1b shows the response times (lines) and preference 383 

indices (bars) for each direction. Two-way ANOVA on each animal’s response times 384 

revealed a significant main effect of direction (uncorrected p<.001 for both monkeys), 385 

but there were no main effect of the type of the tasks (uncorrected p = .12 and .24 for 386 

monkey O and E, respectively) nor the interaction between task and direction 387 

(uncorrected p = .70 and .35). In addition, there was no significant effect of direction 388 

on the preference indices calculated from the proportion of choices for each direction 389 

in the FCT (one-way ANOVA, uncorrected p = .13 and .10). Therefore, the observed 390 

difference in response times for each direction were more likely to be attributed to the 391 

difference in motor execution process rather than the effect of the animal’s 392 

unequivalent motivation for responses toward each direction. 393 

Neuronal Database 394 

We recorded neurons in and around the principal sulcus during performance of the 395 

tasks. Out of 444 neurons recorded, 107 exhibited directionally selective activation 396 

during at least one epoch in the screening ICT trials. These neurons were further 397 

recorded in randomly intermingled ICT and FCT trials with rotated cue locations (see 398 

Tasks in Materials and Methods section). Eighty-four neurons had at least five correct 399 

trials for each of the six FCT conditions (three pair conditions × two choice results) 400 
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and were confirmed to have directional selectivity in the post-recording offline 401 

analysis. We used these neurons for further analysis. We only used the activity of PFC 402 

neurons recorded during intermingled ICT and FCT trials for the analysis below. 403 

Based on the rotated cue locations (Tin, Tipsi, Tcontra and Topp) determined by the 404 

receptive field of each neuron, we further tested the animals’ task performance in the 405 

FCT for each direction (Fig. 1c). There was no difference in the proportion of Tin 406 

choice in all the three pair conditions (one-way ANOVA, p = .11). The proportion of 407 

Tin choice was not significantly different from 0.5 (one-sample Wilcoxon rank sum 408 

test, corrected p>.05 for all the pair conditions). Also, there was no difference in the 409 

response times (one-way ANOVA, p = .11) and the normalized response times 410 

(Kruskal-Wallis test, p = .11) for each response direction. The normalized response 411 

times were not significantly different from 0 (one-sample Wilcoxon rank sum test, 412 

corrected p>.05 for all the directions), meaning that the responses toward each of the 413 

four relative directions in the FCT were comparable to those to the same direction in 414 

the ICT. These results indicate that observed characteristics in neuronal activity 415 

reported below could not be attributed to the animal’s preference toward a particular 416 

direction nor to the difference in the degree of motor preparation toward each 417 

direction. 418 
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Choice-Predictive Activity 419 

Figure 2 shows the activity of two representative neurons. Both neurons exhibited a 420 

larger firing rate in Tin than in Tout cue trials (t-test, 0–500 ms from cue onset, p<.05) 421 

during the cue period of the ICT (top row: ICT trials). Thus, they were more activated 422 

during the cue period when the visual cue was presented at Tin. We examined whether 423 

the activity of these neurons was related to the monkey’s choice in the FCT (bottom 424 

three rows: FCT trials for three pair conditions that included Tin). The neuron shown 425 

in Fig. 2a exhibited activation in response to the presentation of cues in FCT trials. 426 

The magnitude of cue-period activity was almost identical in trials in which the 427 

monkey chose Tin (Tin choice trials) and trials in which the monkey chose Tout (Tout 428 

choice trials). This is not surprising because one of the two cues was always presented 429 

at the Tin location (neuron’s preferred direction) in all of these three pair conditions. 430 

Therefore, this neuron was likely to exhibit a similar magnitude of cue-period activity 431 

when the visual cue was presented at Tin regardless of whether the monkey was going 432 

to choose Tin or Tout later in that trial. 433 

The other neuron in Fig. 2b showed cue-period activity that was related to the 434 

animal’s subsequent choice in the FCT. In all three pair conditions, the strength of the 435 

transient response to the same two cues was significantly different depending on the 436 

monkey’s subsequent choice. While the neuron was strongly activated during the cue 437 

period in Tin choice trials, this activation was not observed in Tout choice trials, even 438 
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though one of the cues was simultaneously presented at Tin (t-test between Tin and 439 

Tout choice trials, 0–500 ms from cue onset, p<.05, pair conditions collapsed). We 440 

refer to this firing pattern of PFC neurons (i.e., strong activation in Tin choice trials 441 

compared to Tout choice trials in the FCT) as “choice-predictive”. In every FCT trial 442 

with a given pair condition, the monkey was presented with two physically identical 443 

cues at the same spatial locations regardless of which of them was chosen later in that 444 

trial. Therefore, choice-predictive activity can not be explained as a mere reflection of 445 

the physical stimuli. Rather, the strong correlation between neuronal activity and the 446 

animal’s subsequent choice suggests that PFC neurons play an active role in the free 447 

choice of a spatial location. Choice-predictive activity was also observed in the 448 

pre-cue period (Fig. 2b). The activity of the neuron was slightly, but significantly, 449 

higher before the start of the cue period when the monkey was going to choose the 450 

neuron’s preferred direction in the current trial (t-test between between Tin and Tout 451 

choice trials, 1000–0 ms before cue onset, p<.05, pair conditions collapsed). 452 

Population Activity 453 

We confirmed the presence of choice-predictive activity in the cue and pre-cue periods 454 

of the FCT in a population analysis. Figure 3 shows population histograms and ROC 455 

transition of 59 PFC neurons that exhibited directionally selective cue-period activity. 456 

Differential firing in response to the cues presented in the FCT was consistently 457 

observed between Tin choice trials and Tout choice trials (Fig. 3b). We analyzed the 458 
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activity of these neurons during the cue period in each task condition (0–500 ms from 459 

cue onset). In the ICT, cue-period activity in Tin trials (average 20.2 spikes/s) was 460 

significantly stronger than that in Tipsi (12.0 spikes/s), Tcontra (11.6 spikes/s) and Topp 461 

(9.8 spikes/s) trials (paired t-test, corrected p<.001 for all comparisons). In the FCT, 462 

cue-period activity in Tin choice trials was also significantly stronger than that in Tout 463 

choice trials in all three pair conditions (corrected p<.001 for all pair conditions). In 464 

comparisons of different FCT pair conditions, the activity in Tin choice trials were 465 

comparable among the Tin vs Tipsi (19.4 spikes/s), Tin vs Tcontra (20.2 spikes/s) and 466 

Tin vs Topp (20.6 spikes/s) pair conditions (corrected p=.94, .89 and .94, respectively). 467 

However, in the Tout choice trials, neurons tended to be more activated in the Tin vs 468 

Tipsi pair condition (16.9 spikes/s) than in the Tin vs Tcontra (14.9 spikes/s, corrected 469 

p=.060) and Tin vs Topp (14.9 spikes/s, corrected p=.065) pair conditions, while there 470 

was no significant difference between the latter two pair conditions (corrected p=.97). 471 

We also performed an ROC analysis on the cue-period activity of these neurons in 472 

Tin and Tout choice trials in the FCT. In all the three pair conditions, average ROC 473 

values (0.57, 0.61 and 0.63 for each of the three pair condition) were all significantly 474 

larger than 0.5 (one-sample t-tests, corrected p<.001 for all of the conditions) in the 475 

cue period (0–500 ms from cue onset). By examining the change in the ROC value 476 

throughout the entire trial epoch using a sliding window, we observed early elevation 477 

of the ROC value that started before the presentation of the cues (Fig. 3d). A 478 
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significant increase in the ROC value from 0.5 was observed 750 ms before the onset 479 

of the cues. The same analysis of activation during the ICT revealed that an elevation 480 

of the ROC value (calculated between the Tin and Tout cue trials) was observed 150 481 

ms after the onset of the cue when the direction of the saccade was instructed (Fig. 3c). 482 

These results indicate that the choice-predictive activity of PFC neurons in the pre-cue 483 

period of the FCT was not an artifact of the task structure, but rather reflected the 484 

influence of these neurons on the animal’s decision-making regarding the saccade 485 

direction when the choice was left to the animal. 486 

Relationship between Choice-Predictive Activity and 487 

Persistent Delay-Period Activity 488 

To further investigate the role of PFC neurons in the decision-making regarding the 489 

saccade direction, we compared the activities and firing properties of neurons with and 490 

without choice-predictive activity in the FCT. We categorized a neuron as 491 

choice-predictive if it exhibited a differential activation between the Tin and Tout 492 

choice trials during the cue and pre-cue periods (-1000 to 500 ms from cue onset) in at 493 

least one of the three FCT pair conditions (t-test). Figure 4 shows population 494 

histograms of neurons with and without choice-predictive activity. PFC neurons with 495 

choice-predictive activity also showed directionally selective persistent delay-period 496 

activity. On the other hand, neurons without choice-predictive activity were activated 497 

only during cue presentation, and did not exhibit persistent delay-period activity. 498 
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Based on this difference in task-related activity between neurons with and without 499 

choice-predictive activity, we further compared these two groups in terms of the 500 

persistence of activation (Fig. 5). We first quantified the strength of directionally 501 

selective persistent activity during the delay period of the ICT for each neuron by 502 

calculating the ROC value between Tin and Tout cue trials at the middle of the delay 503 

(1000–1500 ms from the start of the delay period of the ICT). When compared among 504 

all of the directionally selective neurons (Fig. 5a, n = 84), the strength of directionally 505 

selective persistent activity in the ICT was closely correlated (Pearson’s R=.345, 506 

p<.001) with the strength of the choice-predictive difference in activity in the cue and 507 

pre-cue periods of the FCT (quantified by the ROC value calculated between Tin and 508 

Tout trials within -1000 to 500 ms from cue onset, pair conditions collapsed). When 509 

compared between groups, choice-predictive neurons had stronger directional 510 

selectivity in the delay period in the ICT than choice-unpredictive neurons (Fig. 5c, 511 

Wilcoxon rank sum test, p<.001). In addition, the choice-predictive neurons showed a 512 

higher baseline sustainability of activation even in the pre-cue period (Fig. 5d, t-test, 513 

p<.05) and a stronger serial correlation of the ISI (Fig. 5e, Wilcoxon rank sum test, 514 

p<.05). Choice-predictive neurons were characterized by a higher sustainability of 515 

activation even between temporally distant time bins (Fig. 5b). The persistence of 516 

activation as measured by the baseline sustainability and the serial correlation of the 517 

ISI could be important for retention of the spatial information as sustained firing 518 

during the delay, and thus can be regarded as a key feature of PFC neurons in spatial 519 
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working memory function. The coupling of these measures to the presence of 520 

choice-predictive activity in the early task epochs of the FCT suggests that the firing 521 

properties of PFC neurons that are essential to the memory function might also lead to 522 

a distinctive role of these neurons in the selection of spatial locations in a free-choice 523 

condition. 524 

We examined the possible effect of behavioral difference as well as the difference 525 

in receptive field properties between choice-predictive and unpredictive neurons. 526 

However, there were no difference between the two groups of neurons in the 527 

distribution of the preferred directions (Fig. 5f, Watson’s test for homogeneity of 528 

circular data, p>.10) nor the size of the receptive fields (Fig. 5g, Wilcoxon rank sum 529 

test, p = .21). Also, two-way ANOVA on the proportion of Tin choices revealed no 530 

main effects of neuron groups (choice-predictive/unpredictive neurons) and pair 531 

conditions, nor the interaction of these two factors (Fig. 5h, p>.05 for both main 532 

effects and the interaction). One-sample t-tests revealed that the proportion of Tin 533 

choices was not significantly different from 0.5 in any of the neuron groups and pair 534 

conditions (corrected p>.05 for all the 2×3 combinations of neuron groups and pair 535 

conditions). The same comparison on the difference of the response times between Tin 536 

choice and Tout choice trials also revealed no significant main effects nor interaction 537 

of neuron groups and pair conditions (Fig. 5i, p>.05 for both main effects and the 538 

interaction). One-sample t-tests revealed that the difference of the response times 539 

between Tin choice and Tout choice trials was not significantly different from zero in 540 
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any of the neuron groups and pair conditions (corrected p>.05 for all the 541 

combinations). 542 

Comparison of the Neuronal Activation Pattern in a State 543 

Space 544 

To gain further insight into how spatial representations are held and integrated in the 545 

network of the PFC to perform a final saccadic response in the FCT, we used a 546 

dimensional reduction technique. The change in neuronal activation in each task 547 

condition in the ICT and FCT was expressed as a trajectory in a principle component 548 

state space (Fig. 6). In the ICT (Fig. 6a), the four trajectories that represented the 549 

neuronal activation patterns in Tin, Tipsi, Tcontra and Topp cue trials remained within 550 

the neighboring area until the time of cue onset. The trajectory for Tin cue trials then 551 

started to diverge from those for the other three cue conditions, which reflected a 552 

strong transient activity of directionally selective neurons in response to cue 553 

presentation (Fig. 3a). In the FCT (Fig. 6b), the trajectories for Tin choice and Tout 554 

choice trials reached slightly distant points in the space even at the beginning of the 555 

cue period. After the presentation of the cues, the trajectories for Tin choice trials 556 

further deviated from those for Tout choice trials and tracked similar paths to the 557 

trajectory for Tin cue trials in the ICT. Conversely, the trajectories for Tout choice 558 
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trials returned to the initial state during the cue and delay periods, in a similar manner 559 

to Tout cue trials in the ICT. 560 

However, in the Tin vs Tipsi pair condition, the trajectory for Tout choice trials 561 

remained relatively adjacent to that for Tin choice trials, compared to the other two 562 

pair conditions. To evaluate the difference in neuronal activation patterns, we 563 

calculated the distance between the trajectories for the Tin choice and Tout choice trials 564 

in each of the three pair conditions in the FCT (Fig. 6c). In the Tin vs Tcontra and Tin 565 

vs Topp pair conditions, the distance between the trajectories for Tin choice and Tout 566 

choice trials increased in the cue period. In the Tin vs Tipsi pair condition, the distance 567 

between Tin and Tout choice trials remained relatively small in the cue period and 568 

gradually increased during the delay period. The average distance between Tin and 569 

Tout trajectories during the cue period was 24.7, 66.5 and 72.8 for the Tin vs Tipsi, Tin 570 

vs Tcontra, and Tin vs Topp pair conditions, respectively. Paired t-tests revealed that 571 

there was a significantly less distance between the trajectories for Tin and Tout choice 572 

trials in the Tin vs Tipsi pair condition than in the other two pair conditions (corrected 573 

p<.001). The distance between the Tin and Tout trajectories was also greater in the Tin 574 

vs Topp pair condition than in the Tin vs Tcontra condition (paired t-test, corrected 575 

p<.001), but this difference was small. These results support the observation in the 576 

population histograms and ROC analysis that choice-predictive activity was 577 
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established more slowly when the two cues were presented in the same hemifield (Tin 578 

vs Tipsi pair condition). 579 

Effect of Cue Configuration 580 

Previous analyses suggested that the time course of the establishment of 581 

choice-predictive activity was dependent on the configuration of the cues. To 582 

investigate how the final spatial representation was constructed in each pair condition 583 

of the FCT, we used a between-task correlation analysis on the firing patterns of 584 

directionally selective PFC neurons. In this analysis, we examined the correlation of 585 

neuronal activity between the FCT and the pre-response period of the ICT. For each 586 

task condition and each time bin in the FCT, we calculated the correlation coefficient 587 

between the activation of directionally selective PFC neurons (n = 84) in that time bin 588 

and that in the pre-response period (1000–500 ms before the end of the saccade) of the 589 

ICT. As the decision-making process regarding the subsequent saccade direction 590 

progressed in the FCT, the correlation coefficient was expected to increase because the 591 

activation pattern of PFC neurons should have been similar to that when the animal 592 

was ready to make a saccade in the ICT. By measuring the transition of correlation 593 

coefficients in each task condition, we tried to clarify how the configuration of the 594 

cues might influence the dynamics of visuospatial decision-making in FCT trials. 595 

Figure 7 shows the correlation in the neuronal activation pattern between the FCT 596 

and the pre-response period of the ICT. We first examined the correlation between the 597 
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ICT and FCT in which the monkey eventually made a response to the same direction 598 

(correlation between Tin cue/choice trials for Fig. 7a, Tout cue/choice trials for Fig. 7b). 599 

In the Tin vs Tcontra and Tin vs Topp pair conditions, the correlation coefficients started 600 

to rise from zero at around the beginning of the cue period. In the Tin vs Tcontra pair 601 

condition, a significant correlation started to be observed 142 ms before the start of the 602 

cue period in Tin choice trials, and 48 ms after cue onset in Tout choice trials. In the 603 

Tin vs Topp pair condition, a significant correlation started to be observed 90 ms before 604 

and 113 ms after cue onset in Tin choice and Tout choice trials, respectively. However, 605 

in the Tin vs Tipsi pair condition, the development of a correlated activation pattern 606 

was weak. In Tin choice trials, the onset of significant correlation was 408 ms after cue 607 

presentation. In Tout choice trials, significant correlation that lasted stably during the 608 

delay period was not observed. This result indicates that, in the network of spatially 609 

selective PFC neurons, a sole spatial representation was constructed from the 610 

presented two locations more slowly when the two cues were located in the same 611 

hemifield, consistent with the observation in the previous analyses on population 612 

activity (Fig. 3d) and the neuronal state space (Fig. 6c). Especially, the slower 613 

development of choice-predictive activity in the Tin vs Tipsi pair condition may be the 614 

result of the disarranged construction of spatial representation in Tout choice trials in 615 

this pair condition. 616 
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For Tout choice trials in the FCT, we also examined the correlation of the neuronal 617 

activation pattern with that in Tin cue trials in the ICT (Fig. 7c). In all three pair 618 

conditions of the FCT, Tin cue was presented during the cue period. However, since 619 

the final saccade directions were not in the neurons’ receptive fields in Tout choice 620 

trials, the activity of PFC neurons were expected to gradually become different 621 

compared to when Tin was instructed in the ICT. We confirmed this prediction as an 622 

early negative correlation of the neuronal activation patterns in the Tin vs Tcontra and 623 

Tin vs Topp pair conditions. In Tout choice trials, the population activity of PFC 624 

neurons started to differ from that in Tin cue trials in the ICT at 296 ms and 158 ms 625 

before the onset of the cues in the Tin vs Tcontra and Tin vs Topp pair conditions, 626 

respectively. In contrast, the onset of a significant negative correlation was 941 ms 627 

after cue onset (441 ms after the start of the delay period) in the Tin vs Tipsi pair 628 

condition. This means that the activation state of PFC neurons in Tout choice trials in 629 

the Tin vs Tipsi pair condition remained indistinguishable from that in Tin cue trials in 630 

the ICT for a longer period. This result also suggested that the construction of spatial 631 

representation for Tout was slower in the Tin vs Tipsi pair condition than in the other 632 

pair conditions. 633 
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Discussion 634 

In the present study, we investigated the role of spatially selective PFC neurons in 635 

animal’s decision about saccade direction in a free choice condition. When Tin was 636 

later chosen as a saccade direction, PFC neurons were strongly activated by cue 637 

presentation despite the presence of another cue outside their preferred direction. 638 

Choice-predictive activity was distinct from the very beginning of the cue period and 639 

was observed even before cue onset. 640 

The positive correlation between the strength of the delay-period activity in the 641 

ICT (memory-related activity) and the strength of the choice-predictive activity in the 642 

cue and pre-cue periods of the FCT (decision-related activity) revealed that PFC 643 

neurons with stronger memory-related activity in the ICT tended to show stronger 644 

choice-predictive activity in the peri-cue periods of the FCT. The stronger 645 

sustainability of firing in neurons with choice-predictive activity suggested that 646 

memory and decision functions are supported by a common feature of PFC neurons to 647 

sustain their activation state within the circuitry. In addition, when to-be-chosen Tout 648 

was located in a hemifield different from that in which Tin was located, the transient 649 

response to cue presentation was weak. However, when to-be-chosen Tout was in the 650 

same hemifield as Tin, the cue-period activity was stronger, even though the neuron’s 651 

preferred direction was not going to be chosen. This indicates that unnecessary spatial 652 

information tended to be suppressed from the beginning of its representation in the 653 
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PFC, but this adaptive modulation was modest if the two spatial locations were in the 654 

same hemifield. Our present study revealed that the role of the PFC in 655 

decision-making process is closely linked to its role in information maintenance 656 

process, and these different processes share the same functional characteristics that 657 

emerged from the underlying cellular mechanism. 658 

Activity of PFC Neurons Related to the Animal’s Decision 659 

In the present study, we found that the strength of neurons’ activity in pre-cue and cue 660 

periods was correlated with the animal’s subsequent decision regarding the saccade 661 

direction (choice-predictive activity). However, in the FCT, one of the six pair 662 

conditions was randomly assigned in each trial. Also, FCT trials were randomly 663 

intermingled with ICT trials. Only after cue presentation could the animal know 664 

whether they were allowed to choose the saccade direction by themselves or where the 665 

options for the choice would be. Therefore, it was impossible for the animal to make a 666 

reasonable decision before cue onset. We propose that this early choice-predictive 667 

activity can be explained as an influence of fluctuating neuronal firing before the start 668 

of a trial. In each trial, the activity of directionally selective neurons can randomly 669 

fluctuate during the pre-cue period. This fluctuation of activity can be regarded as 670 

baseline random noise in spatial representation in the PFC. If the activity of neurons 671 

that are responsible for a particular direction happen to be elevated during the pre-cue 672 

period of an FCT trial, these neurons should be able to more quickly respond to the 673 

presentation of cues one of which appeared at their preferred direction. In the network 674 
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of the PFC, neurons responsible to different spatial locations have inhibitory 675 

connections, so that the PFC retains only the most relevant spatial information in a 676 

winner-take-all manner (Rao et al. 1999; Compte et al. 2000; Wang et al. 2004). 677 

Therefore, the faster construction of a spatial representation will disturb the formation 678 

of other spatial representations through mutual competition, resulting in the adoption 679 

of the prematurely biased location as the direction of the saccade in the current trial. 680 

As a result, trials in which directionally selective PFC neurons show slightly stronger 681 

activation before the cue period should be over-represented among trials in which their 682 

preferred direction was later chosen by the animal. 683 

Previous studies have reported the activity of neurons in the PFC, frontal eye field, 684 

supplemental eye field and lateral intraparietal cortex using memory-guided 685 

(Watanabe et al. 2006; Watanabe and Funahashi 2007) or visually guided (Coe et al. 686 

2002) free choice tasks. However, in these studies, a same set of fixed locations were 687 

repeatedly presented in a block of trials. Therefore, a detailed investigation of the time 688 

course of neuronal activity and the interpretation of its role in decision-making were 689 

difficult since the animal could easily predict the available options independently of 690 

the progress of a trial. Also, in those task setups, the animal could exhibit a strong 691 

tendency or strategy to repeatedly choose the same option. Therefore, the previous 692 

studies used particular reinforcement rules to prohibit the animal from choosing the 693 

same option repeatedly, and forced the animal to choose different options. This 694 

procedure can be regarded as a trained allocation of choices administrated by a reward 695 
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schedule. In the present study, we intermingled ICT and FCT trials and changed the 696 

combination of the options for a decision. In addition, the absolute locations of the 697 

four options changed randomly for the animal depending on the receptive field of the 698 

neuron. As a result, the monkeys were presented with different decision contexts from 699 

trial to trial, and their choices were substantially varied among options without 700 

restrictive rules for decision. We propose that our current experimental design is more 701 

appropriate for the investigation of the neuronal mechanisms of internally driven 702 

decision-making compared to the previous studies. 703 

In other cortical areas, a biasing effect of baseline fluctuation of the neuronal 704 

activity on the subsequent animal’s behavior has been reported (Platt and Glimcher 705 

1999; Shadlen and Newsome 2001). For example, Shadlen and Newsome (2001) 706 

reported that the activity of primate lateral intraparietal neurons before the onset of 707 

random-dot motion stimulus was higher when motion coherency was weak and the 708 

neurons’ preferred motion direction was going to be chosen. They argued that this was 709 

because the existing neuronal fluctuation before stimulus presentation biased the 710 

subsequent competition between the representations of different motion directions. 711 

Rolls and Deco (2011) recently reported that this kind of bias based on random 712 

fluctuation could actually take place in an integrate-and-fire attractor network model. 713 

They confirmed the relationship between pre-existing random fluctuation in 714 

spontaneous activity and the result of the subsequent neuronal competition in an 715 

artificial network in which there was no potential confounding such as a subject’s 716 
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specific behavioral strategies. Our present results are in accord with these previous 717 

reports. 718 

Relationship between Decision-Making and Memory 719 

Maintenance 720 

We found that neurons with choice-predictive activity during cue and pre-cue periods 721 

showed higher sustainability of firing such as an elevated delay-period activity (Fig. 4 722 

and 5). The persistent delay-period activity of PFC neurons while the monkey is 723 

remembering a particular spatial location is thought to be the neural basis of spatial 724 

working memory (Funahashi et al. 1989, 1990; Goldman-Rakic et al. 1990; Miller and 725 

Cohen 2001; Fuster 2008). An elevated firing rate sustained during several seconds of 726 

delay is not likely to be supported only by subcellular mechanisms, and is instead 727 

attributed to the network property of the PFC with recurrent feedback inputs 728 

(Constantinidis and Wang 2004; Wang 2013). We propose that the strong correlation 729 

between memory-related activity (persistent delay-period activity in the ICT) and 730 

decision-related activity (choice-predictive activity in the FCT) is a consequence of 731 

this network property of the PFC. Since PFC neurons are mutually interconnected, the 732 

incidental activation of a group of neurons before the start of a trial could persist for 733 

some time through this network. Heterogeneity in the activation level among neurons 734 

might further be amplified during the pre-cue period through mutual facilitation and 735 

competitive inhibition of neurons with the same and different directional selectivities, 736 
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respectively. The premature imbalance of activation will then result in a difference in 737 

the strength of cue representations in the cue period and the animal’s final choice 738 

toward the strongly represented direction in the FCT. 739 

In recent electrophysiological research, there has been a debate about the role of 740 

the lateral PFC in spatial information processing. Several studies have proposed that 741 

lateral PFC is more related to the spatial attention than spatial working memory 742 

(Lebedev et al. 2004; Messinger et al. 2009; Everling et al. 2002; DeSouza and 743 

Everling 2004; Lennert and Martinez-Trujillo 2011, 2013; Tremblay et al. 2015). For 744 

instance, by using a behavioral task in which a location to remember and a location to 745 

allocate a visually-guided attention are separated, Lebedev et al. (2004) showed that 746 

large proportion of lateral PFC neurons are selective to attended rather than 747 

remembered spatial location. In their study, spatial working memory process was 748 

depicted as maintenance memory, and separated from attention process by preventing 749 

the animal from paying attention to the remembered location. However, the concept of 750 

working memory includes both active maintenance and manipulation of information 751 

(Baddeley and Hitch 1974; Baddeley 1986, 2003). Working memory tasks in animals 752 

(Dudchenko 2004) and humans (Miyake et al. 2000) typically consist of attentional 753 

shifting, updating or inhibitory control of the maintained information. This is because 754 

a mere maintenance of information is unlikely in a variety of cognitive operations, and 755 

the maintenance of task-relevant information necessarily requires attentional control. 756 

This joint formularization of memory and attention is the essence of the working 757 
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memory, and the validity of working memory concept in clinical, developmental and 758 

experimental psychology (Baddeley 2003; Saperstein et al. 2006; Conway et al. 2003; 759 

Kane and Engle 2003) suggests that maintenance and attentional manipulation of 760 

information can not be dissociated as independent processes. 761 

Based on these psychological backgrounds, the elucidation of how maintenance 762 

and manipulation of information are simultaneously and jointly performed in the 763 

activity of cortical neurons is essential for the understanding of the neuronal 764 

mechanism of working memory. Therefore, in the present study, we used a traditional 765 

memory-guided saccade task combined with subjective decision-making process. As a 766 

result, we observed that fluctuation of the activity of PFC neurons before cue 767 

presentation induced an early bias in the representation of spatial cues, and eventually 768 

influenced the animal’s decision. Importantly, this task-related activity was correlated 769 

with more fundamental firing characteristic of PFC neurons to sustain its activation 770 

state for relatively longer period. If there is no such persistence in neuronal activity, 771 

the premature fluctuation of activity before a trial could not survive until presentation 772 

of the cues and should never influence the animal’s behavior. In this sense, the 773 

capability of the PFC network to maintain spatial information played a pivotal role in 774 

the decision-making process under a free-choice condition. This is a succinct example 775 

that the network property of the PFC that enables the maintenance of information can 776 

be regarded as a key feature in understanding the PFC’s roles in other cognitive 777 

processes (Procyk and Goldman-Rakic 2006; Wang 2008). Especially, the effect of 778 
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pre-existing neural state on subsequent decision-making is a prevailing subject in 779 

recent noninvasive electrophysiological studies in human (Hesselmann et al. 2008; 780 

Bode et al. 2012; Bengson et al. 2014). Our present report directly demonstrated the 781 

neuronal underpinning of such phenomena from the viewpoint of the known function 782 

and characteristics of PFC neuron’s activity, and also showed that the influence of 783 

pre-existing fluctuation takes place in the order of hundreds milliseconds in 784 

task-related neuronal activity. Our report provides a clue for integrated understanding 785 

of lateral PFC’s role in spatial decision-making and working memory functions, from 786 

a viewpoint of basic characteristics of neuronal firing in this cortical area. 787 

Competition of Spatial Representations Within or Between 788 

Hemifields 789 

In previous studies regarding the role of the PFC in working memory function, a single 790 

visual cue has been used to inform the animals of the location to be remembered for an 791 

upcoming saccade (Boch and Goldberg 1989; Funahashi et al. 1989, 1990; Rainer et al. 792 

1998). In these studies, PFC neurons with mnemonic visuospatial activity tended to 793 

have directional selectivity toward locations contralateral to the side of the hemisphere 794 

being recorded. A unilateral lesion to the PFC was reported to result in disrupted 795 

performance of the memory-guided saccade to the contralateral hemifield (Funahashi 796 

et al. 1993a). These findings suggest that the PFC is organized to participate in the 797 

processing of spatial information in the contralateral hemifield (Funahashi 2013). 798 
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The activity of PFC neurons during the performance of a memory-guided saccade 799 

task in which the monkeys chose the saccade direction by themselves has been 800 

previously reported (Watanabe et al. 2006; Watanabe and Funahashi 2007). However, 801 

in those experiments, the locations of the cues were fixed to the four perpendicular 802 

directions and all the four cues were repeatedly presented in a block of trials. 803 

Therefore, the influence of contralateral organization of the PFC on the representation 804 

of multiple pieces of spatial information could not be examined. In the present study, 805 

we compared the time course of the emergence of choice-predictive activation among 806 

the three FCT pair conditions. We found that choice-predictive activity developed 807 

more slowly in the Tin vs Tipsi pair condition than in the Tin vs Tcontra/Topp conditions 808 

(Fig. 6). The slow construction of the final spatial representation was especially 809 

obvious in Tout choice trials in the Tin vs Tipsi pair condition (Fig. 7). We propose that 810 

this stronger representation of the unchosen direction when the two cues are located in 811 

the same hemifield is the result of the contralateral organization of the PFC. Since 812 

neurons with directional selectivity toward a particular side of the visual space are 813 

assembled in the contralateral hemisphere of the PFC, they may be more tightly 814 

interconnected through local circuits than neurons with preferences for different 815 

hemifields, which are more likely to be distributed in different hemispheres and thus 816 

require callosal connections to interact with each other. A recent study on the 817 

concurrent memorization of multiple spatial locations has also suggested a stronger 818 

interaction between spatial representations within the same hemifield (Matsushima and 819 
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Tanaka 2014). Through this stronger local connection, the spontaneous fluctuation of 820 

neuronal activity can be more frequently shared by neurons with a preference for the 821 

same hemifield. The shared fluctuation between neurons before the start of a trial can 822 

be regarded as unbiased pre-existing spatial representation, which leads to strong 823 

representations of both subsequently chosen and unchosen locations in response to the 824 

presented cues. In contrast, the pre-existing activation levels may vary between 825 

neurons with preferences for locations in different hemifields, which can then cause 826 

suppression of the representation of the subsequently unchosen location by amplifying 827 

the premature bias. Therefore, the difference in the time course of the development of 828 

choice-predictive activity among pair conditions can be explained by uneven 829 

lateralization of directionally selective neurons in the PFC. Future studies with 830 

simultaneous recordings of PFC neurons are needed for quantitative investigation of 831 

correlated fluctuation in the spontaneous activity of spatially selective neurons. 832 
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Figure Captions 998 

 999 

Figure 1:  1000 

(a) Task configuration. Schematic illustration of the two tasks. In the ICT, the monkey 1001 

was required to make a memory-guided saccade toward the cued location. In the FCT, 1002 

the monkey needed to choose one of two cued locations before making a saccade. (b) 1003 

Preference indices (bars) and response times (lines) of each monkey averaged across 1004 

eight bins of absolute directions. Preference index was expected to be 0.25 if the 1005 

monkey does not exhibit directional preference. (c) Choice proportions and response 1006 

times in the FCT for rotated cue locations relative to the receptive field of the neurons. 1007 

Proportion of Tin choice (left) was calculated for each of the Tin vs Tipsi, Tin vs Tcontra, 1008 

and Tin vs Topp pair condition, along with the total proportion calculated by collapsing 1009 

the pair conditions. Response times (middle) and normalized response times (right) 1010 

were averaged for each response direction, along with the grand average by collapsing 1011 

all the directions. 1012 

  1013 

Figure 2:  1014 
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Activity of two representative neurons. Neuronal firing in each condition was plotted 1015 

separately for the ICT (top row) and three pair conditions that included Tin as one of 1016 

the two cues in the FCT (bottom three rows; Tin vs Tipsi, Tin vs Tcontra, and Tin vs 1017 

Topp conditions). The left half of each panel is aligned to the time from cue onset and 1018 

the right half is aligned to saccade offset. Different colors in the histograms and 1019 

rastergrams correspond to different directions of saccades. Both neurons exhibited 1020 

directionally selective transient activation to presentation of the cue in the ICT. In each 1021 

pair condition of the FCT, the left neuron (a) exhibited nearly equivalent activation to 1022 

the presented cues regardless of which cue location was chosen later in that trial. In the 1023 

right neuron (b), the strength of the transient response to the cues in the FCT was 1024 

significantly larger when it was followed by the animal choosing the neuron’s 1025 

preferred direction, even though the Tin cue was presented along with the Tout cue in 1026 

all three pair conditions. 1027 

  1028 

Figure 3:  1029 

Population histograms and the change in ROC values in directionally selective 1030 

cue-period neurons. (a, c) Averaged histograms and the ROC transition in the ICT. 1031 

Fifty-nine neurons exhibited a significant directionally selective transient response to 1032 

the cue in the ICT. Different colors indicate different directions of saccades. In the ICT, 1033 

neuronal activity decreased with presentation of the cue at a location other than the 1034 
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neuron’s preferred direction (Tin), but the strength of the suppression was equivalent in 1035 

the three Tout conditions. (b, d) Averaged histograms and the ROC transition in the 1036 

FCT. In the FCT, the neurons exhibited differential activation that predicted the 1037 

animal’s subsequent choice of saccade direction. Different colors indicate the three 1038 

pair conditions under investigation in the FCT. Solid and dotted lines in the histograms 1039 

indicate the choice of the Tin and Tout directions later in that trial, respectively. The 1040 

difference between solid and dotted lines with the same color (choice-predictive 1041 

activity) was evident in the cue period, but actually started to appear before cue onset. 1042 

An ROC analysis showed the same result. The increase in the ROC values from 0.5 1043 

started 750 ms before the start of the cue period. 1044 

  1045 

Figure 4:  1046 

Population histograms of neurons with and without choice-predictive activity in the 1047 

pre-cue and cue periods. Conventions for the histograms are the same as those in 1048 

Fig. 2. Activity for Tin (solid) and Tout (dotted) choice trials in the three FCT pair 1049 

conditions were plotted separately for choice-predictive (a, n = 38) and unpredictive (b, 1050 

n = 21) neurons. Choice-predictive neurons also exhibited directionally selective 1051 

activity during the delay period. 1052 

  1053 
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Figure 5:  1054 

Characteristics of firing properties of choice-predictive neurons. (a) Correlation 1055 

between persistent directionally selective activity and choice-predictive activity. The 1056 

strength of directionally selective activity in the delay period of the ICT (transverse 1057 

axis, ROC values between Tin and Tout trials in 1000–1500 ms after the start of the 1058 

delay period) was closely correlated with the strength of choice-predictive activity in 1059 

the pre-cue and cue periods of the FCT (vertical axis, ROC values between Tin and 1060 

Tout trials in -1000 to 500 ms from cue onset). (b) Comparison of baseline 1061 

sustainability between choice-predictive (black) and choice-unpredictive (gray) 1062 

neurons using different lengths of intervals. Choice-predictive neurons were 1063 

characterized by a greater sustainability of activation even when the two bins were 1064 

separated by a long interval. (c–i) Comparison of firing properties and animal’s 1065 

behavior between choice-predictive and unpredictive neurons. (c) Strength of 1066 

persistent delay-period activity in the ICT. (d) Baseline sustainability for 400-ms 1067 

interval. (e) Serial correlation of ISI. (f) Absolute direction of the receptive field (μ). 1068 

Dots indicate the center of the receptive field and error bars indicate the size. Zero 1069 

corresponds to horizontal direction contralateral to the recorded hemisphere, and 1070 

positive and negative values indicate upper and lower direction from the horizontal 1071 

meridian, respectively. (g) Size of the receptive field (1/ β). (h) Proportion of Tin 1072 

choice in each pair condition and total proportion of Tin choice by collapsing pair 1073 
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conditions. (i) Difference of response times between Tin choice and Tout choice trials. 1074 

Choice-predictive neurons were characterized by their high persistence of activation 1075 

(c–e) compared to choice-unpredictive neurons, without differences in absolute 1076 

direction and size of the receptive fields (f, g) and the animal’s behavior (h, i). 1077 

  1078 

Figure 6:  1079 

Dynamics of neuronal activation using the state space based on a principal component 1080 

analysis. (a, b) The activity of PFC neurons in each of the ICT (a) and FCT (b) 1081 

conditions are shown as trajectories inside a 3-D principal component space. The 1082 

activity around the cue and delay periods (from the start of the fixation period to 1500 1083 

ms after the start of the delay period) in both the ICT and FCT was collectively used to 1084 

construct a state space. The letters in the panels show the start of the pre-cue (P), cue 1085 

(C) and delay (D) periods, respectively. In the ICT (a), the activity of PFC neurons 1086 

were indistinguishable at the start of the cue period. The trajectory in Tin cue condition 1087 

then started to diverge from that in Tout cue conditions. In the FCT (b), the trajectories 1088 

for Tin choice trials took similar courses to those for Tin cue condition in the ICT, 1089 

while those for Tout choice trials resembled those for Tout cue conditions in the ICT. 1090 

However, there was little separation between the trajectories for the Tin and Tout 1091 

choice trials in the Tin vs Tipsi pair condition compared to the other pair conditions. (c) 1092 
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The distance between the trajectories for Tin choice and Tout choice trials in the state 1093 

space. The trajectories for trials with different choices immediately diverged from each 1094 

other in the cue period in the Tin vs Tcontra/Topp conditions, but not in the Tin vs Tipsi 1095 

condition. 1096 

  1097 

Figure 7:  1098 

Construction of spatial representation in the FCT. (a, b) Each line shows the 1099 

correlation coefficients between the neuronal activation pattern at each time bin in a 1100 

given FCT condition and that of the pre-response period in a corresponding ICT 1101 

condition in which the monkey made the same response. Data are separately plotted 1102 

for Tin choice (a) and Tout choice (b) trials. Different colors indicate different pair 1103 

conditions in the FCT. Thick solid lines show ranges of significant correlation in each 1104 

task condition. Triangles at the top show the onset of significant correlation that lasted 1105 

through the delay period. In the Tin vs Tcontra/Topp pair conditions, significant 1106 

correlation began around the start of the cue period. In the Tin vs Tipsi pair condition, 1107 

significant correlation was observed at the end of the cue period in Tin choice trials 1108 

and was not observed in Tout choice trials. (c) Result of a similar correlation analysis 1109 

calculated between Tout choice trials in the FCT and Tin cue trials in the ICT. The 1110 

neuronal activation pattern in FCT trials with Tout choice started to diverge from that 1111 
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in ICT trials with a Tin cue before the start of the cue period in the Tin vs Tcontra/Topp 1112 

conditions. However, a significant negative correlation was not observed until the 1113 

delay period in the Tin vs Tipsi pair condition. 1114 

 1115 
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(a) Behavioral tasks
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(c) Task performance for relative directions in the FCT
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Fig. 2

(a) Choice-unpredictive neuron (b) Choice-predictive neuron
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Fig. 3
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Fig. 4

(a) Choice-predictive neurons
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(b) Choice-unpredictive neurons
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Fig. 5
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Fig. 6
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Fig. 7

(a) Tin choice FCT × Tin cue ICT
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(b) Tout choice FCT × Tout cue ICT
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(c) Tout choice FCT × Tin cue ICT
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