拘束ストレス下, 総胆管結紮ラット胃囊内各種電解質の濃度及びnet fluxの変動 : 測定値の解析と法則性

AUTHOR(S):
大橋, 広文; 野々村, 修; 伊藤, 善朗; 国枝, 篤郎; 坂田, 一記

CITATION:

ISSUE DATE:
1984-09-01

URL:
http://hdl.handle.net/2433/208801

RIGHT:
Changes in Concentration and Net Flux of Electrolytes in Solutions Instilled into the Stomach of Jaundiced Rats under Restraint Stress: Existence of an Autoregulation

HIROFUMI OASHI, OSAMU NONOMURA, YOSHIKI ITO, TOKURO KUNIEDA and KAZUKI SAKATA

Second Department of Surgery, Gifu University School of Medicine
(Director: Prof. Dr. KAZUKI SAKATA)

1) The test solution was instilled into the pylorus- and cardia-ligated stomachs of Control (intact rat), Group A (jaundiced rats, undergoing ligation of the common bile duct 1 week previously) and Group B (jaundiced rats, undergoing ligation of the common bile duct 3 weeks previously) for 1-hour period. Eight milliliters of the test solution were instilled into the stomach, and immediately after the instillation, 3 milliliters of the fluid were aspirated from the stomach (sample 1). After lapse of 1-hour test period, the fluid was gently aspirated until the stomach was collapsed (sample 2). Sample 1 and sample 2 were served for quantitative analysis of hydrogen, sodium, potassium, and chloride ions concentration. Under restraint, the test for 1-hour period was serially repeated 5 times.

2) The rats were randomly divided into three test groups (one test group consisted of Control, Group A and Group B). The first group, saline-instilled rats, received the saline solution containing 154 mEq/liter sodium, and 154 mEq/liter chloride. The second group, saline-instilled rats with administration of cimetidine, received the saline solution and intraperitoneal administration of cimetidine 25 mg/kg at 30 minutes before starting the first test. The third group, acid-
instilled rats, received the acid solution containing 80 mEq/liter hydrogen ion, 40 mEq/liter sodium, 15 mEq/liter potassium, and 135 mEq/liter chloride.

3) Irrespectively of instillation of the saline solution or instillation of the acid solution, of presence or absence of jaundice, and of administration or none of cimetidine, it was found in all but one test periods that the sum of net gain of cations (H+, Na+, K+) was almost equivalent to net gain of anion (Cl−).

4) On the basis of Hollander’s two component hypothesis, an autoregulatory system, which kept the net ion output “cations minus anion” in the parietal component at an almost equivalent level to the net ion output “anion minus cations” in the nonparietal component, was supposed to be acting in the rat stomach under restraint.

緒言
現在まで次の諸点、すなわち、1) cimetidine は H⁺ 分泌を著明に抑制するが、その際 H⁺ 以外の胃液内電解質（Na⁺, K⁺, Cl⁻ 等）がどのように変動するか、2) 黄疸時の胃液内各電解質の変動、3) 酸性液を胃内に注入、ストレス濃度を誘発した際の胃液内各電解質の変動についての発表はない。

今回、著者らは無処置および総胆管結紮ラットの胃囊内各電解度の濃度、net flux の変動を、生理食塩水注入時（cimetidine 投与時、および非投与時）、後、酸性液注入時測定し、変動を時間に働く何らかの法則性を求めて解析を試みた。

実験方法
1) 総胆管結紮ラット作製法
体重 200-250 g の Wistar 系維性ラットを使用した。ether 麻醉下に、総胆管を large pancreatic duct と great pancreatic duct の間で 2 重結紮切断した後、1 週間又は 3 週間飼育した。

無処置正常ラット（以後 Control と記す）、総胆管結紮後 1 週間ラット（以後 Group A と記す）、総胆管結紮後 3 週間ラット（以後 Group B と記す）の尾静脈より血液を採取し、Bilirubinometer Cat 10200（American Optical Corporation: U. S. A.）を用いて血清ビリルビン値を測定した。

2) 胃液内電解質濃度、および net flux 測定法
Control, Group A, Group B に 24時間水分のみ与え絶食とした後、ether 麻酔下に歯間輪より約 1.5 cm 肛門側の十二指腸結腸間膜側に切開を加え、ここよりポリエチレンチューブ（外径 3 mm, 内径 2 mm）を胃内へ挿入し、歯間輪を結紮、チューブを固定した。次いで、手術用顎顔下部に送走神経幹 2 本を食道より刺離、食道のみをその最下端部で結紮し胃囊を作製した。

胃囊作製後、ether 麻酔下にラットを Bollman ケージに収容した。実験測定開始は麻酔から充分覚醒し、Bollman ケージ内で体動を認めるようになってから行った。

試験液として、skillman ら研究者らの報告を参照として、2 種類を使用した。1 液：生理食塩水（Na⁺154 mEq/l, Cl⁻154 mEq/l を含む）と II 液：酸性液（H⁺80 mEq/l Na⁺40 mEq/l, K⁺15mEq/l, Cl⁻135 mEq/l を含む）で、1 液、II 液とも volume rate を算出するための標識物質として、phenolsulphonphthalein（PSP）40 mg/l を加え、II 液には mannitol 38 mM/l を加え、1 液と等浸透圧に補正した。

ポリエチレンチューブの開放端より試験液 8 ml を注射器にて、胃囊内へ注入し混和した。この時、チューブ内に残存する試験液は空気 1-1.5 ml とともに送り込み、正確に 8 ml の試験液が胃囊内注入されるようにし、胃囊内にて充分混和後、試験液 3 ml を採取し、sample 1 とした。この後ポリエチレンチューブを閉鎖し、残り 5 ml を胃囊内に留置した。

sample 1 採取後、1 時間 Bollman ケージによる拘束を負荷した後、全量吸引採取し、sample 2 とした。この測定は各ラットとも連続 5 回 5 時間行行った。

1 液注入群は 2 つに分け、一方には Bollman ケージによる拘束30分前後に、histamine H₂ receptor に対する specific antagonist である cimetidine（Smith Kline & French Labs）25 mg/kg を腹腔内投与し、cimetidine の作用を検討した。この投与量の有効性に関してはすでに報告した。
Table 1. Calculation of volume changes and net ion fluxes in the saline, or acid solution instilled into stomach of rats.

\[V_{\text{net}} = V_2 - V_1 ; V_1 = V_0 \cdot \frac{\text{PSP}_0}{\text{PSP}_1} , \quad V_2 = V_1 \cdot \frac{\text{PSP}_1}{\text{PSP}_2} = V_0 \cdot \frac{\text{PSP}_0}{\text{PSP}_2} \]

\[F_{\text{net}} = V_2 \cdot I_2 - V_1 \cdot I_1 ; V_0 = \text{initially instilled volume} (5 \text{ ml}) \]

\[V_{\text{net}} : \text{net flux of volume (ml/hr)} \]

\[F_{\text{net}} : \text{net flux of solute} (\mu \text{Eq/hr}) \]

\[V_0 : \text{initially instilled volume} (5 \text{ ml}) \]

\[V_1 : \text{calculated volume in stomach at start of examination (ml)} \]

\[V_2 : \text{calculated volume in stomach at finish of examination (ml)} \]

\[\text{PSP}_0 : \text{PSP concentration in initially instilled fluid} (\mu \text{g/ml}) \]

\[\text{PSP}_1 : \text{PSP concentration in sample 1} (\mu \text{g/ml}) \]

\[\text{PSP}_2 : \text{PSP concentration in sample 2} (\mu \text{g/ml}) \]

\[I_1 : \text{ion concentration in sample 1} (\mu \text{Eq/ml}) \]

\[I_2 : \text{ion concentration in sample 2} (\mu \text{Eq/ml}) \]

各実験終了時、Prussian blue 生体染色法により潰瘍発生の有無を検査した。発生した潰瘍は「相当潰瘍長」として表示した。

採取した sample は2500回転、10分間心分離し、その上清を計測に使用した。

PSP 濃度測定は1/10N NaOH 溶液を加えて赤色に呈色させて後、Spectrophotometer 100-30（日立製作所：東京）により行った。H⁺ 濃度（酸度）の測定には日立一巻型 pH メーター F-5 型及びフラット型複合電極（#6210-05V）を用いて、1/50N NaOH 溶液で測定し、pH7 まで中和するのに要した NaOH 溶液の量より算出した。Na⁺、K⁺ の濃度は Flame Photometer 205D（日立製作所：東京）で、Cl⁻ の濃度は Chloride Counter CL-3（平沼製作所：東京）で測定した。

volume 及び各種電解質の net flux は sample 1, sample 2 の PSP 及び各種電解質の濃度から Skillman らの方法に準じて、Table 1 の計算式から算出した。以上得られた測定値は Mean ± SE で表示し、有意差検定は Student's t-test を使用した。

実験結果

1) 総胆管結紮後の血清総ビリルピン値

Control 1.97±0.06 mg/dl, Group A 6.55±0.38 mg/dl, Group B 7.02±0.49 mg/dl であった。Group A, Group B の値は Control の値に比し有意の上昇を示した (p<0.005).

2) 胃液内各種電解質濃度の測定結果

i) 1 液注入時（Table 2）

各割高時間毎の各電解質濃度について sample 1 と sample 2 を比較すると Control, Group A, Group B とも、sample 2 において H⁺、K⁺ 濃度は上昇し、Na⁺ 濃度は軽度の低下がみられた。Cl⁻ 濃度はほとんど変化がみられなかった。

ii) 1 液注入、および cimetidine 投与時（Table 3）

cimetidine 投与により、sample 1, sample 2 の H⁺ 濃度の絶対値の低下がみられたが、sample 2 で上昇する傾向は変わらなかった。Na⁺, K⁺, Cl⁻ の濃度に関しては cimetidine 投与により影響を受けなかった。

iii) 1 液注入時（Table 4）

各割高時間毎の各電解質濃度について sample 1 と sample 2 を比較すると Control, Group A, Group B とも、sample 2 において H⁺, K⁺ 濃度の低下、Na⁺ 濃度の上昇がみられたが、Cl⁻ 濃度の変化はほとんどみられなかった。

iv) 胃液内各種電解質濃度の相互関係

Hirschowitz, 及び Makhlouf らが指摘する cations 濃度の合計と anion 濃度間の関連性（H⁺+ Na⁺ + K⁺+ Cl⁻）が各計測時毎、sample 1, sample 2 毎に認められるかどうかを、Student's t test（対応のある場合）により検定したところ、1 液注入時、30秒の検定の内29に、1 液注入時、及び cimetidine 投与時、30秒の検定の内25に有意の連関性が認められた。しかし、2 液注入時は30秒の検定の内25に有意の連関性が認められなかった。

655
Table 2. Ion concentration changes (Mean±SE) in the saline solution instilled into the stomach of rats under restraint.

<table>
<thead>
<tr>
<th></th>
<th>1 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>4 hr</th>
<th>5 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sample 1</td>
<td>sample 2</td>
<td>sample 1</td>
<td>sample 2</td>
<td>sample 1</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Control</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td>K⁺</td>
<td>Control</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
</tbody>
</table>

Control: intact rats. Group A: jaundiced rats, undergoing ligation of the common bile duct 1 week previously. Group B: jaundiced rats, undergoing ligation of the common bile duct 3 weeks previously. Under restraint, the test for 1-hour period was serially repeated 5 times on each rat. Cumulative stress was increased with lapse of hours.

Table 3. Ion concentration changes (Mean±SE) in the saline solution instilled into the stomach of rats under restraint. Cimetidine 25 mg/kg was administered intraperitoneally at 30 minutes before starting the first test.

<table>
<thead>
<tr>
<th></th>
<th>1 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>4 hr</th>
<th>5 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sample 1</td>
<td>sample 2</td>
<td>sample 1</td>
<td>sample 2</td>
<td>sample 1</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Control</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td>K⁺</td>
<td>Control</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
</tbody>
</table>

Table 4. Ion concentration changes (Mean±SE) in the acid solution instilled into the stomach of rats under restraint.

<table>
<thead>
<tr>
<th></th>
<th>1 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>4 hr</th>
<th>5 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sample 1</td>
<td>sample 2</td>
<td>sample 1</td>
<td>sample 2</td>
<td>sample 1</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Control</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td>K⁺</td>
<td>Control</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>152.16±0.98</td>
<td>149.40±0.38</td>
<td>151.10±0.85</td>
<td>149.16±0.26</td>
</tr>
</tbody>
</table>
総胆管結紮ラット胃内各種電解質の濃度及び net flux の変動

Table 5. Net ion fluxes and volume rate changes (Mean±SE) in the saline solution instilled into the stomach of rats under restraint.

<table>
<thead>
<tr>
<th>No. of rats</th>
<th>1 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>4 hr</th>
<th>5 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ µEq/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>35.65±9.53</td>
<td>26.15±4.38</td>
<td>24.51±5.68</td>
<td>29.99±3.32</td>
</tr>
<tr>
<td>Group A</td>
<td>5</td>
<td>41.90±26.15</td>
<td>20.68±9.62</td>
<td>19.31±7.86</td>
<td>18.69±7.01</td>
</tr>
<tr>
<td>Group B</td>
<td>5</td>
<td>35.53±4.61</td>
<td>26.69±2.91</td>
<td>19.89±2.68</td>
<td>20.76±3.24</td>
</tr>
<tr>
<td>Na⁺ µEq/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>98.55±60.14</td>
<td>49.03±39.97</td>
<td>42.77±40.22</td>
<td>35.70±28.16</td>
</tr>
<tr>
<td>Group A</td>
<td>5</td>
<td>244.16±68.21</td>
<td>90.12±46.68</td>
<td>125.35±41.35</td>
<td>51.45±19.25</td>
</tr>
<tr>
<td>Group B</td>
<td>5</td>
<td>259.56±58.96</td>
<td>70.81±18.54</td>
<td>7.80±19.81</td>
<td>37.45±12.70</td>
</tr>
<tr>
<td>K⁺ µEq/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>4.17±1.73</td>
<td>2.25±0.53</td>
<td>1.60±0.32</td>
<td>1.42±0.42</td>
</tr>
<tr>
<td>Group A</td>
<td>5</td>
<td>4.35±1.27</td>
<td>1.87±0.28</td>
<td>1.50±0.26</td>
<td>1.46±0.35</td>
</tr>
<tr>
<td>Group B</td>
<td>5</td>
<td>5.30±1.38</td>
<td>1.99±0.35</td>
<td>1.23±0.42</td>
<td>0.86±0.24</td>
</tr>
<tr>
<td>Cl⁻ µEq/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>142.15±63.57</td>
<td>67.06±42.08</td>
<td>36.67±43.23</td>
<td>45.49±34.64</td>
</tr>
<tr>
<td>Group A</td>
<td>5</td>
<td>273.81±92.23</td>
<td>108.14±45.76</td>
<td>121.63±48.51</td>
<td>64.63±21.50</td>
</tr>
<tr>
<td>Group B</td>
<td>5</td>
<td>311.06±44.85</td>
<td>79.13±12.35</td>
<td>33.24±23.36</td>
<td>56.54±18.44</td>
</tr>
<tr>
<td>Volume rate ml/hr</td>
<td>5</td>
<td>0.92±0.38</td>
<td>0.48±0.22</td>
<td>0.44±0.25</td>
<td>0.33±0.17</td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>1.80±0.54</td>
<td>0.70±0.27</td>
<td>0.89±0.30</td>
<td>0.42±0.13</td>
</tr>
<tr>
<td>Group A</td>
<td>5</td>
<td>1.86±0.35</td>
<td>0.53±0.09</td>
<td>0.12±0.13</td>
<td>0.31±0.07</td>
</tr>
</tbody>
</table>

すなわち i) 液注入時は cimetidine 投与の有無にかかわらず、H⁺（Na⁺ + K⁺）× Cl⁻ の相互関係が成立するが、Ⅱ液注入時は成立しなかった。

3) 胃液内各種電解質 net flux の測定結果 (Table 5, 6, 7)

Table 6. Net ion fluxes and volume rate changes (Mean±SE) in the saline solution instilled into the stomach of rats under restraint. Cimetidine 25 mg/kg was administered intraperitoneally at 30 minutes before starting the first test.

<table>
<thead>
<tr>
<th>No. of rats</th>
<th>1 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>4 hr</th>
<th>5 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺ µEq/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>12.36±2.34</td>
<td>10.19±1.02</td>
<td>11.21±0.89</td>
<td>10.69±1.32</td>
</tr>
<tr>
<td>Group A</td>
<td>5</td>
<td>23.02±3.04</td>
<td>12.43±2.89</td>
<td>9.99±2.09</td>
<td>9.10±2.22</td>
</tr>
<tr>
<td>Group B</td>
<td>5</td>
<td>13.97±2.59</td>
<td>11.12±2.51</td>
<td>10.03±2.34</td>
<td>11.15±2.43</td>
</tr>
<tr>
<td>Na⁺ µEq/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>165.92±25.23</td>
<td>45.63±29.40</td>
<td>22.69±24.74</td>
<td>30.90±13.26</td>
</tr>
<tr>
<td>Group B</td>
<td>5</td>
<td>110.92±23.85</td>
<td>63.61±22.21</td>
<td>32.29±17.62</td>
<td>37.16±15.85</td>
</tr>
<tr>
<td>K⁺ µEq/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>2.45±0.71</td>
<td>2.14±0.92</td>
<td>1.79±0.72</td>
<td>0.82±0.27</td>
</tr>
<tr>
<td>Group A</td>
<td>5</td>
<td>2.98±0.65</td>
<td>1.21±0.17</td>
<td>0.86±0.32</td>
<td>1.11±0.33</td>
</tr>
<tr>
<td>Group B</td>
<td>5</td>
<td>4.84±1.28</td>
<td>2.39±0.64</td>
<td>1.59±0.32</td>
<td>1.18±0.18</td>
</tr>
<tr>
<td>Cl⁻ µEq/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>188.83±24.29</td>
<td>55.94±27.22</td>
<td>41.56±21.21</td>
<td>36.04±10.37</td>
</tr>
<tr>
<td>Group A</td>
<td>5</td>
<td>199.82±53.40</td>
<td>64.51±23.53</td>
<td>29.17±24.76</td>
<td>39.93±11.39</td>
</tr>
<tr>
<td>Group B</td>
<td>5</td>
<td>130.29±27.16</td>
<td>70.70±22.34</td>
<td>51.52±26.74</td>
<td>48.74±19.85</td>
</tr>
<tr>
<td>Volume rate ml/hr</td>
<td>5</td>
<td>1.26±0.14</td>
<td>0.36±0.15</td>
<td>0.27±0.16</td>
<td>0.22±0.08</td>
</tr>
<tr>
<td>Control</td>
<td>5</td>
<td>1.31±0.58</td>
<td>0.39±0.12</td>
<td>0.17±0.15</td>
<td>0.29±0.06</td>
</tr>
<tr>
<td>Group A</td>
<td>5</td>
<td>0.94±0.14</td>
<td>0.49±0.14</td>
<td>0.40±0.13</td>
<td>0.31±0.10</td>
</tr>
<tr>
<td></td>
<td>No. of rats</td>
<td>1 hr</td>
<td>2 hr</td>
<td>3 hr</td>
<td>4 hr</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>H<sup>+</sup></td>
<td>Control</td>
<td>43.15±12.06</td>
<td>6.06±7.06</td>
<td>-12.98±10.48</td>
<td>-9.87±8.88</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>53.04±11.94</td>
<td>17.87±15.02</td>
<td>16.79±13.83</td>
<td>-0.21±8.60</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>22.50±27.50</td>
<td>-4.02±8.75</td>
<td>-20.79±18.40</td>
<td>-0.75±24.51</td>
</tr>
<tr>
<td>Na<sup>+</sup></td>
<td>Control</td>
<td>113.86±13.87</td>
<td>39.86±5.38</td>
<td>18.10±5.24</td>
<td>27.17±4.46</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>135.97±20.48</td>
<td>52.63±13.30</td>
<td>36.06±8.79</td>
<td>23.85±4.90</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>107.36±54.73</td>
<td>51.78±19.42</td>
<td>31.90±1.73</td>
<td>28.84±5.45</td>
</tr>
<tr>
<td>K<sup>+</sup></td>
<td>Control</td>
<td>-0.86±1.82</td>
<td>-5.23±1.40</td>
<td>-9.59±2.11</td>
<td>-5.36±2.03</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>1.84±3.07</td>
<td>-4.08±2.08</td>
<td>-4.02±3.04</td>
<td>-7.90±1.33</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>0.37±3.23</td>
<td>-3.63±1.82</td>
<td>-5.86±1.84</td>
<td>-5.84±1.12</td>
</tr>
<tr>
<td>Cl<sup>−</sup></td>
<td>Control</td>
<td>133.21±19.45</td>
<td>43.36±15.01</td>
<td>-1.92±13.03</td>
<td>23.08±12.75</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>179.98±28.83</td>
<td>53.03±15.03</td>
<td>57.48±30.28</td>
<td>15.45±12.87</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>121.36±69.10</td>
<td>48.22±30.97</td>
<td>16.66±19.12</td>
<td>22.57±17.74</td>
</tr>
<tr>
<td>Volume rate</td>
<td>Control</td>
<td>1.12±0.14</td>
<td>0.36±0.09</td>
<td>0.08±0.12</td>
<td>0.26±0.09</td>
</tr>
<tr>
<td></td>
<td>Group A</td>
<td>1.36±0.22</td>
<td>0.46±0.13</td>
<td>0.49±0.21</td>
<td>0.17±0.10</td>
</tr>
<tr>
<td></td>
<td>Group B</td>
<td>0.86±0.46</td>
<td>0.48±0.19</td>
<td>0.21±0.16</td>
<td>0.25±0.13</td>
</tr>
</tbody>
</table>

Table 7. Net ion fluxes and volume rate changes (Mean±SE) in the acid solution instilled into the stomach of rats under restraint.

みられ，拘束後1時間で，Control 65.3％，Group A 45.1％，Group B 60.7％，拘束後5時間で，それぞれ59.9％，45.9％，58.4％であった。

Ⅱ液注入時，Controlは拘束後3時間で，Group Aは4時間で，Group Bは2時間でH⁺の吸収を認めた。

ii) net Na⁺ flux

試験液の種類，cimetidine 投与の有無にかかわりなく，Control，Group A，Group Bとも同様に，Na⁺の分泌は拘束1時間に比し，2時間以降著明な減少が認められた。

iii) net K⁺ flux

1液注入時とⅡ液注入時の間に著明な差を認めたが，Control，Group A，Group Bの間には有意の差を認めず，1液注入時，cimetidine 投与による影響も認めなかった。

iv) net Cl[−] flux

試験液の種類，cimetidine 投与の有無にかかわりなく，Control，Group A，Group Bとも同様に，Cl[−]の分泌は拘束1時間に比し，2時間以降著明な減少が認められた。

v) net volume flux

試験液の種類，cimetidine 投与の有無にかかわりなく，Control，Group A，Group Bとも同様に，経時的減少を認めた。

vi) 胃液内各種電解質 net flux の相関関係

試験液の種類，cimetidine 投与の有無にかかわりなく，Control，Group A，Group Bとも同様に，Na⁺，Cl[−]の分泌は拘束1時間に比し，2時間以降著明な減少が認められた。各群とも各計測時毎の各電解質の net flux の個々の值には変動がみられたが，各ラットにつき，計測時毎にcations (H⁺，Na⁺，K⁺)のnet fluxの合計を算出し，それぞれの対をなす anion (Cl[−])のnet fluxと比較したところ，近似性が認められた。従って，各群，各計測時毎のcations (H⁺，Na⁺，K⁺)のnet fluxの合計のMean±SE，anion (Cl[−])のnet fluxのMean±SEを別々に算出し，この両者の値の相関性をStudent's t test（対応のある場合）により検定した。Table 8に示す如く，各計測時毎に有意の相関性が経時的に認められた（1液注入，Control，3時間のみ連続性が認められなかった）。

4) 実験終了時に発生するストレス不応

実験終了時，1液使用の場合，cimetidine 投与の有無にかかわらず，精神障発生は認めなかった。1液使用の場合，Control 6.75±1.47 mm，Group A 7.63±1.85 mm，Group B 5.20±1.43 mmの相対精神長を示すストレス不応（UI-1であるが慣行上不適と呼ぶ）が脳皮
Table 8. Relationships between the sum of net gain of cations (H\(^+\), Na\(^+\), K\(^+\)) and net gain of anion (Cl\(^-\)).

<table>
<thead>
<tr>
<th>Use of Solution</th>
<th>Mean ± SE (\mu)L/hr</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>138.37 ± 54.51</td>
<td>0.1 < P < 0.8</td>
</tr>
<tr>
<td>Anion</td>
<td>162.15 ± 63.57</td>
<td>0.5 < P < 0.8</td>
</tr>
<tr>
<td>Group A</td>
<td>290.41 ± 91.37</td>
<td>0.3 < P < 0.5</td>
</tr>
<tr>
<td>Group B</td>
<td>273.81 ± 92.23</td>
<td>0.7 < P < 0.8</td>
</tr>
</tbody>
</table>

The significance of the difference between mean of the sum of net gain of cations and mean of net gain of anion was estimated by the paired t-test. The level of significance was given by P. The values larger than 0.05 were considered not significant; namely, probability of agreement was high.

The use of solution with cation (H\(^+\), Na\(^+\), K\(^+\)) is given by P. The values larger than 0.05 were considered not significant; namely, mean of net gain of anion was estimated by the paired t-test. The level of significance was given by P. The values larger than 0.05 were considered not significant; namely, probability of agreement was high.
Table 9. Relationships between measured volume rate and calculated volume rate.

<table>
<thead>
<tr>
<th></th>
<th>1 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>4 hr</th>
<th>5 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SE (\text{ml/hr})</td>
<td>(p)</td>
<td>Mean ± SE (\text{ml/hr})</td>
<td>(p)</td>
<td>Mean ± SE (\text{ml/hr})</td>
</tr>
<tr>
<td>Control</td>
<td>0.92 ± 0.38</td>
<td>0.7 < (p < 0.8)</td>
<td>0.48 ± 2.24</td>
<td>(p < 0.7)</td>
<td>0.44 ± 0.25</td>
</tr>
<tr>
<td>Group A</td>
<td>1.80 ± 0.54</td>
<td>0.8 < (p < 0.9)</td>
<td>0.70 ± 0.27</td>
<td>(p < 0.8)</td>
<td>0.89 ± 0.30</td>
</tr>
<tr>
<td>Group B</td>
<td>1.96 ± 0.35</td>
<td>0.8 < (p < 0.9)</td>
<td>0.53 ± 0.09</td>
<td>(p < 0.1)</td>
<td>0.12 ± 0.13</td>
</tr>
</tbody>
</table>

The significance of the difference between mean of measured and mean of calculated volume rate was estimated by the paired \(t \)-test.

で表わされる。

これに equation 1，2，3，4 を代入すると、

\[
H_2(v-k) - b + N_aNa_k + K_p(v-k) + K_{np} \equiv Cl_p(v-k) + Cl_{np}p
\]

\((H_2 + K_p - Cl_p)(v-k) \equiv (Cl_{np} + b - Na_o - K_{np})k \)

となった。

parietal の（cation−ion）output の値は nonparietal の（anion−cation）output の値には不等しい関係式が導き得た了。

ストレス潰壊発生の誘因となり得る高度、及びストレス潰壊発生を抑制する cimetidine 投与の有無、注入液の種類（I 液：生理食塩液、II 液：酸性液）、及び潰壊発生の有無にかかわりなく、parietal の（cation−anion）output の値を nonparietal の（anion−cation）output の値には不等しくする autoregulation の法則が働いているものと推定された。

Hirschowitz

及び Maklouf ら

が指摘する胃液内各種解質濃度の相互関係：\([H+] + [Na+] + [K+] \equiv [Cl] \)

を考えてみる時、著者らの実験系では、各時間当り net flux の計測はそれぞれ独立したものであった。拘束開始後時間が経過する程、各群ラットに対する拘束ストレスが増し、non-steady-state secretion の計測を停止することになり、各時間当り net flux の値は不等であるので、各群ラットの関係は以下のように導かれた。

Hirschowitz

及び Maklouf らの測定では潰壊発生を認めていないか、又はすでに潰壊をもっている患者を用いているが、著者らは潰壊発生過程の胃液内解質濃度を測定している点がこの差異をもたらしたと考えられた。

潰壊発生過程においては、粘膜関門の破綻が生じ、net flux 全体としての法則性（homeostasis の成立）は認められるが、この法則性の部分をなす胃液内解質濃度の相互関係はみられなくなったと考えられた。

結 語

ストレス潰壊発生の誘因となり得る高度、ストレス潰壊発生を抑制する cimetidine 投与の有無、ラット胃囊内注入液の種類（I 液：生理食塩液、II 液：酸性液）、及びストレス潰壊発生の有無にかかわりなく、
パリエタルの（cation−anion）outputの値を非パリエタルの（anion−cation）outputの値にほぼ等しくするauto-regulationの法則が働いているものと推定された。

文献