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Discrete Painlevé equations and discrete \mathrm{K}\mathrm{d}\mathrm{V}

equation over finite fields

By

Masataka KANKI * and Jun MADA** and Tetsuji TOKIHIRO ***

Abstract

We investigate some of the discrete Painlevé equations ( \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}}, q\mathrm{P}_{\mathrm{I}} and q\mathrm{P}_{\mathrm{I}\mathrm{I}} ) and the

discrete Kd! equation over finite fields# $he first part concerns the discrete Painlevé equations.
We review some of the ideas introduced in our previous papers [1, 2] and give some detailed

discussions. We first show that they are well defined by extending the domain according to the

theory of the space of initial conditions. We then extend them to the field of p‐adic numbers

and observe that they have a property that is called an �almost good reduction� of dynamical
systems over finite fields. We can use this property, which can be interpreted as an arithmetic

analogue of singularity confinement, to avoid the indeterminac) of the equations over finite

fields and to obtain special solutions from those defined originally over fields of characteristic

zero. In the second part we study the discrete Kd! equation. We follow the discussions in [3]
and present a way to resolve the indeterminacy of the equation by treating it over a field of

rational functions instead of the finite field itself. Explicit forms of soliton solutions and their

periods over finite fields are obtained.

§1. Introduction

In this article, we study several discrete integrable equations over finite fields. One

of the problems we encounter when we treat a discrete equation over a finite field
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is that its time evolution is not always well defined. This problem cannot be solved

even if we extend the domain from \mathbb{F}_{p^{m}} (p is a prime number) to the projective space

\mathbb{P}\mathbb{F}_{p^{m}} :=\mathbb{F}_{p^{m}}\cup\{\infty\} ,
because \mathbb{P}\mathbb{F}_{p^{m}} is no longer a field; we cannot determine the values

such as \displaystyle \frac{0}{0}, 0 \infty, \infty+\infty and so on. In this paper we study two strategies to define

the time evolution over a finite field without inconsistencies: [I] One is to reduce the

domain so that the time evolution will not pass the indeterminate states. [II] The

other is to extend the domain so that it can include all the orbits. We \mathrm{t}\mathrm{a}\supset \mathrm{e} the latter

strategy [II] and adopt two approaches: (i) The first approach is the application of the

theory of space of initial conditions developed by Okamoto [4, 5, 6, 7] and \mathrm{S}\mathrm{a}\supset \mathrm{a}\mathrm{i}[8] . (ii)
The second approach is to extend the domain of initial conditions to the field of p‐adic

numbers \mathbb{Q}_{p}.
The first part of this article concerns the one‐dimensional dynamical systems, in

particular the discrete Painlevé equations. Through the approach (i), we show that

the dynamics of those equations can be well defined in the space of initial conditions

even over the finite fields [2]. The approach (ii) is closely related to the so called

arithmetic dynamics, which concerns the dynamics over arithmetic sets such as \mathbb{Z} or

\mathbb{Q} or a number field that is of number theoretic interest [9]. In arithmetic dynamics,
the change of dynamical properties of polynomial or rational mappings give significant
information when reducing them modulo prime numbers. The mapping is said to have

good reduction if, roughly \mathrm{s}\mathrm{p}\mathrm{e}\mathrm{a}\supset \mathrm{i}\mathrm{n}\mathrm{g} , the reduction commutes with the mapping itself

[9]. The action of the projective linear group \mathrm{P}\mathrm{G}\mathrm{L}_{2} give typical examples of mappings
with a good reduction. The \mathrm{Q}8\mathrm{T} mappings [10] and several bi‐rational mappings over

finite fields have been investigated in terms of integrability by choosing the parameter

values so that indeterminate points are avoided [11, 12, 13]. They also have a good
reduction over finite fields. We prove that, although the integrable mappings generally
do not have a good reduction modulo a prime, they do have an almo\mathcal{S}t good reduction,
which is a generalised notion of good reduction. We first treat in detail the discrete

Painlevé II equation (\mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}})[14] over finite fields, on which we have briefly reported in

our previous letter [1], and then apply the method to the q‐discrete Painlevé equations

( q\mathrm{P}_{\mathrm{I}} and q\mathrm{P}_{\mathrm{I}\mathrm{I}} ). The time evolution of the discrete Painlevé equations can be well

defined generically, via the reduction from a local field \mathbb{Q}_{p} to a finite field \mathbb{F}_{p} . The

theory is then used to obtain some special solutions directly from those over fields of

characteristic zero such as \mathbb{Q} or \mathbb{R}.

The second part concerns the two‐dimensional evolution equation, in particular, the

discrete \mathrm{K}\mathrm{d}\mathrm{V} equation (dKdV) . Since the dKdV equation evolves as a two‐dimensional

lattice, the number of singular patterns we obtain is too large to be investigated even

for a system with small size. Therefore, it is difficult to determine the space of initial

conditions through the approach (i) above. Instead, we \mathrm{t}\mathrm{a}\supset \mathrm{e} the second approach (ii).
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We can well‐define the dKdV equation by considering it over the local field \mathbb{Q}_{p} just \mathrm{l}\mathrm{i}\supset \mathrm{e}

the discrete Painlevé cases. We introduce another extension of the space of initial con‐

ditions. Since the dKdV equation has a parameter  $\delta$
,

we can see  $\delta$ as an indeterminant

(variable) and can define the dKdV equation over the field of rational functions \mathbb{F}_{r}( $\delta$)
where r=p^{m}(m\geq 1)[3] . We define the soliton solutions over the finite fields and

discuss their periodicity.

§2. The \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation and its space of initial conditions

The discrete Painlevé equations are non‐autonomous, integrable mappings which

tend to some continuous Painlevé equations for appropriate choices of the continuous

limit [14]. They are non‐autonomous and nonlinear second order ordinary difference

equations with several parameters. When they are defined over a finite field, the depen‐
dent variable \mathrm{t}\mathrm{a}\supset \mathrm{e}\mathrm{s} only a finite number of values and their time evolution will attain

an indeterminate state in many cases for generic values of the parameters and initial

conditions. For example, the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation is defined as

(2.1) u_{n+1}+u_{n-1}=\displaystyle \frac{\mathrm{z}_{n}u_{n}+a}{1-u_{n}^{2}} (n\in \mathbb{Z}) ,

where \mathrm{z}_{n}= $\delta$ n+\mathrm{z}_{0} and a,  $\delta$, \mathrm{z}_{0} are constant parameters [15]. Let r=p^{m} for a prime

p and a positive integer m\in \mathbb{Z}_{+} . (hen (39) is defined over a finite field \mathbb{F}_{r} ,
the

dependent variable u_{n} will eventually \mathrm{t}\mathrm{a}\supset \mathrm{e} values \pm 1 for generic parameters and initial

values (u_{0}, u_{1})\in \mathbb{F}_{r}^{2} ,
and we cannot proceed to evolve it. If we extend the domain

from \mathbb{F}_{r}^{2} to (\mathbb{P}\mathbb{F}_{r})^{2}=(\mathbb{F}_{r}\cup\{\infty\})^{2}, \mathbb{P}\mathbb{F}_{r} is not a field and we cannot define arithmetic

operation in (39). To determine its time evolution consistently, we have two choices!

One is to restrict the parameters and the initial values to a smaller domain so that the

singularities do not appear. The other is to extend the domain on which the equation
is defined. In this article, we will adopt the latter approach. It is convenient to rewrite

(2.1) as:

(2.2) \left\{\begin{array}{l}
x_{n+1}=\frac{$\alpha$_{n}}{1-x_{n}}+\frac{$\beta$_{n}}{1+x_{n}}-y_{n},\\
y_{n+1}=x_{n},
\end{array}\right.
where $\alpha$_{n}:=\displaystyle \frac{1}{2}(\mathrm{z}_{n}+a) , $\beta$_{n}:=\displaystyle \frac{1}{2}(-\mathrm{z}_{n}+a) . Then we can regard (33) as a mapping
defined on the domain \mathbb{F}_{r}\times \mathbb{F}_{r} . To resolve the indeterminacy at x_{n}=\pm 1 ,

we apply
the theory of the state of initial conditions developed by Sakai [8]. @irst we extend the

domain to \mathbb{P}\mathbb{F}_{r}\times \mathbb{P}\mathbb{F}_{r} ,
and then blow it up at four points (x, y)=(\pm 1, \infty) , (\infty, \pm 1) to

obtain the space of initial conditions:

(2.3) \tilde{ $\Omega$}^{(n)}:=\mathcal{A}_{(1,\infty)}^{(n)}\cup \mathcal{A}_{(-1,\infty)}^{(n)}\cup \mathcal{A}_{(\infty,1)}^{(n)}\cup \mathcal{A}_{(\infty,-1)}^{(n)},
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where \mathcal{A}_{(1,\infty)}^{(n)} is the space obtained from the two dimensional affine space \mathrm{A}^{2} by blowing

up twice as

\mathcal{A}_{(1,\infty)}^{(n)}:=\{((x-1, y^{-1}), [$\xi$_{1}:$\eta$_{1}], [u_{1}:v_{1}])
$\eta$_{1}(x-1)=$\xi$_{1y^{-1}}, ($\xi$_{1}+$\alpha$_{n}$\eta$_{1})v_{1}=$\eta$_{1}(1-x)u_{1}\} \subset \mathrm{A}^{2}\times \mathbb{P}\times \mathbb{P},

where [a:b] denotes a set of homogeneous coordinates for \mathbb{P}^{1} . Similarly,

\mathcal{A}_{(-1,\infty)}^{(n)}:=\{((x+1, y^{-1}), [$\xi$_{2}:$\eta$_{2}], [u_{2}:v_{2}])
$\eta$_{2}(x+1)=$\xi$_{2}y^{-1}, (-$\xi$_{2}+$\beta$_{n}$\eta$_{2})v_{2}=$\eta$_{2}(1+x)u_{2}\},

\mathcal{A}_{(\infty,1)}^{(n)}:=\{((x^{-1}, y-1), [$\xi$_{3}:$\eta$_{3}], [u_{3}:v_{3}])
$\xi$_{3}(y-1)=$\eta$_{3}x^{-1}, ($\eta$_{3}+$\alpha$_{n}$\xi$_{3})v_{3}=$\xi$_{3}(1-y)u_{3}\},

\mathcal{A}_{(\infty,-1)}^{(n)}:=\{((x^{-1}, y+1), [$\xi$_{4}:$\eta$_{4}], [u_{4}:v_{4}])
$\xi$_{4}(y+1)=$\eta$_{4}x^{-1}, (-$\eta$_{4}+$\beta$_{n}$\xi$_{4})V3=$\xi$_{4}(1+y)u_{4}\}.

The bi‐rational map (33) is extended to the bijection \tilde{ $\phi$}_{n} : \tilde{ $\Omega$}^{(n)}\rightarrow\tilde{ $\Omega$}^{(n+1)} which

decomposes as \tilde{ $\phi$}_{n}:=$\iota$_{n}\mathrm{o}\mathrm{A}_{n} . Here $\iota$_{n} is a natural isomorphism which gives \tilde{ $\Omega$}^{(n)}\cong

\tilde{ $\Omega$}^{(n+1)}
,
that is, on \mathcal{A}^{(n)} for instance, $\iota$_{n} is expressed as

(1,\infty)

((x-1, y^{-1}), [ $\xi$: $\eta$], [u:v])\in \mathcal{A}_{(1,\infty)}^{(n)}
\rightarrow ((x-1, y^{-1}), [ $\xi$- $\delta$/2\cdot $\eta$: $\eta$], [u:v])\in \mathcal{A}_{(1,\infty)}^{(n+1)}.

The automorphism \tilde{ $\omega$}_{n} on \tilde{ $\Omega$}^{(n)} is induced from (33) and gives the mapping

\mathcal{A}_{(1,\infty)}^{(n)}\rightarrow \mathcal{A}_{(\infty,1)}^{(n)}, \mathcal{A}_{(\infty,1)}^{(n)}\rightarrow \mathcal{A}_{(-1,\infty)}^{(n)}, \mathcal{A}_{(-1,\infty)}^{(n)}\rightarrow \mathcal{A}_{(\infty,-1)}^{(n)}, \mathcal{A}_{(\infty,-1)}^{(n)}\rightarrow \mathcal{A}_{(1,\infty)}^{(n)}.
Dnder the map \mathcal{A}_{(1,\infty)}^{(n)}\rightarrow \mathcal{A}_{(\infty,1)}^{(n)},

x=1 \rightarrow E_{2}^{(\infty,1)} u_{3}=(y-\displaystyle \frac{$\beta$_{n}}{2}) V3,

E_{1}^{(1,\infty)} \rightarrow E_{1}^{(\infty,1)} [$\xi$_{1}:-$\eta$_{1}]=[$\alpha$_{n}$\xi$_{3}+$\eta$_{3}:$\xi$_{3}],

E_{2}^{(1,\infty)} \displaystyle \rightarrow y'=1 x'=\frac{u_{1}}{v_{1}}+\frac{$\beta$_{n}}{2},
where (x, y)\in \mathcal{A}_{(1,\infty)}^{(n)}, (x', y')\in \mathcal{A}_{(\infty,1)}^{(n)}, E_{1}^{\mathrm{p}} and E_{2}^{\mathrm{p}} are the exceptional curves in \mathcal{A}_{\mathrm{p}}^{(n)}
obtained by the first blowing up and the second blowing up respectively at the point \mathrm{p}

\in\{(\pm 1, \infty) , (\infty, \pm 1 Similarly under the map \mathcal{A}_{(\infty,1)}^{(n)}\rightarrow \mathcal{A}_{(-1,\infty)}^{(n)},
E_{1}^{(\infty,1)} \rightarrow E_{1}^{(-1,\infty)} [$\xi$_{3}:$\eta$_{3}]=[$\eta$_{2}:($\beta$_{n}-$\alpha$_{n})$\eta$_{2}-$\xi$_{2}],
E_{2}^{(\infty,1)} \rightarrow E_{2}^{(-1,\infty)} [u_{3}:v_{3}]=[-$\beta$_{n}u_{2}:$\alpha$_{n}v_{2}].
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The mapping on the other points are defined in a similar manner. Note that \mathrm{A}_{n} is

well‐defined in the case $\alpha$_{n}=0 or $\beta$_{n}=0 . In fact, for $\alpha$_{n}=0, E_{2}^{(1,\infty)} and E_{2}^{(\infty,1)}
can be identified with the lines x=1 and y=1 respectively. Therefore we have found

that, through the construction of the space of initial conditions, the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation can

be well‐defined over finite fields. However there are some unnecessary elements in the

space of initial conditions when we consider a finite field, because we are \mathrm{w}\mathrm{o}\mathrm{r}\supset \mathrm{i}\mathrm{n}\mathrm{g} on

a discrete topology and do not need continuity of the map. Let \tilde{ $\Omega$}^{(n)} be the space of

initial conditions and |\tilde{ $\Omega$}^{(n)}| be the number of elements of it. For the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation, we

obtain |\tilde{ $\Omega$}^{(n)}|=(r+1)^{2}-4+4(r+1)-4+4(r+1) = r2 + 9$r + 9, since \mathbb{P}\mathbb{F}_{r} contains

r+1 elements. However an exceptional curve E_{1}^{\mathrm{p}} is transferred to another exceptional
curve E_{1}^{\mathrm{p}'} ,

and [ 1: 0]\in E_{2}^{\mathrm{p}} to [ 1: 0]\in E_{2}^{\mathrm{p}'} or to a point in E_{1}^{\mathrm{p}'} . Hence we can reduce

the space of initial conditions \tilde{ $\Omega$}^{(n)} to the minimal space of initial conditions $\Omega$^{(n)} which

is the minimal subset of \tilde{ $\Omega$}^{(n)} including \mathbb{P}\mathbb{F}_{r}\times \mathbb{P}\mathbb{F}_{r} ,
closed under the time evolution. By

subtracting 	nnecessary elements we find |$\Omega$^{(n)}|=(r+1)^{2}-4+4(r+1)-4=r^{2}+6r-3.
In summary, we obtain the following proposition:

Proposition 2.1. The domain of the dP_{II} equation over \mathbb{F}_{r} can be extended to

the minimal domain $\Omega$^{(n)} on which the time evolution at time \mathcal{S}tepni_{\mathcal{S}} well defined.
Moreover |$\Omega$^{(n)}|=r^{2}+6r-3.

In figure 1, we show a schematic diagram of the map \mathrm{A}_{n} on \tilde{ $\Omega$}^{(n)}
,

and its restriction

map $\omega$_{n} :=\mathrm{A}_{n}|_{ $\Omega$(n)} on $\Omega$^{(n)} with r=3, $\alpha$_{0}=1 and $\beta$_{0}=2 . We can also say that the

figure1 is a diagram for the autonomous version of the equation (2.2) when  $\delta$=0 . In

the case of r=3 ,
we have |\tilde{ $\Omega$}^{(n)}| =*$ and |$\Omega$^{(n)}|=24.

The above approach is equally valid for the other discrete Painlevé equations and

we can define them over finite fields by constructing isomorphisms on the spaces of initial

conditions. Thus we conclude that a discrete Painlevé equation can be well defined over

a finite field by redefining the initial domain properly. In the next section, we show

another extension of the space of initial conditions: we extend it to \mathbb{Z}_{p}\times \mathbb{Z}_{p^{1}}.

§3. The discrete dynamical systems over a local field and its reduction

modulo a prime (review)

§3.1. Almost good reduction

Let p be a prime number and for each x\in \mathbb{Q}(x\neq 0) write x=p^{v_{p}(x)^{\underline{u}}} where

v_{p}(x) , u, v\in \mathbb{Z} and u and v are coprime integers neither of which is divisibvle by p.

The p‐adic norm |x|_{p} is defined as |x|_{p}=p^{-v_{p}(x)}. (|0|_{p}=0.) The local field \mathbb{Q}_{p} is

lWith the method in the next section, we can only deal with systems over the field \mathbb{F}_{p^{1}} . To apply
it to those over the field \mathbb{F}_{p^{m}}(m>1) , we have to use the field extension o) \mathbb{Q}_{p}.
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Figure1. The orbit decomposition of the space of initial conditions \tilde{ $\Omega$}^{(n)} and the reduced

one $\Omega$^{(n)} for p=r=3.
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a completion of \mathbb{Q} with respect to the p‐adic norm. It is called the field of p‐adic

numbers and its subring \mathbb{Z}_{p} :=\{x\in \mathbb{Q}_{p}||x|_{p}\leq 1\} is called the ring of p‐adic integers

[17]. The p‐adic norm satisfies a non‐Archimedean (	ltrametric) triangle inequality

|x+y|_{p}\displaystyle \leq\max[|x|_{p}, |y|_{p}] . Let \mathfrak{p}=p\mathbb{Z}_{p}=\{x\in \mathbb{Z}_{p}|v_{p}(x)\geq 1\} be the maximal ideal of

\mathbb{Z}_{p} . We define the reduction of x modulo \mathfrak{p} as \tilde{x}:\mathbb{Z}_{p}\ni x\mapsto\tilde{x}\in \mathbb{Z}_{p}/\mathfrak{p}\cong \mathbb{F}_{p} . Note that

the reduction is a ring homomorphism. The reduction is generalised to \mathbb{Q}_{p}^{\times} :

\mathbb{Q}_{p}^{\times}\ni x=p^{k}u(u\in \mathbb{Z}_{p}^{\times})\mapsto\left\{\begin{array}{l}
0(k>0)\\
\infty(k<0)\in \mathbb{P}\mathbb{F}_{p},\\
\~{u} (k=0)
\end{array}\right.
which is no longer homomorphic. For a rational map  $\phi$(x, y)\in \mathbb{Z}_{p}(x, y):\mathcal{D}\subseteq \mathbb{Z}_{p}^{2}\rightarrow \mathbb{Z}_{p}^{2},
defined on some domain \mathcal{D}, \tilde{ $\phi$}(x, y)\in \mathbb{F}_{p}(x, y) is defined as the map whose coefficients

are all reduced. The rational map  $\phi$ is said to have a good reduction (modulo \mathfrak{p} on

the domain \mathcal{D} ) if we have  $\phi$(x, y) =\tilde{ $\phi$}(\tilde{x}, \tilde{y}) for any (x, y) \in \mathcal{D}[9] . We have defined a

generalised notion in our previous letter and have explained its usefulness;

Definition 3.1 ([1]). \mathrm{A} (non‐autonomous) rational map $\phi$_{n}:\mathcal{D}\subseteq \mathbb{Z}_{p}^{2}\rightarrow \mathbb{Q}_{p}
(n\in \mathbb{Z}) is said to have an almost good reduction modulo \mathfrak{p} if there exists a positive

integer m_{\mathrm{p};n} for any \mathrm{p}=(x, y)\in \mathcal{D} and time step n such that

(3.1) $\phi$_{n}^{m_{\mathrm{p};n}}\overline{(x}, y)=\overline{$\phi$_{n}^{m_{\mathrm{p};n}}}(\tilde{x},\tilde{y}) ,

where $\phi$_{n}^{m} :=$\phi$_{n+m-1}\circ$\phi$_{n+m-2^{\mathrm{O}}}\cdots\circ$\phi$_{n}.

Let us first review some of the findings in [1] in order to see the significance of the

notion of almo\mathcal{S}t good reduction. Let us consider the mapping $\Psi$_{ $\gamma$} :

(3.2) \left\{\begin{array}{l}
x_{n+1}=\frac{ax_{n}+1}{x_{n}^{ $\gamma$}y_{n}},\\
y_{n+1}=x_{n},
\end{array}\right.
where a\in\{1, 2, \cdots, p-1\} and  $\gamma$\in \mathbb{Z}_{\geq 0} are parameters. The map (3.2) is known to be

integrable if and only if  $\gamma$= $, 9, 3. Note that when  $\gamma$= $, 9, 3, (3.2) is an autonomous

version of the q‐discrete Painlevé I equation and therefore is integrable. We also note

that when  $\gamma$=2 , (3.2) belongs to the \mathrm{Q}8\mathrm{T} family and is integrable in the sense that it

has a conserved quantity.
Let \mathcal{D} be the domain \{(x, y)\in \mathbb{Z}_{p}|x\neq 0, y\neq 0\} ,

then clearly

$\Psi$_{2}(x_{n}, y_{n})=\overline{ $\Psi$}_{2}(\tilde{x}_{n},\tilde{y}_{n}) for \tilde{x}_{n}\neq 0, \tilde{y}_{n}\neq 0.

For (x_{n}, y_{n})\in \mathcal{D} with \tilde{x}_{n}=0 and \tilde{y}_{n}\neq 0 ,
we find that \overline{$\Psi$_{2}^{k}}(\tilde{x}_{n}= {\$}, \tilde{y}_{n}) is not defined

for k=1
, 2, however it is defined if k=3 and we have

$\Psi$_{2}^{3}\displaystyle \overline{(x_{n},y}_{n})=\overline{$\Psi$_{2}^{3}}(\tilde{x}_{n}=0,\tilde{y}_{n})=(\frac{1}{a^{2}\tilde{y}}, 0) .
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Finally for \tilde{x}_{n}=\tilde{y}_{n}=0 ,
we find that \overline{$\Psi$_{2}^{k}}(\tilde{x}_{n},\tilde{y}_{n}) is not defined for k=1

, 2, 7, however

$\Psi$_{2}^{8}(x_{n}, y_{n})=\overline{$\Psi$_{2}^{8}}(\tilde{x}_{n}=0,\tilde{y}_{n}=0)=(0,0) .

Hence the map $\Psi$_{2} has almost good reduction modulo \mathfrak{p} on \mathcal{D} . Note that, in the case

 $\gamma$=2 and a=0 ,
if we \mathrm{t}\mathrm{a}\supset \mathrm{e}

f_{2k} :=x_{2k^{X}2k-1}, f_{2k-1}:=(x_{2k-1}x_{2k-2})^{-1}

(3.2)turns into the trivial linear mapping f_{n+1}=f_{n} which has apparently good reduc‐

tion modulo \mathfrak{p} . In a similar manner, we find that $\Psi$_{ $\gamma$}( $\gamma$=0,1) also has almost good
reduction modulo \mathfrak{p} on \mathcal{D} . On the other hand, for  $\gamma$\geq 3 and \tilde{x}_{n}=0 ,

we easily find that

\forall_{k}\in \mathbb{Z}_{\geq 0}, $\Psi$_{ $\gamma$}^{k}(x_{n}, y_{n})\neq\overline{$\Psi$_{ $\gamma$}^{k}}(\tilde{x}_{n}=0,\tilde{y}_{n}) ,

since the order of p diverges as we iterate the mapping. Thus we have proved the

following proposition:

Proposition 3.2. The rational mapping (3.2) ha\mathcal{S} an almo\mathcal{S}t good reduction

modulo \mathfrak{p} only for  $\gamma$=0 , 1, 2.

Note that having an almost good reduction is equivalent to the integrability of the

equation in these examples.

§3.2. The \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation modulo a prime and its special solutions

Now let us examine the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}}(2.2) over \mathbb{Q}_{p} . We suppose that p\geq:, and redefine

the coefficients $\alpha$_{n} and $\beta$_{n} so that they are periodic with period p :

$\alpha$_{i+mp}:=\displaystyle \frac{(i $\delta$+\mathrm{z}_{0}+a+n_{ $\alpha$}p)}{2}, $\beta$_{i+mp}:=\frac{(-i $\delta$-\mathrm{z}_{0}+a+n_{ $\beta$}p)}{2},
(m\in \mathbb{Z}, i\in\{0,1,2, \cdots, p-1

where the integer n_{ $\alpha$}(n_{ $\beta$}) is chosen such that 0\in\{$\alpha$_{i}\}_{i=0}^{p-1}(0\in\{$\beta$_{i}\}_{i=0}^{p-1}) . Gs a result,

we have \displaystyle \mathrm{A}_{n}=\frac{n $\delta$+z_{0}+a}{2}, \displaystyle \tilde{ $\beta$}_{n}=\frac{-n $\delta$-z_{0}+a}{2} and |$\alpha$_{n}|_{p}, |$\beta$_{n}|_{p}\in\{0 ,
1 \} for any integer n.

Proposition 3.3. Under the above a\mathcal{S}\mathcal{S}umption\mathcal{S} , the dP_{II} equation ha\mathcal{S} an al‐

mo\mathcal{S}t good reduction modulo \mathfrak{p} on \mathcal{D} :=\{(x, y)\in \mathbb{Z}_{p}^{2}|x\neq\pm 1\}.

Proof. We put (x_{n+1}, y_{n+1})=$\phi$_{n}(x_{n}, y_{n})=($\phi$_{n}^{(x)}(x_{n}, y_{n}), $\phi$_{n}^{(y)}(x_{n}, y_{n})) .

When \tilde{x}_{n}\neq\pm 1 ,
we have

\displaystyle \tilde{x}_{n+1}=\frac{\tilde{ $\alpha$}_{n}}{1-\tilde{x}_{n}}+\frac{\tilde{ $\beta$}_{n}}{1+\tilde{x}_{n}}-\tilde{y}_{n}, \tilde{y}_{n+1}=\tilde{x}_{n}.
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Hence $\phi$_{n}(x_{n}, y_{n})=\tilde{ $\phi$}_{n}(\tilde{x}_{n},\tilde{y}_{n}) .

When \tilde{x}_{n}=1 ,
we can write x_{n}=1+p^{k}e(k\in \mathbb{Z}_{+}, |e|_{p}=1) . We have to consider

four cases2:

(i) For $\alpha$_{n}=0,

\tilde{x}_{n+1}=\tilde{ $\phi$}_{n}^{(x)}(\tilde{x}_{n},\tilde{y}_{n})=\overline{(\frac{$\beta$_{n}}{2})}-\tilde{y}_{n}.
Hence we have $\phi$_{n}(x_{n}, y_{n})=\tilde{ $\phi$}_{n}(\tilde{x}_{n},\tilde{y}_{n}) .

(ii) In the case $\alpha$_{n}\neq 0 and $\beta$_{n+2}\neq 0,

x_{n+1}=-\displaystyle \frac{($\alpha$_{n}-$\beta$_{n})(1+ep^{k})+a}{ep^{k}(2+ep^{k})}-y_{n}=-\frac{2$\alpha$_{n}+($\alpha$_{n}-$\beta$_{n})ep^{k}}{ep^{k}(2+ep^{k})}-y_{n},
x_{n+2}=-\displaystyle \frac{$\alpha$_{n}^{2}+\mathrm{p}\mathrm{o}1\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}1\mathrm{o}\mathrm{f}O(p)}{$\alpha$_{n}^{2}+\mathrm{p}\mathrm{o}1\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}1\mathrm{o}\mathrm{f}O(p)},
x_{n+3}=\displaystyle \frac{\{2$\alpha$_{n}y_{n}+2 $\delta \beta$_{n+1}+(2- $\delta$)a\}$\alpha$_{n}^{3}+\mathrm{p}\mathrm{o}1\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{f}O(p)}{2$\beta$_{n+2}$\alpha$_{n}^{3}+\mathrm{p}\mathrm{o}1\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}1\mathrm{o}\mathrm{f}O(p)},

Thus we have

\displaystyle \tilde{x}_{n+3}=\frac{2\tilde{ $\alpha$}_{n}\tilde{y}_{n}+2 $\delta$\tilde{ $\beta$}_{n+1}+(2- $\delta$)a}{2\tilde{ $\beta$}_{n+2}}, \tilde{y}_{n+3}=-1,
and $\phi$_{n}^{3}(x_{n}, y_{n})=\overline{$\phi$_{n}^{3}}(\tilde{x}_{n},\tilde{y}_{n}) .

(iii) In the case $\alpha$_{n}\neq 0, $\beta$_{n+2}=0 and  a\neq- $\delta$ ,
we have to calculate up to  x_{n+5} . After

a lengthy calculation we find

\tilde{x}_{n+4}=$\phi$_{n}^{\overline{5}^{(y)}}(1,\tilde{y}_{n})=1 ,
and \displaystyle \tilde{x}_{n+5}=$\phi$_{n}^{\overline{5}^{(x)}}(1,\tilde{y}_{n})=-\frac{a $\delta$-(a- $\delta$)\tilde{y}_{n}}{a+ $\delta$},

and we obtain $\phi$_{n}^{5}(x_{n}, y_{n})=\overline{$\phi$_{n}^{5}}(\tilde{x}_{n},\tilde{y}_{n}) .

(iv) Finally, in the case $\alpha$_{n}\neq 0, $\beta$_{n+2}=0 and  a=- $\delta$ we have to calculate up to  x_{n+7}.

The result is

\tilde{x}_{n+6}=$\phi$_{n}^{\overline{7}^{(y)}}(1,\tilde{y}_{n})=-1 ,
and \displaystyle \tilde{x}_{n+7}=$\phi$_{n}^{\overline{7}^{(x)}}(1,\tilde{y}_{n})=\frac{1+2\tilde{y}_{n}}{2},

and we obtain $\phi$_{n}^{7}(x_{n}, y_{n})=\overline{$\phi$_{n}^{7}}(\tilde{x}_{n},\tilde{y}_{n}) . Hence we have proved that the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation
has almost good reduction modulo \mathfrak{p} at \tilde{x}_{n}=1 . We can proceed in the case \tilde{x}_{n}=-1

in an exactly similar manner. \square 

@rom this proposition, the evolution of the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation (2.1) over \mathbb{P}\mathbb{F}_{p} can be

constructed from the initial values u_{n-1} and u_{n}.

2
Precisely speakin2, there are some special cases for p : 3, 5where we have to consider the fact

$\alpha$_{n+p} : $\alpha$_{n} or $\beta$_{n+p} :$\beta$_{n} durin2 the iteration process. We can prove by straightforward calcula‐

tions that similar results hold for these exceptional cases.
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Now we consider special solutions to (39) over \mathbb{P}\mathbb{F}_{p} . @or the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation over \mathbb{C},
rational function solutions have already been obtained [19]. Let N be a positive integer
and ! \neq $ be a constant. \mathrm{S}[Tab]ppose that a=-\displaystyle \frac{2(N+1)}{ $\lambda$},  $\delta$=\displaystyle \mathrm{z}_{0}=\frac{2}{ $\lambda$},

L_{k}^{( $\nu$)}( $\lambda$):=\left\{\begin{array}{ll}
\sum_{r=0}^{k}(-1)^{r}[Matrix]\frac{$\lambda$^{r}}{r!} & (k\in \mathbb{Z}_{\geq 0}) ,\\
0 & (k\in \mathbb{Z}<0) ,
\end{array}\right.
and

(3.3) $\tau$_{N}^{n}:=\det|L_{N+1-2i+j}^{(n)}( $\lambda$)|_{1\leq i,j\leq N}.
Then a rational function solution of the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation is given by

(3.4) u_{n}=\displaystyle \frac{$\tau$_{N+1}^{n+1}$\tau$_{N}^{n-1}}{$\tau$_{N+1}^{n}$\tau$_{N}^{n}}-1.
If we deal with the terms in and (3.4) by arithmetic operations over \mathbb{F}_{p} ,

we en‐

counter terms such as \displaystyle \frac{1}{p} or \displaystyle \frac{p}{p} and (3.4) is not well‐defined. However, from proposition
we find that (3.4) gives a solution to the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation over \mathbb{P}\mathbb{F}_{q} by the reduc‐

tion from \mathbb{Q}(\subset \mathbb{Q}_{p}) ,
as long as the solution avoids the points (\mathrm{A}_{n}=0, u_{n}=1) and

(\tilde{ $\beta$}_{n}=0, u_{n}=-1) ,
which is equivalent to the solution satisfying

N+1N-1

(3.5) $\tau$_{N+1N}^{-N-1_{\mathcal{T}}-N-3}\displaystyle \not\equiv 0, \frac{$\tau$_{N+1}$\tau$_{N}}{$\tau$_{N+1}^{N}$\tau$_{N}^{N}}\not\equiv 2,
where the superscripts are considered modulo p . Note that $\tau$_{N}^{n}\equiv$\tau$_{N}^{n+p} for all integers N

and n . In the table below, we give several rational \mathcal{S}olution\mathcal{S} to the dP_{II} equation with
N=3 and  $\lambda$=1 over \mathbb{P}\mathbb{F}_{q} for q=3 , 5, 7 and 99. We see that the period of the solution

is p.

We see from the case of p=11 that we may have an appropriate solution even if

the condition (3.5) is not satisfied, although this is not always true. The \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation
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has linearized solutions also for  $\delta$=2a [3$�. (ith our new method, we can obtain the

corresponding solutions without difficulty.

§4. The p‐adic analogue of the singularity confinement test

The above approach is closely related to the singularity confinement method which

is an effective test to judge the integrability of the given equations [18]. In the proof of

the Proposition we have taken x_{n}=1+ep^{k} and have shown that the limit

\displaystyle \lim (x_{n+m}, x_{n+m+1})
|ep^{k}|_{p}\rightarrow 0

is well defined for some positive integer m . Here ep^{k}(k>0, |e|_{p}=1) is an alternative

in \mathbb{Q}_{p} for the infinitesimal parameter  $\epsilon$ in the singularity confinement test in \mathbb{C} . Note

that p^{k} (k > $) is a Jsmall� number in terms of the p‐adic metric. @rom this observation

and propositions 3.2, we postulate that having almost good reduction in arithmetic

mappings is similar to passing the singularity confinement test.

§5. The q‐discrete Painlevé equations over a finite field

In this section we study the q‐discrete analogues of the Painlevé equations (q\mathrm{P}_{\mathrm{I}} and

q\mathrm{P}_{\mathrm{I}\mathrm{I}} equations).

§5.1. The q\mathrm{P}_{\mathrm{I}} equation

One of the forms of the q\mathrm{P}_{\mathrm{I}} equations is as follows:

(5.1) x_{n+1^{X}n-1}=\displaystyle \frac{aq^{n}x_{n}+b}{x_{n}^{2}},
where a and b are parameters. We rewrite (5.1) for our convenience as

(5.2) $\Phi$_{n}:\left\{\begin{array}{l}
x_{n+1}=\frac{aq^{n}x_{n}+b}{x_{n}^{2}y_{n}},\\
y_{n+1}=x_{n}.
\end{array}\right.
Similarly to the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation, we can prove the following proposition:

Proposition 5.1. Suppo\mathcal{S}e that a, b, q are integer\mathcal{S} not divi_{\mathcal{S}}ible by p ,
then the

mapping (5.2) ha\mathcal{S} an almo\mathcal{S}t good reduction modulo \mathfrak{p} on the domain \mathcal{D} :=\{(x, y)\in

\mathbb{Z}_{p}^{2}|x\neq 0, y\neq 0\}.

Proof. Let (x_{n+1}, y_{n+1})=$\Phi$_{n}(x_{n}, y_{n}) . Just \mathrm{l}\mathrm{i}\supset \mathrm{e} we have done before, we have only
to examine the cases \tilde{x}_{n} = $ and \tilde{y}_{n} = $. We use the abbreviation \tilde{q}=q, \mathrm{A}=a, \tilde{b}=b
for simplicity. Fy direct computation we obtain#
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(i) If \tilde{x}_{n}=0 and \tilde{y}_{n}\neq 0 ,
then

$\Phi$_{n}^{3}\displaystyle \overline{(x_{n},}y_{n})=\overline{$\Phi$_{n}^{3}}(0,\tilde{y}_{n})=(\frac{b^{2}}{a^{2}q^{2}\tilde{y}_{n}}, 0) .

(ii) If \tilde{y}_{n}=0 and \tilde{x}_{n}\neq 0 ,
then

$\Phi$_{n}^{5}\displaystyle \overline{(x_{n},}y_{n})=\overline{$\Phi$_{n}^{5}}(\tilde{x}_{n}, 0)=(0, \frac{a^{2}q^{4}}{b_{\tilde{X}_{n}}})
(iii) If \tilde{x}_{n}=0 and \tilde{y}_{n}=0 ,

then

$\Phi$_{n}^{8}(x_{n}, y_{n})=\overline{$\Phi$_{n}^{8}}(0,0)=(0,0) .

\square 

§5.2. The q\mathrm{P}_{\mathrm{I}\mathrm{I}} equation

The q\mathrm{P}_{\mathrm{I}\mathrm{I}} equation is the following q‐discrete equation:

(5.3) (\displaystyle \mathrm{z}(q $\tau$)\mathrm{z}( $\tau$)+1)(\mathrm{z}( $\tau$)\mathrm{z}(q^{-1} $\tau$)+1)=\frac{a$\tau$^{2}\mathrm{z}( $\tau$)}{ $\tau$-\mathrm{z}( $\tau$)},
where a and q are parameters [21]. It is also convenient to rewrite (5.3) as

(5.4) $\Phi$_{n}:\left\{\begin{array}{l}
x_{n+1}=\frac{a(q^{n}$\tau$_{0})^{2}x_{n}-(q^{n}$\tau$_{0}-x_{n})(1+x_{n}y_{n})}{x_{n}(q^{n}$\tau$_{0}-x_{n})(x_{n}y_{n}+1)},\\
y_{n+1}=x_{n},
\end{array}\right.
where  $\tau$=q^{n}$\tau$_{0} . Just like the \mathrm{q}\mathrm{P}_{\mathrm{I}} equation, we can prove that \mathrm{q}\mathrm{P}_{\mathrm{I}\mathrm{I}} has an almost good
reduction:

Proposition 5.2. Suppo\mathcal{S}e that a, q, $\tau$_{0} are integer\mathcal{S} not divi_{\mathcal{S}}ible by p ,
then the

mapping (5.4) ha\mathcal{S} an almo\mathcal{S}t good reduction modulo \mathfrak{p} on the domain \mathcal{D} :=\{(x, y)\in

\mathbb{Z}_{p}^{2}|x\neq 0, x\neq q^{n}$\tau$_{0}(n\in \mathbb{Z}) , xy+1\neq 0\}.

Proof. Let (x_{n+1}, y_{n+1})=$\Phi$_{n}(x_{n}, y_{n}) . Just \mathrm{l}\mathrm{i}\supset \mathrm{e} we have done before, we have

only to examine the cases \tilde{x}_{n}=0, q^{\overline{n}}$\tau$_{0} and -\tilde{y}_{n}^{-1} . We obtain;

(i) If \tilde{x}_{n}=0 and -1+q^{2}-aq^{2}$\tau$^{2}+q^{3}$\tau$^{2}-q^{2} $\tau$\tilde{y}_{n}\neq 0,

$\Phi$_{n}^{3}\displaystyle \overline{(x_{n},}y_{n})=\overline{$\Phi$_{n}^{3}}(\tilde{x}_{n}=0,\tilde{y}_{n})=(\frac{1-q^{2}+aq^{2}$\tau$^{2}-q^{3}$\tau$^{2}-aq^{4}$\tau$^{2}+q^{2} $\tau$\tilde{y}_{n}}{q^{2} $\tau$(-1+q^{2}-aq^{2}$\tau$^{2}+q^{3}$\tau$^{2}-q^{2} $\tau$\tilde{y}_{n})}, q^{2} $\tau$) .

(ii) If \tilde{x}_{n}=0 and -1+q^{2}-aq^{2}$\tau$^{2}+q^{3}$\tau$^{2}-q^{2} $\tau$\tilde{y}_{n}=0,

$\Phi$_{n}^{5}\displaystyle \overline{(x_{n},}y_{n})=\overline{$\Phi$_{n}^{5}}(\tilde{x}_{n}=0,\tilde{y}_{n})=(\frac{1-q^{2}+q^{7}$\tau$^{2}-aq^{8}$\tau$^{2}}{q^{4} $\tau$},0) .
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(iii) If \tilde{x}_{n}= $\tau$ and  1+ $\tau$\tilde{y}_{n}\neq 0,

$\Phi$_{n}^{3}(x_{n}, y_{n})=\overline{$\Phi$_{n}^{3}}(\tilde{x}_{n}= $\tau$,\tilde{y}_{n})

=(\displaystyle \frac{1-q^{2}+(a+q-aq^{2})q^{2}$\tau$^{2}+(1-q^{2}) $\tau$\tilde{y}+(1-aq)q^{3}$\tau$^{3}\tilde{y}}{q^{2} $\tau$(1+ $\tau$\tilde{y}_{n})}, 0) .

(iv) If \tilde{x}_{n}= $\tau$ and  1+ $\tau$ y_{n}^{\sim}=0,

$\Phi$_{n}^{7}\displaystyle \overline{(x_{n},}y_{n})=\overline{$\Phi$_{n}^{7}}(\tilde{x}_{n}= $\tau$,\tilde{y}_{n})=(\frac{1}{aq^{12}$\tau$^{3}}, -aq^{12}$\tau$^{3}) .

(v) If x_{n}^{\sim}\tilde{y}_{n}+1=0,

$\Phi$_{n}^{7}\displaystyle \overline{(x_{n},}y_{n})=\overline{$\Phi$_{n}^{7}}(\tilde{x}_{n}=-\tilde{y}_{n}^{-1},\tilde{y}_{n})=(-\frac{1}{aq^{12}$\tau$^{4}\tilde{y}_{n}}, aq^{12}$\tau$^{4}\tilde{y}_{n}) .

Thus we complete the proof. \square 

From this proposition we can define the time evolution of the q\mathrm{P}_{\mathrm{I}\mathrm{I}} equation explic‐

itly just like the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation in the previous section.

Next we consider special solutions for \mathrm{q}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation (5.3) over \mathbb{P}\mathbb{F}_{p} . In [22] it has

been proved that (5.3) over \mathbb{C} with a=q^{2N+1}(N\in \mathbb{Z}) is solved by the functions given

by

(5.5) \mathrm{z}^{(N)}( $\tau$)=\left\{\begin{array}{ll}
\frac{g^{(N)}( $\tau$)g^{(N+1)}(q $\tau$)}{q^{N}g^{(N)}(q $\tau$)g^{(N+1)}( $\tau$)} & (N\geq 0) ,\\
\frac{g^{(N)}( $\tau$)g^{(N+1)}(q $\tau$)}{q^{N+1}g^{(N)}(q $\tau$)g^{(N+1)}( $\tau$)} & (N<0) ,
\end{array}\right.
(5.6) g^{(N)}( $\tau$)=\left\{\begin{array}{ll}
|w(q^{-i+2j-1} $\tau$)|_{1\leq i,j\leq N} & (N>0) ,\\
1 & (N=0) ,\\
|w(q^{i-2j} $\tau$)|_{1\leq i,j\leq-N} & (N<0) ,
\end{array}\right.
where w( $\tau$) is a solution of the q‐discrete Giry equation:

(5.7) w(q $\tau$)- $\tau$ w( $\tau$)+w(q^{-1} $\tau$)=0.

Gs in the case of the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation, we can obtain the corresponding solutions to (5.5)
over \mathbb{P}\mathbb{F}_{p} by reduction modulo \mathfrak{p} according to the proposition 5.2. For that purpose, we

have only to solve (5.7) over \mathbb{Q}_{p} . Fy elementary computation we obtain!

(5.8) w(q^{n+1}$\tau$_{0})=c_{1}P_{n}($\tau$_{0};q)+c_{0}P_{n-1}(q$\tau$_{0};q) ,
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where c_{0}, c_{1} are arbitrary constants and P_{n}(x;q) is defined by the tridiagonal determi‐

nant:

P_{n}(x;q):=|_{0^{-1}-1q^{n}x}^{-1q^{2}x-.1_{q^{n-1}x-1}}qx_{0}-.1..\cdot..|
The function P_{n}(x;q) is the polynomial of n\mathrm{t}\mathrm{h} order in x,

P_{n}(x;q)=\displaystyle \sum_{k=0}^{[n/2]}(-1)^{k}a_{n;k}(q)x^{n-2k},
where a_{n;k}(q) are polynomials in q . If we let i\ll j denotes i<*-1 ,

and c(j_{1}, *_{2}, *k) :=

\displaystyle \sum_{r=1}^{k}(2*_{r}+1) , then, we have

a_{n;k}= \displaystyle \sum q^{n(n+1)/2-c(j_{1},j_{2},\ldots,j_{k})}.
1\leq j_{1}\ll j_{2}\ll\cdots\ll j_{k}\leq n-1

Therefore the solution of q\mathrm{P}_{\mathrm{I}\mathrm{I}} equation over \mathbb{P}\mathbb{F}_{p} is obtained by reduction modulo \mathfrak{p} from

(5.5), (5.6) and (5.8) over \mathbb{Q} or \mathbb{Q}_{p}.
We can also prove that a type of q‐discrete Painlevé III, IV and V equations have an

almost good reduction on some appropriate domains. These facts justifies that almost

good reduction can be a criterion for integrability of systems over finite fields. Proofs

are fairly straightforward and will be reported in the future article [23].

§6. The discrete \mathrm{K}\mathrm{d}\mathrm{V} equation

In section 3, we have successfully determined the time evolution of the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation

through the construction of the space of initial conditions of the \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}} equation by

blowing‐up twice at each of the singular points so that the mapping becomes bijec‐
tive. However, for a general nonlinear equation, explicit construction of the space of

initial conditions over a finite field is not so straightforward (for example see [16]) and

it will not help us to obtain the explicit solutions.

In this section we study the soliton equations evolving as a two‐dimensional lattice

over finite fields by following the discussions made in [3]. @or example, let us consider

the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation

(6.1) \displaystyle \frac{1}{x_{n+1}^{t+1}}-\frac{1}{x_{n}^{t}}+\frac{ $\delta$}{1+ $\delta$}(x_{n}^{t+1}-x_{n+1}^{t})=0,
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over a finite field \mathbb{F}_{r} where r=p^{m}, p is a prime number and m\in \mathbb{Z}_{+} . Here n, t\in \mathbb{Z}

and  $\delta$ is a parameter. If we put

\displaystyle \frac{1}{y_{n}^{t}}:=(1+ $\delta$)\frac{1}{x_{n}^{t+1}}-$\delta$_{X_{n}^{t}}
we obtain equivalent coupled equations

(6.2) \left\{\begin{array}{l}
x_{n}^{t+1}=\frac{(1+ $\delta$)y_{n}^{t}}{1+ $\delta$ x_{n}^{t}y_{n}^{t}},\\
y_{n+1}^{t}=\frac{(1+ $\delta$ x_{n}^{t}y_{n}^{t})x_{n}^{t}}{1+ $\delta$}.
\end{array}\right.
Nlearly (6.2) does not determine the time evolution when 1+ $\delta$ x_{n}^{t}y_{n}^{t}\equiv 0 . Over a field

of characteristic 0 such as \mathbb{C} , the time evolution of (x_{n}^{t}, y_{n}^{t}) will not hit this exceptional
line for generic initial conditions, but on the contrary, the evolution comes to this

exceptional line in many cases over a finite field as a division by 0 appears. The mapping,

(x_{n}^{t}, y_{n}^{t})\mapsto(x_{n}^{t+1}, y_{n+1}^{t}) ,
is lifted to an automorphism of the surface \tilde{X}

,
where \tilde{X} is

obtained from \mathbb{P}^{1}\times \mathbb{P}^{1} by blowing up twice at (0, \infty) and (\infty, 0) respectively:

\tilde{X}=\mathrm{A}_{(0,\infty)}\cup \mathrm{A}_{(\infty,0)},

\mathrm{A}_{(0,\infty)}:=\{ ((x, y^{-1}), [ $\xi$: $\eta$], [u:v])|x $\eta$=y^{-1} $\xi$,  $\eta$ u=y^{-1}( $\eta$+ $\delta \xi$)v\}\subset \mathrm{A}^{2}\times \mathbb{P}^{1}\times \mathbb{P}^{1},
\mathrm{A}_{(\infty,0)}:=\{ ((x^{-1}, y), [ $\xi$: $\eta$], [w:\mathrm{z}])|x^{-1} $\eta$=y $\xi$, ( $\eta$+ $\delta \xi$)u=y $\eta$ v\}\subset \mathrm{A}^{2}\times \mathbb{P}^{1}\times \mathbb{P}^{1}
To define the time evolution of the system with N lattice points from (6.2), however,
we have to consider the mapping

(y_{1}^{t};x_{1}^{t}, x_{2}^{t}, x_{N}^{t})\mapsto(x_{1}^{t+1}, x_{2}^{t+1}, x_{N}^{t+1};y_{N+1}^{t}) .

Since there seems no reasonable decomposition of \tilde{X} into a direct product of two inde‐

pendent spaces, successive use of (6.2) becomes impossible. Note that if we blow down

\tilde{X} to \mathbb{P}^{1}\times \mathbb{P}^{1}
,

the information of the initial values is lost in general. If we intend to

construct an automorphism of a space of initial conditions, it will be inevitable to start

from \mathbb{P}^{N+1} and blow‐up to some huge manifold, which is beyond the scope of the present

paper. This difficulty seems to be one of the reasons why the singularity confinement

method has not been used for construction of integrable partial di?erence equations
or judgement for their integrability, though some attempts have been proposed in the

bilinear form [26]. There should be so many exceptional hyperplanes in the space of

initial conditions (if it does exist), and it is practically impossible to chec) all the �sin‐

gular� patterns in the naive extension of the singularity confinement test. On the other

hand, when we fix the initial condition for a partial difference equation, the number

of singular patterns is restricted in general and we have only to enlarge the domain so
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that the mapping becomes well‐defined. This is the strategy that we will adopt in this

section.

First we explain how the indeterminate values appear through the time evolution

by examining the discrete KdV equation(6.2) over \mathbb{F}_{7}:=\{{\$}, 9, 3, :, 4, 5, 6 \} . If we take

 $\delta$=1
, (6.2)turns into

\left\{\begin{array}{l}
x_{n}^{t+1}=\underline{2y_{n}^{t}}\\
1+x_{n}^{t}y_{n}^{t}'\\
y_{n+1}^{t}=\frac{(1+x_{n}^{t}y_{n}^{t})x_{n}^{t}}{2}.
\end{array}\right.
\mathrm{S}[Tab]ppose that x_{1}^{0}=6, x_{2}^{0}=5, y_{1}^{0}=2, y_{1}^{1}=2 ,

then we have

x_{1}^{1}=\displaystyle \frac{4}{13}\equiv 3, y_{2}^{0}=\displaystyle \frac{78}{2}\equiv 4 mod7.

With further calculation we have

x_{1}^{2}=\displaystyle \frac{4}{7}\equiv\frac{4}{0}, y_{2}^{1}=\frac{21}{2}\equiv 0, x_{2}^{1}=\frac{8}{21}\equiv\frac{1}{0}.
Since \displaystyle \frac{4}{0} and \displaystyle \frac{1}{0} are not defined over \mathbb{F}_{7} ,

we now extend \mathbb{F}_{7} to \mathbb{P}\mathbb{F}_{7} and \displaystyle \mathrm{t}\mathrm{a}\supset \mathrm{e}\frac{*}{0}\equiv\infty for

*\in\{1 , 2, 3, 4, 5, 6 \} . However, at the next time step, we have

x_{2}^{2}=\displaystyle \frac{2\cdot 0}{1+\infty\cdot 0}, y_{3}^{1}=\frac{(1+\infty\cdot 0)\cdot\infty}{2}
and reach a \mathrm{d}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{l}\mathrm{o}\mathrm{c}\supset.

Therefore we try the following two procedures: [I] we keep  $\delta$ as a parameter for the

same initial condition, and obtain as a system over \mathbb{F}_{7}( $\delta$) ,

x_{1}^{1}=\displaystyle \frac{2(1+ $\delta$)}{1+5 $\delta$}, y_{2}^{0}=\frac{6(1+5 $\delta$)}{1+ $\delta$},
x_{2}^{1}=\displaystyle \frac{6(1+ $\delta$)(1+5 $\delta$)}{1+3 $\delta$+3$\delta$^{2}}, y_{2}^{1}=\frac{2(1+2 $\delta$+4$\delta$^{2})}{(1+5 $\delta$)^{2}}, x_{1}^{2}=\frac{2(1+ $\delta$)(1+5 $\delta$)}{1+2 $\delta$+4$\delta$^{2}},
x_{2}^{2}=\displaystyle \frac{4(1+ $\delta$)(2+ $\delta$)(3+2 $\delta$)}{(1+5 $\delta$)(5+5 $\delta$+2$\delta$^{2})}, y_{3}^{1}=\frac{2(5+5 $\delta$+2$\delta$^{2})}{(2+ $\delta$)^{2}}.

[II] Then we put  $\delta$=1 to have a system over \mathbb{P}\mathbb{F}_{7} as

x_{1}^{1}=3, y_{2}^{0}=4, x_{2}^{1}=\displaystyle \frac{72}{7}\equiv\infty, y_{2}^{1}=\frac{14}{36}\equiv 0, x_{1}^{2}=\frac{24}{7}\equiv\infty,
x_{2}^{2}=\displaystyle \frac{120}{72}\equiv 4, y_{3}^{1}=\frac{24}{9}\equiv 5.

Thus all the values are uniquely determined over \mathbb{P}\mathbb{F}_{7} . Figure2 show a time evolution

pattern of the discrete KdV equation(6.2) over \mathbb{P}\mathbb{F}_{7} for the initial conditions x_{1}^{0}=
6, x_{2}^{0}=5, x_{3}^{0}=4, x_{4}^{0}=3, x_{j}^{0}=2(*\geq 5)\mathrm{a}\mathrm{n}\mathrm{d}y_{1}^{t}=2(t\geq 0) .
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x_{1}^{0}=6

y_{1}^{0}=2 y_{2}^{0}=4

x_{1}^{1}=3

y_{1}^{1}=2 y_{2}^{1}=0

x_{2}^{0}=5 x_{3}^{0}=4

y_{3}^{0}=0

 x_{2}^{1}=\infty  x_{3}^{1}=0

y_{3}^{1}=5

x_{1}^{2}=\infty x_{2}^{2}=4 

Figure2. Gn example of the time evolution of the coupled discrete KdV equation(6.2)
over \mathbb{P}\mathbb{F}_{7} where  $\delta$=1.

This example suggests that the equation (6.2)should be 	nderstood as evolving
over the field \mathbb{F}_{r}( $\delta$) ,

the rational function field with indeterminate  $\delta$ over \mathbb{F}_{r} . To obtain

the time evolution pattern over \mathbb{P}\mathbb{F}_{r} ,
we have to substitute  $\delta$ with a suitable value

 $\delta$_{0}\in \mathbb{F}_{r} ( $\delta$_{0}=1 in the example above). This substitution can be expressed as the

following reduction map:

\mathbb{F}_{r}( $\delta$)^{\times}\rightarrow \mathbb{P}\mathbb{F}_{r}: ( $\delta-\delta$_{0})^{s}\displaystyle \frac{g( $\delta-\delta$_{0})}{f( $\delta-\delta$_{0})}\mapsto\left\{\begin{array}{l}
0 (s>0) ,\\
\infty (s<0) ,\\
\frac{g(0)}{f(0)}(s=0) ,
\end{array}\right.
where s\in \mathbb{Z}, f(h) , g(h)\in \mathbb{F}_{r}[h] are co‐prime polynomials and f({\$}) \neq $, g ($) \neq $. (ith

this prescription, we know that 0/0 does not appear and we can uniquely determine the

time evolution for generic initial conditions defined over \mathbb{F}_{r}.

§6.1. Soliton solutions of the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation over finite fields

We consider the N‐soliton solutions to (6.1) over \mathbb{F}_{r} . Gs mentioned in the intro‐

duction, the N‐soliton solution is given as

t t-1

x_{n}^{t}=\displaystyle \frac{$\sigma$_{n}$\sigma$_{n+1}}{$\sigma$_{n+1}^{t}$\sigma$_{n}^{t-1}},
$\sigma$_{n}^{t}:=1\displaystyle \leq ij\leq N\mathrm{d},\mathrm{e}\mathrm{t}($\delta$_{ij}+\frac{$\gamma$_{i}}{l_{i}+l_{j}-1}(\frac{1-l_{i}}{l_{i}})^{t}(\frac{l_{i}+ $\delta$}{1+ $\delta$-l_{i}})^{n})

where $\gamma$_{i}, l_{i} (i=1,2, N) are arbitrary parameters but l_{i}\neq l_{j} for i\neq j . When l_{i}, $\gamma$_{i}

are chosen in \mathbb{F}_{r}, x_{n}^{t} becomes a rational function in \mathbb{F}_{r}( $\delta$) . Hence we obtain soliton
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n

 0 1 2 3 4 5 6 7 8 9 10 \infty

Figure :. The one‐soliton solution of the discrete KdV equation(6.1) over \mathbb{R} (left) and

\mathbb{P}\mathbb{F}_{11} (right) where  $\delta$=7, $\gamma$_{1}=2, l_{1}=9 . Slements of \mathbb{P}\mathbb{F}_{11} are represented on the

following grayscale! from $ (white) to 9$ (gray) and \infty (blac)).

solutions over \mathbb{P}\mathbb{F}_{r} by substituting  $\delta$ with a value in \mathbb{F}_{r} . The figures : and 4 show

one and two soliton solutions for the discrete KdV equation(6.1) over the finite fields

\mathbb{P}\mathbb{F}_{11} and \mathbb{P}\mathbb{F}_{19} . The corresponding time evolutionary patterns on the field \mathbb{R} are also

presented for comparison.
The soliton solution of the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation over the finite field \mathbb{F}_{r} has a

period r-1 since we have a^{r-1}\equiv 1 for all a\in \mathbb{F}_{r}^{\times}.

§6.2. The discrete \mathrm{K}\mathrm{d}\mathrm{V} equation over \mathbb{Q}_{p}

We can also define the time evolution of the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation over the field

\mathbb{F}_{p} by considering the system over the field of p‐adic numbers \mathbb{Q}_{p} instead of \mathbb{F}_{p}( $\delta$) ,
in the

same way as we have done to the discrete Painlevé equations. We just have to compute

the evolution of (6.2) or its soliton solutions over \mathbb{Q}_{p} and then reduce the results to \mathbb{F}_{p}.
(To deal with the equation over \mathbb{F}_{p^{m}}(m\geq 2) ,

we require the field extension of \mathbb{Q}_{p}. )

§7. Concluding remar‐s

In this article we investigated the discrete Painlevé equations and discrete \mathrm{K}\mathrm{d}\mathrm{V}

equation over finite fields. To avoid indeterminacy, we examined two approaches. One

is to extend the domain by blowing up at indeterminate points. Gccording to the

theory of the space of initial conditions, this approach is possible for all the discrete

Painlevé equations. Gn interesting point is that the space of initial conditions over

a finite field can be reduced to a minimal domain because of the discrete topology
of the finite field. The other is to define the system over the larger field (\mathbb{Q}_{p} in the

case of \mathrm{d}\mathrm{P}_{\mathrm{I}\mathrm{I}}, q\mathrm{P}_{\mathrm{I}} and q\mathrm{P}_{\mathrm{I}\mathrm{I}} ,
or \mathbb{F}_{p}( $\delta$) in the case of discrete \mathrm{K}\mathrm{d}\mathrm{V} equation), and then
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 012345678 9101112131415 161718 \infty

Figure4. The two‐soliton solution of the discrete KdV equation(6.1) over \mathbb{R} (left) and

\mathbb{P}\mathbb{F}_{19} (right) where  $\delta$=8, $\gamma$_{1}=15, l_{1}=2, $\gamma$_{2}=9, l_{2}=4 . Slements of \mathbb{P}\mathbb{F}_{19} are

represented on the following grayscale! from $ (white) to 9/ (gray) and \infty (blac)). It

is difficult to see the interaction of solitons over \mathbb{P}\mathbb{F}_{19}.

reduce the results to finite fields. In particular the systems over \mathbb{Q}_{p} attracted our

attention. We defined a new integrability test ( almo\mathcal{S}t good reduction), which is an

arithmetic analogue of the singularity confinement test, and proved that several types of

the discrete Painlevé equations have this property. \mathrm{T}\mathrm{h}\mathrm{a}\mathrm{n}\supset \mathrm{s} to this property, not only the

time evolution of the discrete Painlevé equations can be well defined, but also a solution

over \mathbb{Q} (or \mathbb{Q}_{p} ) can be directly transferred to a solution over \mathbb{P}\mathbb{F}_{p} . This approach
is equally valid in other discrete Painlevé equations and we expect that the same is

true for its generalisations [24]. @urthermore, this �almost good reduction� criterion

is expected to be applied to finding higher order integrable mappings in arithmetic

dynamics. In the last section, we studied the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation and showed that

a similar approach is also useful in defining the discrete partial difference equations
such as soliton equations over finite fields and in obtaining the soliton solutions of these

equations. One of the future problems is to investigate the property of solitary waves

of discrete \mathrm{K}\mathrm{d}\mathrm{V} equation and other soliton equations such as discrete KP equation
and discrete nonlinear Schrödinger equation over the finite field. Solving the initial

value problems for these equations over the field of p‐adic numbers, the field of rational

functions and the finite fields is also an important problem to be studied.
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