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The Laurent Phenomenon and Discrete Integrable
Systems

By

Takafumi Mase*

Abstract

The Laurent phenomenon is the property that the solution to an initial value problem of

a discrete equation is expressed as a Laurent polynomial of the initial values. This concept has

arisen from the study of cluster algebras, for which it is known that any cluster variable is a

Laurent polynomial of the initial cluster variables. In this paper, we leave the connection with

cluster algebras aside and study the Laurent phenomenon for its own sake. We will explain that

most of the discrete bilinear equations that appear in the field of integrable systems exhibit

this phenomenon and we shall discuss its relation to integrability. Finally, we shall introduce

a technique for calculating the algebraic entropies relying on this phenomenon. For reasons of

brevity we shall omit most proofs of the theorems we present.

§1. Introduction

In this section, we will introduce the Laurent phenomenon by means of some simple

examples. Although the phenomenon itself arose from cluster algebras, specific knowl‐

edge concerning these algebras is not necessary in the present context where we shall

only concern ourselves with the Laurent phenomenon itself.

§1.1. The Laurent phenomenon

Definition 1.1 (Laurent phenomenon). An initial value problem of a discrete

equation exhibits the Laurent phenomenon if its solution can be expressed as a Laurent

polynomial of the initial values.
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Example 1.2. Consider the equation

(1.1) \left\{\begin{array}{l}
f_{m}=\frac{f_{m-1}^{2}+ $\alpha$}{f_{m-2}},\\
f_{0}=X, f_{1}=Y,
\end{array}\right.
where  $\alpha$\in \mathbb{C}^{\times}=\mathbb{C}\backslash \{0\} is a parameter. The first several iterates are

f_{2}=\displaystyle \frac{Y^{2}+ $\alpha$}{X},

f_{3}=\displaystyle \frac{(\frac{Y^{2}+ $\alpha$}{X})^{2}+ $\alpha$}{Y}=\frac{(Y^{2}+ $\alpha$)^{2}+ $\alpha$ X^{2}}{X^{2}Y},
f_{4}=\displaystyle \frac{(\frac{(Y^{2}+ $\alpha$)^{2}+ $\alpha$ X^{2}}{X^{2}Y})^{2}+ $\alpha$}{\frac{Y^{2}+ $\alpha$}{X}}=\frac{(Y^{2}+ $\alpha$)^{3}+2 $\alpha$ X^{2}(Y^{2}+ $\alpha$)+ $\alpha$ X^{4}}{X^{3}Y^{2}},

f_{5}=\displaystyle \cdots=\frac{(Y^{2}+ $\alpha$)^{4}+3 $\alpha$ X^{2}(Y^{2}+ $\alpha$)^{2}+2 $\alpha$ X^{4}(Y^{2}+ $\alpha$)+ $\alpha$ X^{6}+$\alpha$^{2}X^{4}}{X^{4}Y^{3}},
and we see that f_{2}, f_{3}, f_{4}, f_{5} are Laurent polynomials of X and Y . We will in fact prove

that all of the f_{m} are Laurent polynomials of X and Y
,

and thus, that this equation
exhibits the Laurent phenomenon.

Example 1.3. Consider the equation

\left\{\begin{array}{l}
f_{m}=\frac{f_{m-1}+f_{m-2}+1}{f_{m-1}},\\
f_{0}=X, f_{1}=Y.
\end{array}\right.
The first two iterates are

f_{2}=\displaystyle \frac{X+Y+1}{Y},
f_{3}=\displaystyle \frac{Y^{2}+X+2Y+1}{X+Y+1},

and f_{3} is not a Laurent polynomial of X, Y . Therefore this equation does not exhibit

the Laurent phenomenon, and we see that an equation defined by a Laurent polynomial
does not always have the Laurent property. Since Laurent polynomials are not closed

under division, the Laurent phenomenon in fact requires sufficient cancellations at each

step in the iteration.

The above examples are all equations on a one dimensional lattice. It is however

also possible to consider the Laurent phenomenon for multidimensional discrete systems.

Example 1.4. Consider the equation

f_{\ell m}=\left\{\begin{array}{ll}
\frac{f_{l,m-1}f_{l-1,m}+ $\alpha$}{f_{l-1,m-1}} & (\ell, m>0) ,\\
X_{\ell m} & (\ell=0 \mathrm{o}\mathrm{r} m=0),
\end{array}\right.
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where  $\alpha$\in \mathbb{C}^{\times} is a parameter. The first several iterates are

f_{11}=\displaystyle \frac{f_{10}f_{01}+ $\alpha$}{f_{00}}=\frac{X_{10}X_{01}+ $\alpha$}{X_{00}},
f_{21}=\displaystyle \frac{f_{20}f_{11}+ $\alpha$}{f_{10}}=\frac{X_{10}X_{01}X_{20}+ $\alpha$ X_{20}+ $\alpha$ X_{00}}{X_{00}X_{10}},
f_{12}=\displaystyle \frac{f_{11}f_{02}+ $\alpha$}{f_{01}}=\frac{X_{10}X_{01}X_{02}+ $\alpha$ X_{02}+ $\alpha$ X_{00}}{X_{00}X_{01}},

f_{22}=\displaystyle \frac{f_{21}f_{12}+ $\alpha$}{f_{11}}=\frac{X_{10}X_{01}X_{20}X_{02}+ $\alpha$ X_{20}X_{02}+ $\alpha$ X_{00}X_{20}+ $\alpha$ X_{00}X_{02}+ $\alpha$ X_{00}^{2}}{X_{00}X_{10}X_{01}}.
In fact, all of the f_{lm} are Laurent polynomials of X_{ij} and this discrete system exhibits

the Laurent phenomenon.

§1.2. Characterizations of the Laurent phenomenon

When trying to show the �Laurentness� of some equation, we can only seldom

show directly that the solutions are Laurent polynomials of the initial values. To facili‐

tate such proofs we therefore introduce some different characterizations of the Laurent

phenomenon by using Example 1.2.

Let A=\mathbb{C}[X, Y, X^{-1}, Y^{-1}] be the Laurent polynomial ring of X, Y over \mathbb{C} . Recall

that A is a unique factorization domain (UFD).

Proposition 1.5. For (1.1), the following four conditions are equivalent:

(a) f_{m}\in A.

(b) (f_{m-1}^{2}+ $\alpha$) can be divided by f_{m-2} in the ring A.

(c) f_{m-1}^{2}+ $\alpha$=0 in the ring A/(f_{m-2}) .

(d) If we consider f_{m} as a rational function of (X, Y)\in \mathbb{C}^{2} ,
then it is holomorphic

on () .

Proof. (a) is the definition of the Laurent phenomenon itself. (b) is a direct

rewording of (a), and (c) of (b). (d) is an algebro‐geometric characterization of (a),
corresponding to the fact that Spec A \cong () . \square 

Remark. It is usual to consider the Laurent phenomenon over the base ring \mathbb{Z}[ $\alpha$].
However, for simplicity, we restrict the base ring (field) to \mathbb{C} in this paper.

We will now prove the Laurentness of equation (1.1) by using these characteriza‐

tions.

Proposition 1.6. (1.1) exhibits the Laurent phenomenon.
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Proof. By induction on m
,

we shall assume f_{0} ,
. . .

,  f_{m-1}\in  A and show that

f_{m}\in A.
First, f_{m-2} and f_{m-3} must be relatively prime in A . This is because, if g is a

common factor of f_{m-2} and f_{m-3} , considering both sides of  f_{m-1}f_{m-3}=f_{m-2}^{2}+ $\alpha$
modulo  g will yield  $\alpha$\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} g) ,

which is not allowed.

We denote by A_{f_{m-3}} the localization of A at the element f_{m-3} . Since f_{m-2} and

f_{m-3} are relatively prime in A, (f_{m-1}^{2}+ $\alpha$) is divisible by f_{m-2} in the ring A if and

only if it is so in the ring A_{f_{7m-3}} . Furthermore, this condition is also equivalent to the

condition f_{m-1}^{2}+ $\alpha$=0 in the ring A_{f_{m-3}}/(f_{m-2}) .

In the ring A_{f_{m-3}}/(f_{m-2}) ,
we have

 f_{m-1}^{2}+ $\alpha$=(f_{m-2}^{2}+ $\alpha$)^{2}/f_{m-3}^{2}+ $\alpha$

=$\alpha$^{2}/f_{m-3}^{2}+ $\alpha$

= $\alpha$( $\alpha$+f_{m-3}^{2})/f_{m-3}^{2}

= $\alpha$ f_{m-4}f_{m-2}/f_{m-3}^{2}
=0.

Therefore (f_{m-1}^{2}+ $\alpha$) is divisible by f_{m-2} and we have f_{m}\in A . Thus (1.1) exhibits the

Laurent phenomenon. \square 

By a similar argument, we can show the Laurentess of various equations by ele‐

mentary methods. Indeed, the Laurentness of Example 1.4 can be shown in the same

way.

§1.3. Cluster Algebras and the Caterpillar Lemma

As mentioned above, the Laurent phenomenon is a concept which has arisen from

cluster algebras. A cluster algebra is a commutative ring, together with some charac‐

teristic generators, called cluster variables. We shall not try to rigorously define cluster

algebras here, since too much preparations would be needed for this purpose and we

refer the reader to [2] for details concerning cluster algebras.

However, one important fact concerning cluster algebras that is worth mentioning
is the next theorem.

Theorem 1.7 (Laurent Phenomenon [2]). In cluster algebras, every cluster vari‐

able is a \mathbb{Z} ‐coefficient Laurent polynomial of the initial clusters.

The key to proving this theorem is the so‐called Caterpillar Lemma. This lemma

says that if we can construct a special pattern, called a caterpillar, such system has

the Laurent property. Using this Caterpillar Lemma, S. Fomin and A. Zelevinsky have
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shown the Laurentness of several discrete equations [1], among which several famous

discrete integrable systems, for example the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation, the Hirota‐Miwa

equation and the discrete BKP equation.

Caterpillar

§2. Initial value problems for discrete bilinear equations

There are many equations that exhibit the Laurent phenomenon. In particular, one

could claim that it is quite common for discrete bilinear equations to have the property.
In this section, we shall consider the Laurentness of bilinear equations. First we shall

define the initial value problems for which one can consider the Laurent phenomenon,
and then we shall introduce several equations that possess this property.

In this section, we consider the following equation:

$\alpha$_{0}f_{h+v_{0}}f_{h+u_{0}}+\cdots+$\alpha$_{n}f_{h+v_{n}}f_{h+u_{n}}=0,

where n\geq 2, L is a lattice, h is an independent variable moving on L, f_{h} is the dependent

variable, $\alpha$_{i}\in \mathbb{C}^{\times} are parameters, and u_{i}, v_{i}\in L satisfy the relations

u_{0}+v_{0}=\cdots=u_{n}+v_{n}.

We shall regard as identical all equations that can be transformed into each other by
coordinate changes of h or replacements of $\alpha$_{i}.

We can transform the above equation as follows:

(2.1) f_{h}=\displaystyle \frac{$\alpha$_{1}f_{h+v_{1}}f_{h+u_{1}}+\cdots+$\alpha$_{n}f_{h+v_{n}}f_{h+u_{n}}}{f_{h+w}},
where h moves on the lattice L and u_{i}, v_{i}, w\in L satisfy the relations

v_{1}+u_{1}=\cdots=v_{n}+u_{n}=w.

Almost all the bilinear equations we shall consider can be expressed in this form.
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Example 2.1 (discrete \mathrm{K}\mathrm{d}\mathrm{V} equation). Let

L=\mathbb{Z}^{2}, n=2, v_{1}=\left(\begin{array}{l}
-1\\
0
\end{array}\right), u_{1}=\left(\begin{array}{l}
-1\\
-1
\end{array}\right),
v_{2}=\left(\begin{array}{l}
0\\
-1
\end{array}\right), u_{2}=\left(\begin{array}{l}
-2\\
0
\end{array}\right), w=\left(\begin{array}{l}
-2\\
-1
\end{array}\right)

and we have the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation:

f_{h}=\displaystyle \frac{ $\alpha$ f_{h+v_{1}}f_{h+u_{1}}+ $\beta$ f_{h+v_{2}}f_{h+u_{2}}}{f_{h+w}}.

Example 2.2 (Hirota‐Miwa equation). Let

L=\mathbb{Z}^{3}, n=2, v_{1}=\left(\begin{array}{l}
-1\\
0\\
0
\end{array}\right), u_{1}=\left(\begin{array}{l}
0\\
1\\
-1
\end{array}\right),
v_{2}=\left(\begin{array}{l}
0\\
0\\
-1
\end{array}\right), u_{2}=\left(\begin{array}{l}
-1\\
1\\
0
\end{array}\right), w=\left(\begin{array}{l}
-1\\
1\\
-1
\end{array}\right)

and we have the Hirota‐Miwa equation:

f_{h}=\displaystyle \frac{ $\alpha$ f_{h+v_{1}}f_{h+u_{1}}+ $\beta$ f_{h+v_{2}}f_{h+u_{2}}}{f_{h+w}}.
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Example 2.3 (discrete BKP equation). Let

L=\mathbb{Z}^{3}, n=3, v_{1}=\left(\begin{array}{l}
-1\\
0\\
0
\end{array}\right), u_{1}=\left(\begin{array}{l}
0\\
-1\\
-1
\end{array}\right), v_{2}=\left(\begin{array}{l}
0\\
-1\\
0
\end{array}\right),
u_{2}=\left(\begin{array}{l}
-1\\
0\\
-1
\end{array}\right), v_{3}=\left(\begin{array}{l}
0\\
0\\
-1
\end{array}\right), u_{3}=\left(\begin{array}{l}
-1\\
-1\\
0
\end{array}\right), w=\left(\begin{array}{l}
-1\\
-1\\
-1
\end{array}\right)

and we have the discrete BKP equation:

f_{h}=\displaystyle \frac{ $\alpha$ f_{h+v_{1}}f_{h+u_{1}}+ $\beta$ f_{h+v_{2}}f_{h+u_{2}}+ $\gamma$ f_{h+v_{3}}f_{h+u_{3}}}{f_{h+w}}.

w u_{1}

Example 2.4 (Somos‐4). Let

L=\mathbb{Z}, n=2, v_{1}=-1, u_{1}=-3, v_{2}=u_{2}=-2, w=-4

and we get the so‐called Somos‐4 sequence [3]:

f_{h}=\displaystyle \frac{ $\alpha$ f_{h-1}f_{h-3}+ $\beta$ f_{h-2}^{2}}{f_{h-4}}.

\underline{wu_{1}u_{2}v_{1}}0
v_{2}

Remark. We assume that the lattice L does not have torsions. Thus, L is a free

\mathbb{Z}‐module and we can take a basis x_{1} ,
. . .

, x_{r} in order to represent L as \mathbb{Z}x_{1}\oplus\cdots\oplus \mathbb{Z}x_{r}.
To consider an L with torsions corresponds to considering an equation with multiple
 $\tau$‐functions.
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§2.1. Initial value problems

Studying the Laurent phenomenon first requires the introduction of an initial value

problem. If the lattice is \mathbb{Z}
,

we have only to place the first several f_{h} as the initial

values. For example, an initial value problem for Somos‐4 is of the following form:

\left\{\begin{array}{l}
f_{h}=\frac{ $\alpha$ f_{h-1}f_{h-3}+ $\beta$ f_{h-2}^{2}}{f_{h-4}},\\
f_{0}=X_{0}, f_{1}=X_{1}, f_{2}=X_{2}, f_{3}=X_{3}.
\end{array}\right.
If the lattice is multidimensional, we must however define where we shall consider the

equation, where the initial values are, and which direction we shall evolve the equation
in. In the following we shall define initial value problems for bilinear equations, by

generalizing the methods introduced in [1].
Initial value problems often involve periodic boundary conditions or boundary con‐

ditions at infinity. However, it is usually impossible to deal with such equations al‐

gebraically and they are not congenial to the Laurent phenomenon. Therefore, in this

paper we shall impose conditions on initial value problems such that f_{h} can be calculated

using (2.1) in finitely many steps.

Two conditions are necessary to define such an initial value problem; the first

condition concerns the evolution direction and the second the definition domain.

2.1.1. A condition concerning the evolution direction

We interpret (2.1) as instructing us to calculate f_{h} from f_{h+v_{1}} ,
. . .

, f_{h+w} . The

condition that allows us to evolve the equation in this direction is then the following:

Condition: Let \triangle be the polytope generated by  0, v_{1}, u_{1}, \cdots, v_{n}, u_{n}, w.

Then, we require that 0 be a vertex of \triangle.

We introduce \mathrm{a} (semi)order \leq \mathrm{o}\mathrm{n}L as follows. Let S=\mathbb{Z}_{\geq 0}v_{1}+\cdots+\mathbb{Z}_{\geq 0}u_{n}+\mathbb{Z}_{\geq 0}w
be a semigroup. We introduce a binary relation \leq on  L by

h\leq h'\Leftrightarrow h\in h'+S,

where h, h'\in L. \leq is an order relation on  L since 0 is a vertex of \triangle . We evolve the

equation according to \leq.

Remark. \leq is an order on  L if and only if 0 is a vertex of \triangle . Thus, strictly

speaking, \triangle is unnecessary if we require \leq to be an order on  L . However, in practice,
\triangle is much easier to imagine than \leq.

Example 2.5. The polytopes \triangle of the Hirota‐Miwa equation, the discrete BKP

equation, the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation and Somos‐4 are as follows:
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u_{2} v_{1} 0

\displaystyle \frac{wu_{1}v_{2}v_{1}0}{u_{2}}
Hirota‐Miwa discrete BKP discrete \mathrm{K}\mathrm{d}\mathrm{V} Somos‐4

Example 2.6. Consider the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation (Example 2.1). In the case

of configuration (I) we can evolve the equation in the direction of the upper right corner.

On the other hand, 0 is not a vertex of \triangle in configuration (II) and in this case it is

unclear how an evolution direction can be defined.

 W u_{1} v_{2} u_{1} W v_{2}

(I) (II)

Example 2.7. For the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation, S is the following domain marked

by dots \bullet
. The relation  h\leq h' implies that, roughly speaking, h is situated at the lower

left of h'

\circ \circ \circ \circ \circ \circ \circ

\circ \circ 0 \circ \circ \circ 0

\bullet \circ \circ \circ

\bullet  0 \circ \circ

\bullet \bullet \bullet \bullet \circ \circ \circ

Remark. To be precise, \triangle is defined as \triangle=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{x}\mathrm{H}\mathrm{u}\mathrm{l}\mathrm{l}\{0, v_{1}, u_{1}, . . . , v_{n}, u_{n}, w\}\subset
 L_{\mathbb{R}} ,

where L_{\mathbb{R}}=L\otimes_{\mathbb{Z}}\mathbb{R} and we can think of L as L\subset L_{\mathbb{R}} by L\mapsto L\otimes \mathbb{R} . If the lattice

L has torsions, L\rightarrow L\otimes \mathbb{R} is not an injection and \triangle cannot be properly defined. In

that case, we will instead adopt the condition concerning the order \leq.

2.1.2. A condition concerning the definition domain

We set up a condition concerning the definition domain, in order to be able to

correctly define initial value problems.

Definition 2.8 (good domain�). H\subset L,  H\neq\emptyset is said to be a good domain if

it satisfies the following two conditions:
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(a) For any  h\in H ,
the set

(h+S)\cap H (=\{h'\in H|h'\leq h\})

is finite.

(b) If h\in H ,
then h-v_{1} ,

. . .

, h—un, h-w\in H (i.e. h-S\subset H).

Let

H_{0}= { h\in H| some of h+v_{1} ,
. . .

, h+u_{n}, h+w do not belong to H},

where H\subset L is a good domain. We will give initial values on h_{0}\in H_{0}.

Remark. Usually, one would first choose where the initial values will be given,
which then determines the domain in which the evolution will take place. However, here

we do not think in this way. We first choose an evolution domain and the points in this

domain that cannot be calculated from the other points are designated to be the initial

values.

Example 2.9. Consider the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation (Example 2.1) on the fol‐

lowing four domains. H_{0} consists of the points marked by \bullet.

\circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \circ \circ \circ \circ \circ \circ \circ

(I)

\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet

\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \circ \circ \circ \circ \circ \circ \circ

(III) (IV)

\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \circ \circ \bullet \bullet \bullet \bullet \bullet

\circ \circ \circ \circ \circ \bullet \bullet \bullet

\circ \circ \circ \circ \circ \circ \circ \bullet

(II)

\circ \circ \circ \bullet \bullet \bullet \bullet \bullet

\circ\circ\bullet\bullet\bullet\bullet\bullet\bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet

\circ \circ \circ \circ \circ \circ \circ \circ

While (I) and (II) are good domains, (III) and (IV) are not. (III) does not satisfy
the condition (a). In fact we cannot consider an initial value problem at all on (III).
On the other hand, (IV) does not satisfy the condition (b) and, although in principle
one could consider an initial value problem on (IV), this domain is incompatible with

the Laurent property as will be explained shortly.

Now we can define the initial value problem.
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Definition 2.10 (initial value problem for a bilinear equation). Let  H\subset L be

a good domain. Consider

f_{h}=\left\{\begin{array}{ll}
\frac{$\alpha$_{1}f_{h+v_{1}}f_{h+u_{1}}+\cdots+$\alpha$_{n}f_{h+v_{n}}f_{h+u_{n}}}{f_{h+w}} & (h\in H\backslash H_{0}) ,\\
X_{h} & (h\in H_{0})
\end{array}\right.
in the field \mathbb{C}(X_{h_{0}}:h_{0}\in H_{0}) . We evolve f_{h} according to the order \leq . I.e. if we want to

calculate  f_{h} ,
we must know f_{h'} for all h'\leq h . Thus the way to walk on H is essentially

unique and we need not care about compatibility.

§2.2. Laurent phenomenon for discrete bilinear equations

Definition 2.11 (Laurent phenomenon for a discrete bilinear equation). An ini‐

tial value problem

f_{h}=\left\{\begin{array}{ll}
\frac{$\alpha$_{1}f_{h+v_{1}}f_{h+u_{1}}+\cdots+$\alpha$_{n}f_{h+v_{n}}f_{h+u_{n}}}{f_{h+w}} & (h\in H\backslash H_{0}) ,\\
X_{h} & (h\in H_{0})
\end{array}\right.
exhibits the Laurent phenomenon if

f_{h}\in \mathbb{C}[X_{h_{0}}, X_{h_{0}}^{-1}:h_{0}\in H_{0}]
for all h\in H.

A bilinear equation exhibits the Laurent phenomenon if for every good domain

H\subset L ,
the corresponding initial value problem has the Laurent property.

Theorem 2.12 (Fomin‐Zelevinsky [1]). The discrete KdV equation, the Hirota‐

Miwa equation, the discrete BKP equation and Somos‐4 exhibit the Laurent phenomenon.

The Laurentness of the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation, the Hirota‐Miwa equation and the

discrete BKP equation is proved in [1] by direct application of the Caterpillar Lemma.

Note that in [1], different names are used for the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation, the Hirota‐Miwa

equation and the discrete BKP equation.

However, it is possible to prove the Laurentness of the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation,
the Hirota‐Miwa equation and the discrete BKP equation by elementary methods, in

particular, without the Caterpillar Lemma. In doing so, we also prove the fact that the

solution f_{h} is in fact an irreducible Laurent polynomial of the initial values.

Finally, let us give an example of the problems with respect to the Laurent phe‐
nomenon that arise for initial value problems on a domain that is not a good domain.

Example 2.13. Consider the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation (Example 2.1) on domain

(IV) of the previous paragraph:
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\circ \circ \circ \bullet \bullet \bullet \bullet

\circ \circ \bullet \bullet

\circ \bullet \bullet \bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet

\circ \bullet \bullet \bullet \bullet \bullet \bullet

\circ \circ \circ \circ \circ \circ \circ

In this case, it can be easily verified that  f_{h} at \ovalbox{\tt\small REJECT} is not a Laurent polynomial since

the point \ovalbox{\tt\small REJECT} corresponds to an indeterminate and thus obstructs cancellations.

§3. The Laurent phenomenon and reductions of bilinear equations

In this section, we shall explain the relation between the Laurent phenomenon and

reductions of bilinear equations. First we will show that if an equation exhibits the

Laurent phenomenon, then a reduction of the equation will also possess this property.

Hence, many equations with the Laurent property can be constructed in this way.

Finally, we will introduce Somos sequences that have a close relation to the Laurent

phenomenon and to reductions of bilinear equations.

§3.1. Reductions

By a �reduction� we mean that we require the solutions to an equation to be

invariant under a translation in some direction. In general, reductions decrease the

dimension of the lattice. In the following, we shall only consider reductions of discrete

bilinear equations that do not decrease the number of terms in the equation.

Example 3.1 (discrete \mathrm{K}\mathrm{d}\mathrm{V}\mathrm{e}quation \rightarrow \mathrm{S}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{s}-4 ). The discrete \mathrm{K}\mathrm{d}\mathrm{V} equation

(Example 2.1) turns into Somos‐4 (Example 2.4) by requiring that

f_{h+v_{2}-u_{2}}=f_{h}.

\rightarrow \underline{wu_{1}u_{2}v_{1}}0
v_{2}
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We have stated in Theorem 2.12 that the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation has the Laurent

property. However, it is well known that the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation is a reduction of

the Hirota‐Miwa equation. We can therefore show the Laurentness of the discrete \mathrm{K}\mathrm{d}\mathrm{V}

equation using this fact.

Proposition 3.2. Assume that (I)\rightarrow (II) is a reduction of discrete bilinear

equations. Then an initial value problem for(II) can be lift ed to one for(I). Further‐

more, a lift of a good domain is also a good domain. In particular, if (I) exhibits the

Laurent phenomenon, (II) will do so as well.

Example 3.3. The correspondence between domains in the example of discrete

\mathrm{K}\mathrm{d}\mathrm{V}\rightarrow \mathrm{S}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{s}-4 is as follows:

\rightarrow \circ\bullet\bullet\bullet\bullet\bullet\bullet\bullet

§3.2. Bilinear equations with the Laurent property

By Theorem 2.12 and Proposition 3.2, we can find many equations which exhibit

the Laurent phenomenon. We list some of them here.

(a) The Hirota‐Miwa equation and its reductions.

They can be represented, on some lattice, as:

 f_{h}=\displaystyle \frac{ $\alpha$ f_{h+v_{1}}f_{h+u_{1}}+ $\beta$ f_{h+v_{2}}f_{h+u_{2}}}{f_{h+w}},
v_{1}+u_{1}=v_{2}+u_{2}=w.

For example, the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation, the discrete Toda equation or Somos‐4, almost

all the equations we usually consider when studying integrable systems, are of this type.

(b) The discrete BKP equation and its reductions.

These can be represented, on some lattice, as:

f_{h}=\displaystyle \frac{ $\alpha$ f_{h+v_{1}}f_{h+u_{1}}+ $\beta$ f_{h+v_{2}}f_{h+u_{2}}+ $\gamma$ f_{h+v_{3}}f_{h+u_{3}}}{f_{h+w}},
v_{1}+u_{1}=v_{2}+u_{2}=V3 +u_{3}=w,

v_{1}+v_{2}+v_{3}=w.

Note that v_{1}+v_{2}+v_{3}=w is a necessary and sufficient condition for the equation to

be a reduction of the discrete BKP equation. Removing this condition, we end up with
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an equation on a four dimensional lattice that, however, does not possess the Laurent

property.
It is not known whether there exist discrete bilinear equations with Laurentness

except these.

§3.3. Somos Sequences

In this section we introduce Somos sequences, which are closely related to the

Laurent phenomenon.

Definition 3.4 (Somos Sequence). Let \ell be an integer greater than 3. The

Somos‐  P sequence is defined by the following recurrence formula:

\displaystyle \sum_{1\leq j\leq P/2}f_{ml+j}f_{m-j}
fm=

f_{m-l}
�

f_{0}=f_{1}=\cdots=f_{\ell-1}=1.

Example 3.5. The Somos‐4, 5, 6, 7, 8 sequences are as follows:

\bullet Somos‐4:  f_{m}=\displaystyle \frac{f_{m-1}f_{m-3}+f_{m-2}^{2}}{f_{m-4}},
\bullet Somos‐5:  f_{m}=\displaystyle \frac{f_{m-1}f_{m-4}+f_{m-2}f_{m-3}}{f_{m-5}},

\bullet Somos‐6:  f_{m}=\displaystyle \frac{f_{m-1}f_{m-5}+f_{m-2}f_{m-4}+f_{m-3}^{2}}{f_{m-6}},
\bullet Somos‐7:  f_{m}=\displaystyle \frac{f_{m-1}f_{m-6}+f_{m-2}f_{m-5}+f_{m-3}f_{m-4}}{f_{m-7}},

\bullet Somos‐8:  f_{m}=\displaystyle \frac{f_{m-1}f_{m-7}+f_{m-2}f_{m-6}+f_{m-3}f_{m-5}+f_{m-4}^{2}}{f_{m-8}}.
A most interesting property concerning Somos sequences is:

Proposition 3.6. Every term of Somos‐4, 5, 6, 7 is a positive integer.

This is clearly nontrivial in view of the division in the equations. The first several

terms are

\bullet Somos‐4: 1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, \cdots,

\bullet Somos‐5: 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, \cdots,

\bullet Somos‐6: 1, 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, 421, 1103, \cdots,

\bullet Somos‐7: 1, 1, 1, 1, 1, 1, 1, 3, 5, 9, 17, 41, 137, 769, \cdots,
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which are indeed all integers.
Of course, it is easily noticed that Somos‐4, 5 are reductions of the Hirota‐Miwa

equation and that Somos‐6, 7 are reductions of the discrete BKP equation. Therefore

Somos‐4, 5, 6, 7 possess the Laurent property with respect to their initial values, which

are all equal to 1. Considered from this point of view, the integer nature of the Somos

sequences is quite trivial.

On the other hand, f_{m} is not an integer, in general, if \ell\geq 8 . Indeed, the first

several terms of such sequences are

\bullet Somos‐8: 1, 1, 1, 1, 1, 1, 1, 1, 4, 7, 13, 25, 61, 187, 775, 5827, 14815, \displaystyle \frac{420514}{7}, \cdots,

\bullet Somos‐9: 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 7, 13, 25, 49, 115, 355, 1483, 11137, 27937, \displaystyle \frac{755098}{7}, \cdots,

\bullet Somos‐10: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 9, 17, 33, 65, 149413, 1473, 7073, 64785, \displaystyle \frac{800961}{5}, \cdots,

and fractional numbers appear. Hence, these equations do not possess the Laurent

property. As a consequence, we see that an equation that has a reduction to Somos‐P

(\ell\geq 8) never possesses the Laurent property.

§4. The Laurent phenomenon and nonautonomous bilinear equations

While, up to now, we have only considered autonomous equations, it is also pos‐

sible to discuss the Laurent phenomenon in the case of nonautonomous equations. In

this section, we shall first examine when exactly nonautonomous equations exhibit the

Laurent phenomenon. After that we shall describe the relation between the Laurent

phenomenon and gauge transformations.

Assume $\alpha$_{h}^{(1)} ,
. . .

, $\alpha$_{h}^{(n)}\in \mathbb{C}^{\times} depend on h\in L . We will formulate a necessary and

sufficient condition on the $\alpha$_{h}^{(1)} ,
. . .

, $\alpha$_{h}^{(n)} for the Laurentness of the equation

f_{h}=\displaystyle \frac{$\alpha$_{h}^{(1)}f_{h+v_{1}}f_{h+u_{1}}+\cdots+$\alpha$_{h}^{(n)}f_{h+v_{n}}f_{h+u_{n}}}{f_{h+w}}.
Theorem 4.1. The nonautonomous Hirota‐Mi wa equation

f_{h}=\displaystyle \frac{$\alpha$_{h}f_{h+v_{1}}f_{h+u_{1}}+$\beta$_{h}f_{h+v_{2}}f_{h+u_{2}}}{f_{h+w}} ($\alpha$_{h}, $\beta$_{h}\in \mathbb{C}^{\times})
has the Laurent property if and only if $\alpha$_{h} and $\beta$_{h} satisfy the relation:

(41) $\alpha$_{h}$\alpha$_{h+w}$\beta$_{h+v_{1}}$\beta$_{h+u_{1}}=$\beta$_{h}$\beta$_{h+wh+v_{2}} $\alpha \alpha$_{h+u_{2}}

It should be noted that (4.1) is known as the condition for integrability of the

nonautonomous Hirota‐Miwa equation [5, 7]. Moreover, if satisfied, we can transform

the equation into an autonomous system by a gauge transformation.
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Theorem 4.2. The nonautonomous discrete BKP equation

f_{h}=\displaystyle \frac{$\alpha$_{h}f_{h+v_{1}}f_{h+u_{1}}+$\beta$_{h}f_{h+v_{2}}f_{h+u_{2}}+$\gamma$_{h}f_{h+v_{3}}f_{h+u_{3}}}{f_{h+w}} ($\alpha$_{h}, $\beta$_{h}, $\gamma$_{h}\in \mathbb{C}^{\times})
possesses the Laurent property if and only if $\alpha$_{h}, $\beta$_{h}, $\gamma$_{h} satisfy the following relations:

$\alpha$_{h+v_{2}}$\beta$_{h$\gamma$_{h+u_{1}}}=$\alpha$_{h+v_{3}}$\beta$_{h+u_{1}}$\gamma$_{h},

(42) $\alpha$_{h+u_{2}}$\beta$_{h+v_{3}}$\gamma$_{h}=$\alpha$_{h}$\beta$_{h+v_{1}}$\gamma$_{h+u_{2}},

$\alpha$_{h}$\beta$_{h+u_{3}}$\gamma$_{h+v_{1}}=$\alpha$_{h+u_{3}}$\beta$_{h$\gamma$_{h+v_{2}}}

As was the case for the Hirota‐Miwa equation, if (4.2) is satisfied, the equation can

be transformed into an autonomous system by some gauge transformation.

w u_{1}

Theorem 4.3. A nonautonomous version of a reduction of the Hirota‐Mi wa

equation

f_{h}=\displaystyle \frac{$\alpha$_{h}f_{h+v_{1}}f_{h+u_{1}}+$\beta$_{h}f_{h+v_{2}}f_{h+u_{2}}}{f_{h+w}} ($\alpha$_{h}, $\beta$_{h}\in \mathbb{C}^{\times})
has the Laurent property if and only if $\alpha$_{h} and $\beta$_{h} satisfy the relation:

$\alpha$_{h}$\alpha$_{h+w}$\beta$_{h+v_{1}}$\beta$_{h+u_{1}}=$\beta$_{h}$\beta$_{h+wh+v_{2}} $\alpha \alpha$_{h+u_{2}}

In the case of the nonautonomous Hirota‐Miwa equation, we have seen that the Lau‐

rentness is equivalent to the possibility of transforming the equation into an autonomous

system. However, reductions decrease the dimension of the lattice and therefore also the
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number of degrees of freedom for the gauge transformations. In general, it will therefore

be impossible to transform such an equation into an autonomous system. Regarding

gauge transformations in general, one can show the following property:

Proposition 4.4. The Laurent phenomenon is unaffe cted by gauge transfO rma‐

tions.

§5. The Laurent phenomenon and integrability

In §3.2, we have seen that almost all the bilinear equations we usually consider

exhibit the Laurent phenomenon. In Theorem 4.1, we have seen that the condition

for the Laurentness of the nonautonomous Hirota‐Miwa equation is equivalent to the

condition for its integrability. Furthermore, we have seen that the Laurent phenomenon
is a concept that is invariant under gauge transformations.

In an initial value problem with the Laurent property, if we substitute any nonzero

value for each indeterminate corresponding to an initial value, the denominator of f_{h}
never becomes zero. It may happen that f_{h}=0 . However, after that, f_{h} never diverges,
nor can the iteration yield an indeterminate value. Hence, the equation evolves uniquely.
This situation is very similar to the concept of singularity confinement [4]. Conversely,
if the denominator of f_{h} never vanishes for any nonzero initial value, then f_{h} must be

a Laurent polynomial of the initial values.

This strongly suggests a close relation between the Laurent phenomenon and inte‐

grability. Now what would be the advantage of the Laurent phenomenon as an integra‐

bility test compared to other tests?

First, the definition of the Laurent phenomenon is strict and plain. Although some

preparation is needed, the Laurent phenomenon is defined as soon as we decide on

an initial value problem. Since the definition is very simple, it is also quite easy to

investigate properties that follow from this phenomenon.

Proposition 3.2 plays an important role in this. Since a reduction of an equa‐

tion with the Laurent property also possesses the Laurent property, we have only to

investigate those equations that are not expressible as reductions of other equations.
Another advantage is that we can use algebraic theories such as the theory of

rings and fields, since the Laurent phenomenon is a purely algebraic property. In fact,

elementary ring theory is used repeatedly when checking the Laurentness of equations.

Furthermore, it is also possible to consider this property even when the base field is not

\mathbb{C} . Here, we have restricted the base field to \mathbb{C} for all arguments to be simple. However,
this restriction is not essential at all. It is possible to consider the Laurent phenomenon
over any base field, for example fields of positive characteristic, say finite fields.
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Remark. We have seen that Laurentness is equivalent to the property that the

denominator of f_{h} never vanishes for any nonzero initial value. It is true over any base

field that if f_{h} is a Laurent polynomial of the initial values, the denominator of f_{h} never

vanishes for any nonzero initial value. However, the converse is not true unless the

base field is algebraically closed. \displaystyle \frac{1}{1+X^{2}} over \mathbb{R} constitutes a counterexample. Indeed,
while 1+t^{2} never vanishes for any real number t, \displaystyle \frac{1}{1+X^{2}} is not a Laurent polynomial of

X. Base field extension to its algebraic closure solves this problem since the Laurent

property is invariant under field extensions.

Moreover, one can show the following:

Proposition 5.1. In the case of the Hirota‐Mi wa equation, the discrete BKP

equation or a reduction of the Hirota‐Mi wa equation onto a two dimensional lattice,
the solution f_{h} is an irreducible or an invertible Laurent polynomial, where an irre‐

ducible Laurent polynomial means an irreducible element in the Laurent polynomial ring

\mathbb{C}[X_{h_{0}}, X_{h_{0}}^{-1}:h_{0}\in H_{0}] ,
whereas f_{h} is invertible if and only if f_{h} is an initial value (i.e.

f_{h}=X_{h}) . The same statement remains valid in the nonautonomous cases of these

equations.

From here on, we assume that f_{h} is an irreducible or invertible Laurent polynomial.
If we consider a situation where we substitute nonzero values for each indeterminate

X_{h_{0}} ,
it is natural to regard the whole space of the initial values as \displaystyle \prod_{h_{0}\in H_{0}}\mathbb{C}^{\times} . By

Proposition 5.1, f_{h} and f_{h'} are relatively prime in the Laurent polynomial ring if h\neq h'
Therefore, it is very rare for f_{h}=f_{h'}=0 to occur. Here �very rare� means that the

initial values for which f_{h}=f_{h'}=0 have codimension at least two in the whole space

of initial values. Note that the initial values which make one of the f_{h} vanish have

codimension one.

Solutions to discrete integrable systems are often represented as ratios of  $\tau$‐functions,
where the  $\tau$‐functions satisfy bilinear equations. Consider the situation where a func‐

tion  a_{h} is represented as a ratio of f_{h} �s where f_{h} is a Laurent polynomial of the initial

values. We say that a_{h} is singular if a_{h} becomes zero, has a pole or has an indetermi‐

nate value. Clearly, a_{h}=0 if some f_{h} in the numerator vanishes; a_{h} has a pole if some

f_{h} in the denominator vanishes; and a_{h} has an indeterminate value if f_{h} �s in both the

numerator and denominator vanish. Thus, it is very rare for multiple f_{h} �s to cause a

singularity in a_{h} . It is also very rare for a_{h} to take an indeterminate value, since such

an indeterminacy requires several f_{h} �s to vanish.

§6. The Laurent phenomenon and algebraic entropy

In this section, we introduce a method to calculate the algebraic entropy, which is

another well‐established integrability test [6], using the Laurent phenomenon.
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The denominator of the solution to an equation with the Laurent property is mono‐

mial and thus easy to investigate. Moreover, although the numerator can be quite

complicated, it is not difficult to calculate the algebraic entropy if we can estimate the

degree of the numerator in function of the degree of the denominator.

Example 6.1. Consider the equation of Example 1.2:

\left\{\begin{array}{l}
f_{m}=\frac{f_{m-1}^{2}+ $\alpha$}{f_{m-2}},\\
f_{0}=X, f_{1}=Y.
\end{array}\right.
If m\geq 2 ,

we have that

denominator of f_{m}=X^{m-1}Y^{m-2},

\deg (numerator of  f_{m} ) =\deg (denominator of  f_{m} ) +1

and \deg f_{m}=2m-2 . Thus \deg f_{m}=o(m) and the algebraic entropy is zero.

Example 6.2. We generalize the above example and consider the equation

\left\{\begin{array}{l}
f_{m}=\frac{f_{m-1}^{a}+1}{f_{m-2}},\\
f_{0}=X, f_{1}=Y,
\end{array}\right.
where a\in \mathbb{Z}_{\geq 3} . It is easy to check the Laurentness of the equation. However, decom‐

posing f_{m} as f_{m}=p_{m}/q_{m} ,
we have

\left\{\begin{array}{l}
q_{m}=q_{m-1}^{a}/q_{m-2},\\
q_{2}=X, q_{3}=X^{a}Y.
\end{array}\right.
Let  $\lambda$=\displaystyle \frac{a+\sqrt{a^{2}-4}}{2} ,

then we have \deg q_{m}=\mathcal{O}($\lambda$^{m}) . In particular, the algebraic entropy
of the equation is greater than  $\lambda$ and not zero.

From here on we analyze the denominator of the solution to a bilinear equation
with the Laurent property. Let

 f_{h}=\left\{\begin{array}{ll}
\frac{$\alpha$_{1}f_{h+v_{1}}f_{h+u_{1}}+\cdots+$\alpha$_{n}f_{h+v_{n}}f_{h+u_{n}}}{f_{h+w}} & (h\in H\backslash H_{0}) ,\\
X_{h} & (h\in H_{0})
\end{array}\right.
be an initial value problem of a bilinear equation with the Laurent property and let

f_{h}=p_{h}/q_{h}. q_{h} is a monomial in the initial values with coefficient 1. Then one can show

the following:

Theorem 6.3. q_{h} satisfies

(6.1) q_{h}=\left\{\begin{array}{ll}
1 & (h\in H_{0}) ,\\
X_{h+w}\mathrm{L}\mathrm{C}\mathrm{M}_{1\leq j\leq n}(q_{h+v_{j}}q_{h+u_{j}}) & (h+w\in H_{0}) ,\\
\mathrm{L}\mathrm{C}\mathrm{M}\bullet\bullet(q_{h+v_{j}}q_{h+u_{j}})/q_{h+w} & (otherwise),
\end{array}\right.



62 T. Mase

where LCM denotes the least common multiple as polynomials. I. e . for gi=\displaystyle \prod_{l}X_{p}^{e_{il}},
\displaystyle \mathrm{L}\mathrm{C}\mathrm{M}_{i}(g_{i})=\prod_{\ell}X_{p}^{\max_{i}(e_{il})}.

This theorem implies that the denominators can be evolved by themselves, and

hence it is not hard to calculate these denominators using a computer.

Example 6.4. Consider the discrete \mathrm{K}\mathrm{d}\mathrm{V} equation (Example 2.1) on the fol‐

lowing domain:
m

\uparrow

\circ \bullet \bullet \bullet

\circ \bullet \bullet \bullet

\circ \bullet \bullet \bullet

\circ \bullet \bullet \bullet

\circ  0_{\bullet} \bullet \bullet

\circ \circ \circ \circ

Then the successive  q_{h} are as follows:

00 100001 02 00 11 02 12

0001 00 10 01 11

0010

Formula (6. 1) might look complicated

\bullet \bullet \bullet \bullet

\bullet \bullet \bullet \bullet

\bullet \bullet \bullet \bullet

\bullet \bullet \bullet \bullet

\bullet \bullet \bullet \bullet \rightarrow p

\circ \circ \circ \circ

10

00

01 20

10 01 20 11

0010 20

but its dependence on each indeterminate

is quite simple. If we use the relation between LCM and powers for monomials, (6.1)
leads to the following (\displaystyle \max, +) ‐equation.

Corollary 6.5. Let h_{0}\in H_{0} be fixed and let d_{h}^{(h_{0})} be the degree with respect to

X_{h_{0}} of the denominator q_{h} . Then d_{h}^{(h_{0})} satisfies the following relations:

(6.2) d_{h}^{(h_{0})}=\left\{\begin{array}{ll}
0 & (h\in H_{0}) ,\\
1 & (h+w=h_{0}) ,\\
1^{\max_{\leq j\leq n}(d_{h+v_{j}}^{(h_{0})}}+d_{h+u_{j}}^{(h_{0})}) & (h+w\in H_{0}, h+w\neq h_{0}) ,\\
1\leq \mathrm{j}\leq \mathrm{n}\mathrm{m}\mathrm{a}\mathrm{x} (d_{h+v_{j}}^{(h_{0})}+d_{h+u_{j}}^{(h_{0})})-d_{h+w}^{(h_{0})} & (otherwise),
\end{array}\right.
and \deg q_{h} is obtained by moving h_{0}\in H_{0} and summing up d_{h}^{(h_{0})} . Moreover, we need

not consider \deg p_{h} since \deg p_{h}=\deg q_{h}+1 is always satisfied.
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In the case of the Hirota‐Miwa equation and the discrete BKP equation, we can

solve (6.2) and q_{h} can be represented concretely.

Proposition 6.6. In the case of the Hirota‐Mi wa equation and the discrete BKP

equation, q_{h} is represented concretely as follows:

q_{h}=\displaystyle \prod_{h'}X_{h'},
where h' moves over all elements in H_{0} satisfy ing h'\leq h+w.

Now, we consider a reduction to a one dimensional lattice. The following corollary
is easily obtained from Proposition 3.2.

Corollary 6.7. Let a, b, c, \ell be distinct positive integers and \ell>a, b . Consider

the following two types of equations:

 $\alpha$ f_{m-a}f_{m-\ell+a}+ $\beta$ f_{m-b}f_{m-\ell+b}
fm=

f_{m-l}
�

f_{m}=\displaystyle \frac{ $\alpha$ f_{m-a}f_{m-b-c}+ $\beta$ f_{m-b}f_{m-a-c}+ $\gamma$ f_{m-c}f_{m-a-b}}{f_{m-a-b-c}}.
Then the degree of the solution of these equations is at most of order \mathcal{O}(m^{2}) . In partic‐

ular, the algebraic entropy of these equations is zero.

Equations of the first type are reductions of the Hirota‐Miwa equation, and those

of the second type are reductions of the discrete BKP equation. We can thus obtain

infinitely many equations with zero algebraic entropy by choosing a, b, c appropriately.

§7. Conclusions

In this paper, we have explained the relation between the Laurent phenomenon
and discrete integrable systems. We have seen that almost all the bilinear equations
we usually consider exhibit this phenomenon and we described the conditions for the

Laurentness for certain nonautonomous systems. All these results strongly suggest a

close relation between the Laurent property and integrability. Thus, it is to be expected
that the concept of Laurentness might offer a powerful tool for testing the integrability
of a given discrete system.

Finally, we have introduced a method to calculate algebraic entropies using the

Laurent phenomenon. In particular we have seen that for an equation with the Laurent

property, explicit expressions for the denominator of the solutions to such an equation
can be obtained and that the algebraic entropy for the equation can be easily calculated



64 T. Mase

from these relations. Hence the hope that the use of this phenomenon might lead to

further interesting developments in the field of discrete integrable systems.
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