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Asymptotic behavior of solutions to a quadratic
nonlinear Schrodinger system with mass resonance

By

Takayoshi OcAwA* and Kota URIYA**

Abstract

We consider the asymptotic behavior of a solution to the quadratic nonlinear Schrodinger
system with gauge invariant form. The system arises in the model of the nonlinear optics
describes a nonlinear interaction between the laser beam and plasma waves. We show the
various aspects of this particular system and show the finite time blow up for 4 < n < 6 and
the scattering behavior of the solution in two dimensions.

§1. Introduction

We consider the following system of the quadratic nonlinear Schrédinger equation:

1

i@tul + —Aul =UiUu2, tE R, T € Rn,
le
| (1.1)
i@tuQ + —AUQ = ’U,f, t e R, x e Rn,
2’)712

where u; = u;(t,z) : RxR"™ = C (j = 1, 2) are the unknown functions, @, stands for the
complex conjugate of u; and my and my are positive constants. The quadratic nonlinear
Schrodinger system is a simplified equation derived from the interaction model between
the laser and plasma and it models the nonlinear interaction known as the Raman
amplification phenomenon. The original model is described by the following modified
Zakharov system (cf. Colin-Colin-Ohta [4]):

(i0¢ + ik0, + kA | + 02)A = —(V - E)Ae™ ",
(i0, + kA, + 02)E = V(A%"),
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where A = (Aq, A, A3) is the complex amplitude for incident laser field, E = (Ey, Es, E3)
denotes the complex electronic field, k is a large parameter which stands for the leading
wave number, § = kz —wt and the two dimensional Laplacian A = 92 + 85. We invoke
the dispersion relation w = k2 and introduce a new unknown function F = Fe % and
a parameter vector K = (0,0, k) to reduce the system into the following:

(0 +ikd. + kA | + 02)A = —ikF3A — (V- F)A,
(i0p + w + 2ik0, + kA | + 02 — k*)F = iKA* + V(4?).

To see the envelope for the highly oscillating part, we divide the both side of the system
by k and we formally take the limit £k — oo to have

(10, + AL )A = —iF3A,
(200, + A )F =ie3A?,

where e3 is the third component of the three dimensional vector. By a trivial change of
the coefficient of the unknown function, we obtain the simplified version of the system.

In this paper, we consider the asymptotic behavior of a solution to the quadratic
nonlinear Schrédinger system (1.1), in particular, the finite time blow-up and the scat-
tering problem. It is now worth to compare the problem to the existing known results
with the single nonlinear Schrodinger equation of gauge invariant nonlinearity:

1
i0pu + —Au = Nu|* tu, t€ (-T,T), v € R",
2 (1.2)

u(0, ) = up(x), x € R",

Ginibre-Velo [7] showed the local well-posedness for (1.2) for ug € H*(R™) when 1 <
a < 1+4/(n—2). Besides the solution u(t) satisfies the following conservation laws:

lu(@)llz> = [luollz>,

2
E(u(®)) =|Va)l: ~ —— a5 = Buo).
Y. Tsutsumi [30] showed the local well-posedness for (1.2) for ug € L?(R™) when 1 <
a < 1+4/n and the L? conservation laws. The L? critical case a = 1 + 4/n and the

H? critical case @ = 1+ 4/(n — 2) was shown by Cazenave-Weissler [3]. Existence of

(1.3)

the global solution and scattering theory as well as the finite time blow up results are
heavily depends on the conservation laws and the invariance under some transform: It
is well understood that the simpler model (1.2) has the following invariance:

(1) (the Galilei invariance) If u(t, z) solves (1.2), then so does
v(t,z) = ult,z — pt)ei(m'p_|p|2%) (1.4)

where p € R".



ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE NONLINEAR SCHRODINGER SYSTEM 155

(2) (the Pseudo conformal invariance): If u(t¢,x) solves (1.2), then so does

i$2 n 1
v(t,z) =e iy (—— E) (1.5)
when a =1+ 4/n.

The corresponding invariant transformation to the system (1.1) holds when the
mass parameters m; and mg have a special (resonance) relation 2m; = mao:

(1) (Galilei transform) If (uy (¢, x),ua(t, x)) solves (1.1), then so does

i(zpr—Ip1l? 5r)
)

uig(t,x) = ui(t,x —tpy)e

Yo _ 2_t
)61(90192 Ip2|” 7705)

(1.6)

Ugg(t,x) = ua(t,x — tpo ,

where p1,ps € R™ denotes the moment parameter satisfying 2p; = ps.

(2) (Pseudo conformal transform) When n = 4 and 2m; = ma, let (u1(t,z), ua(t, z))
solves (1.1), then so does

imylw|2  n 1 =z
uip(t,x) =e” 26t 2wy 77 )

imgle? 1z
ugp(t,x) = e 5t S u, (—— —) :

(1.7)

t't

Regarding those invariance, the system (1.1) has an analogous feature to the single gauge
invariant nonlinear Schréodinger equation (1.2). Along with this idea, Hayashi-Ozawa-
Tanaka [16] showed the local well-posedness result for (1.1), if 4 < n < 6, then for any
(u10,uz20) € HY(R™)? and the solution (u1,us) satisfies the following conservation laws:

lur(D)[|72 + [Juz (D) |72 = [Jusol| 72 + [luzol|72,

1 1
E(U, v)(t)zm—1||Vu1(t)||%2 + %HVUQ(t)H%z + QRQ/ U%ﬂgd&? = E(Ulo,UQO).

n

(1.8)

They showed the similar well-posedness result in L? of (1.1) in the same paper [16].
Finally, we close this section by giving some notations used in this paper. We denote
by F¢ or qs the Fourier transform of ¢. We introduce the free Schrodinger evolution

group

it

Uj(t) = "

which generates the L? isometry group and it is known the factorization into the dilation
m |a:|2

operator D;(t) and the multiplication operator M;(t) = e~ 5 to have

U;(t) = M;(t)D;(t)F M;(t),
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where
m; , [ M;T
D;(to(e) = 2o (T2,
i (D) o(x) i ¢ ;
§2. Finite time blow-up

In this section, we consider the system (1.1) imposing the initial data.

(
1
i@tul + —Aul = UjU2, t e [—T, T], T € Rn,
le
1
i0ug + —— Auy = ui, te|[-T,T], x € R", (2.1)
2m2
| u1(0,2) = uio(x), u2(0,2) = ugo(2), z € R"

It is well known that when A = —1 and a > 144/n, there exist solutions of (1.2) blowing
up in finite time for certain initial data (Glassey [8], Weinstein [32]). Above results are
proved based on the lack of the positivity of the energy F(ug). Their results are proved
in the framework of H!(R™) N L?(R™;|z|?dx) to use the previous results are based
on the pseudo conformal conservation law that satisfied by the solution in H!(R™) N
L?(R™; |z|*dx). Ogawa-Tsutsumi [22] removed the assumption that the solution in
L?(R™; |z|*dx) for the radially symmetric solution when n > 2, and they extended
the result for blow-up of solutions of (1.2) without radially symmetry when n =1 (see
also [23]). Hayashi-Ozawa-Tanaka [16] showed that there exist solutions of (1.1) blowing
up in finite time for certain initial data under the condition 2m; = ms in the framework
of HY(R™) N L?(R™; |x|?dz). We are able to prove the blow-up result for (1.1) based on
the idea of Ogawa-Tsutsumi [22].

Theorem 2.1. Let 4 <n <6, 2m; = mo. Suppose that (u1g,usg) € H(R™)? :
radially symmetric, E(uig,uz) < 0. Then the mazimal existence time for solution
(u1,u2) of (2.1) is finite.

Remark. In the case of non-radially symmetric solution, we are able to prove
grow-up of the solution to (1.1) based on a variation of virial identity (cf. Nawa [21]).

The proof of the Theorem 2.1 is based on the following lemma and modified virial
identity.

Lemma 2.2. Let n > 2 and u be a radially symmetric function in H'(R™).
Then for any R > 0, u satisfies

—(n— 1/2 1/2
lull 2 (rery < CR™D2 |l 220 IVl o ey

where r = |x| and C is a constant independent of u and R.
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Proposition 2.3 (modified virial identity).  Let 4 < n < 6. Suppose that ¥ is

a vector valued function in (W3 (R™))™. Then the H' solution (u1(t),uz(t)) of (2.1)
satisfies

1
Im w10V - Vupgdx + §Im uooV - Vuggdx
R N

“tm [ w () V() — %Im us (U - Vi () da
R™ R™
¢ 1 2 1 2
= ——Re [ A(V-9)|uy|*de — 8—Re A(V - W) |ug|*dz
0 n

4m, ma R™

1 1
+ —Re @-%@uﬁﬂldaj + —Re 8j\I'i8qu8ﬂ2dx
my R™ 2m2 R~

1
+ ERe V. ‘I/u%ﬂgdx}dr.

R™
Here, we give a short proof of Theorem 2.1 based on the idea of Ogawa-Tsutsumi [22].

Proof of Theorem 2.1. We assume that the solution (uj(t),us2(t)) exists globally
in time and derive a contradiction. Suppose that ¢ € C3([0,0)), we take a cut-off
function ¢ as follows:

(1, 0<r<l,

r—(r—1)3, 1<r<1+4 —,

smooth, ¢ <0, 1+-—<r<2,

L0, 2<r

Let R > 0 is a large constant to be determined later. We put for R > 0,

U(r) = Ur(2) = Zor(@) = R=6 ().
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We see that

1
Im w10V g - Vuodr + §Im/u20\IJR - Vugodr
]Rn

~ Im / w () g - VT (H)der — %Im s ()T g - Vi () da

]Rn
t
1 2 1 2)
= — or)| —|ur]* + —|u dx
[ ottt + gt

1 1

+ — / |V [Pde + — ' (r)|Vuy|*dx
m1 JRr<r m1 JR<r<2R

1 1
+ —/ Vus|?dx + —/ | Vus|*dx
2my Jr<y | | 2my Jp<r<2r i |
+ —Re uiuadr + -Re dRr(r)+ or(r) |uitedz pdr
2 r<R 2 R<r<2R r

¢ 1 1
= 2Fy — — a(r)|Vu 2d$——/ a(r)|Vus|?dz
/0 { " my /R<r (r)[Ve] 2mo Jper (r)[Va|
+1Re/ b(r)usT da:—/ o(r) L|u |2+L|u 1 )dx ydr
2 R<r 1 R<r 4my ' 8meg ? ’

where we set

and for4 <n <6

-1
br) = n—QS'R(r)—nT or(r), R<r<2R,

n, 2R <,

and

n—1, n

o) = 65(r) + (= 1) { 2640 + "5 () -

-3
3 ¢R(T)}, R <r <2R.



ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE NONLINEAR SCHRODINGER SYSTEM 159
Using Lemma 2.2, we have for ¢ > 0,

Re / b(r)utade
R<r

< ||U1||2L2(R<r)||bU2||Loo(R<r)

i 1/4
< oR—Tl||u1||%z||bu2||2éz( / |v<bu2>|2dx)
R<r

IS

3

< 8/ |V (bus)|?dx 4 C/(g) (R_nT_lH/LL“%ZHb/LL2“2/22>
R<r

< s/ b2|Vu1|2da:+5/ |us|?|Vb|2dx
R<r R<r

2(n—1) 8 2
5 [lu|| £ [[busal| -

+C(e)R™

Since
Cs

Sﬁ’ R <,

IVb(r)| < % and |o(r)]

we obtain
_ 1 _
Im w10V g - Vuiodr + Elm uo0V g - Vggdx
R™ R™

" Im ul(t)\I/R-Vﬂl(t)dx—%Im w (DU g - Vo (t)dar

Rn Rn
¢ 1
§/ {QEO - — a(r)|Vu1|2da: —I—/ <6b2(r) — _a(r)) |VuQ|2daj
0 mi1 Jr<r R<r 2777,1

2(n

. . —1) 8 2 _
+(01R g2 + ()R ur]| 3 busl s + CoR 2(||u1||§2+||u2|@2>}d7.

We show that for sufficiently small & > 0;

eb?(r) — % <0, R< (2.3)

[\
)

For (1+§)R<r,
b(r) < C, and a(r)>1,

where ¢ > 0 is independent of R. For R < r < (1 + ?) R,

0o <M (14 555 ) - 2

3(r—R)? 3
SR o, R<r<(1+£>R,

Since

R? 3
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—2
< (1 + 1)
3v3 /)
we obtain (2.3).

Hence by (2.3) and choosing R > 0 sufficiently large, we obtain for some 7 > 0,

2E) — L/ a(r)|Vuy|*dx —l—/ (6b2(T) — @) |Vus|?dx
mi JRr<r R<r 2my

2(n

—2 2 _2(n=1) g 3 2 2 2
+ | C1R %elluallz: + C(e)R™ ™3 [Jual| {2 |buall}2 + C2R™=| [Jusllzz + [[ual|zz

choosing

> —n.

Therefore we have

1
Im w10V g - Vuodr + §Im u20V i - Vgodr + nt

R Rl" (2.4)
<Im | wi(t)¥g-Vu(t)de + §Im us(t)Vg - Vus(t)de.
R" R"
Put ,
®(r)= [ ¢r(s)ds
0
Since ® € L*°(R") and
V&(r) = — - ¢r(r) = Yr(r)
From (1.1), we see that
1 1
z/ du 0ty dr = — | VOuy - Viuydr — — <I>|Vu1|2daj—/ duipdr
n 2m]_ R~ le R~ n

and

. — 1 — 1 2 —2

i Puy Oy ugdr = —— Vousy - Vurdoe — —— S| Vug|“dx — duT“usdx.
By taking the imaginary part,

d d
— ®|uy|d — ®|us|d

= 2Re/ @ulﬂltdx—l—QRe/ Pustordx

n

1 1
=——Im Vou, - Vuide — —Im V®us - Vusdzx.

Using the relation 2mq = mo, we obtain

d d
— Dluy|d — Dlus|d

1 1
= —— (Im/ Vruy - Vurde + EIm Vpus - Vﬂgd.ﬁlﬁ) .

Rn
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Noting

Im dulTydr = —Im P unde,
R™ R"

we obtain by (2.4)

/<I>|u1|dx—|—/ D |usg|dx
n R™

t 1
< — Ltz - — (Im/ W ruig - Viodx + §Im

~ \IJRUQO . Vﬂgodﬂ'}) (25)
2m1 ma

R™

+/ (I)|u10|2d33+/ <I>|u10|2da:.

Therefore the left hand side of (2.5) becomes negative in finite time, that implies a
contradiction, since ®(r) > 0 except when r = 0. Hence the solution of (2.1) must blow
up in finite time. O

§3. Scattering result

In this section, we consider the scattering problem for the nonlinear Schrodinger
system (1.1) imposing the final state condition.

( 1
i@tul + —Aul = ﬂl”LLQ, te ]R, x € ]R2,
2m1
1
10ug + —— Aug = u%, teR, x € R% (3.1)
2m2
(u1 (1), ua(t)) = (u14(t), use(t)) as t — oo in L2

\

In the case of 1 < o < 1+ %, Barab [1] showed that a smooth global solution u for
(1.2) does not converge of a solution to a free Schrédinger equation as t — +oo. In the
case of 1 + 2 < o < 1+ 2, Tsutsumi-Yajima [31] showed that the solution for (1.2)
behaves like a solution to the free Schrodinger equation. From these results, we see
that the exponent o = 1 + % is a border line between the existence of the scattering
state or not. Therefore, in two dimensional case the system (1.1) is critical situation
to consider the scattering problem. Hayashi-Li-Naumkin [10] showed that either of the
following three cases occurs depending on the relation between m; and msy, there exists
an asymptotic free solution (2m; # mo and my # msy), there exists a modified wave
operator under some condition (2m; = ms) and there exists an asymptotic free solution
under some restricted condition (m; = mg). We call the condition 2m; = mgy the
mass resonance condition. When the mass resonance condition is satisfied, Hayashi-Li-
Naumkin [10] constructed the modified wave operators under the special assumptions
on both amplitude and argument of two scattering states. They assume the ratio of the
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argument of scattering state to the argument of another scattering state is one to two.
This assumption is removable with a minor modification of the correction term.

We introduce a weighted Sobolev spaces H*™ defined for s, m € R, the generator
of Galilei transformation and dilation operator D(t) for ¢t € R by

g = R = {6 € 81+ 1) % (1 - A)E6lse < oo,

17,12 () = U; (6) 2P U, (=t) = P M;(£)(—A) T M (—t)

and

D= (2

t
respectively. We also denote H*9(R™) = H*(R"™).

Theorem 3.1. Let 2my = mo, 1 < v < 2. Then there exists ¢ > 0 with
the following property: For any ui,us, € HYY with argdy,,argta, € HY, |01, (£)] =
V2]t ()] (a.e. € € R?) and ||ty 1 || g+ + || tor ||y < €, (3.1) has a unique global solution
(u1(t),uz(t)) € (C(R; L?))? which satisfies the estimates

[+ 0S| |+ ) + @S| <ot 32)
for all t > 0, where % <b<1,
’S\I(t) _ f—lD(ml)eé(90(§)+\/§|ﬁ1+(§)| log t)]:, ,S\;(t) _ f—lD(mQ)ei(Tr—Qo(f)—i—ng_,_(§)| logt)];-7

and 0o(&) = —arg i1+ (§) + 5 argdor (£).

Theorem 3.1 shows that it is possible to construct the modified wave operators
without assuming the ratio of the argument of two scattering states. We here introduce
a new angular modification to cancel out the difference between given two scattering
states and it is the key to prove the Theorem 3.1. Roughly speaking, the asymptotic
behavior of the system (1.1) may be determined by solutions of the following nonlinear
ordinary differential equations:

1

i0yp1(t) = 79192,
| L (3.3)
i0yp2(t) = gt

where ¢ and @9 are complex-valued functions. As far as we know, the solutions of the
system (3.3) have not been completely classified. If we had more informations about
the profile equation, we would obtain detailed results about the asymptotic behavior
of the nonlinear Schréodinger system (1.1). Hayashi-Li-Naumkin [10] constructed a spe-
cial solution of the system (3.3) to show the existence of modified wave operators for
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the system (1.1) when |i1,(€)] = V2|tia1(€)]. Therefore we consider this amplitude
condition is almost necessary and sufficient condition to show the existence of modified
wave operators for the system (1.1) based on some formal calculations. We prove the
Theorem 3.1 based on the method of the paper written by Hayashi-Naumkin [14] used
for obtaining the asymptotic behavior of the nonlinear Schréodinger equation in critical
case. Here we introduce some lemmas to prove Theorem 3.1.

Lemma 3.2. Let 8> 1. Then for any ¢ € HP?, we have

1—1 1
19z < Cligllz=" 1(=2)7 ¢l -

Lemma 3.3. (i) Let 1 < p,p1,p2,q1,q2,0 < o0 with p%-l—piz =14 L _1"4na
let s > 0. Then

16915, . < Clldllsy Nelless +Cldllnl¥ls, - (3.4)

(ii) Let 1 < p,o0 < o0, s >0, and let ¢ be a real-valued function. Then

Il < OO+l 65, - (3.5)
where [s] means the largest integer not greater than s.

Lemma 3.4. Let1l < 8 < 2, and let ¥ be a real-valued function. Then the
estimates are true.

16e™ 75 < Cligll g + Clillzos (1 + ¥l =) el 7o (3.6)

Lemma 3.4 follows from Lemma 3.3 immediately.

Proof of Theorem 8.1. We take two scattering data with |1 (€)| = V2|t24 (€)];

U14(§) = |a1+(€)|€iarg1l1+(§)’ fig, (&) = |a2+(€)|€iarga2+(§)'
For each scattering data, we introduce the phase modification as follows:

151 — 500 +V2a4(©)llogt) = iSa(t) — _gi(—0o(&)+2]a2+(E)]log )

where 0(§) = — arg 414 () + § arg o (£).
Then we have

etS1(t) |ei arg a1+(5)€%(90(5)+\/§|a1+(5)| log t)’

14 = |t14(§)
5 0y, = iy, (€)]¢) 1 12 (€) i —00(O)+2l iz (©)]0g1)

Multiplying both sides of (1.1) by FU;(—t), we obtain

i@t(]:Ul(—t)ul) = fUl(—t) (ﬂlm),
10y (FUs(—t)us) = FU(—t)(u?).



164 Ocawa, T. aAnND Uriva, K.

Note that e®51 ()¢, and e*2(N g, satisfy the equations
. —
i@t(ezsl(t)ﬁ1+) — Zezsl(t)ﬂ1+ez‘5'2(t)ﬁ2+7
. 1
iat(ezsz(t),a2+) _ ;(6251(t)ﬂ1+)2-

Therefore we can rewrite the first equation of (1.1) as follows;

i@t (D (L) .FUl(—t)ul — 6iSl(t)fL1+>

my

1 _ 1—A iS (t) R
= — ) FUL(—t)uyug — ;ezsl(t)uH_e >Wig .

1 1 —_— .

( > fUl(—t) (ﬂl’UQ + ;Ul(t)]:_lD(ml)ezsl(t)ﬁ1+€zs2(t)ﬁ2+) (37)
=D (—) FUl(—t) (ﬂl’UJQ + ;Ml (t)Dl (t)D(ml)ezsl(t)ﬁ1+€152(t)’&2+
1 T o TN~ g
Ty (t)D(ml)e’Sl<t>ﬁ1+ezs2“’ﬁ2+> :

where Rl(t) =M (t)Dl(t)]:(Ml (t) — 1).7:_1.
Similarly, the second equation of (1.1) can be rewritten as follows;

iat (D (i> .FUQ(—t)’U,Q — €iS2(t)fL2+>

ma

1 1 . R
= (—> FUQ(—t)/U/% — ;(ezsl(t)uH_)2

=D (mi:> FUy(—1) (uf + %UQ(t)}"_lD(mg)(eiSl(t)ﬁ1+)2> (3.8)
=D (m%) FUs(2) <u1 + =My (t) Dy (t)D(ms)(e*5* Dy, )?

0 DOm) (e V1. ).
where Ry(t) = Ms(t)Da(t)F(Ma(t) — 1)F 1. For simplicity, we put
wy = eiSl(t)ﬁH, Wy = eiSQ(t)ﬁng.
Integrating each side of (3.7) and (3.8), we obtain
uy (t) + My (t)D1(t)D(mq)wy

- /t T (t—7) (nm _ (—Ml(T)Dl(T)D(ml)wl)(—Mg(T)DQ(T)D(mQ)wQ)) dr

— Rl(t)D(ml)wl + 7 /too Ul(t — T)Rl (T)D(ml)wlwng,
(3.9)
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and
U2 (t) + Ms (t)DQ (t)D(mg)wg
_ /t Us(t — 7) (zﬁ _ (—Ml(T)Dl(T)D(ml)wl)z) dr (3.10)

— Ry(t)D(mao)wsy + i /t b Us(t — 7)Ry(7)D(msg) (wy)” dr.

To show the existence of u = (u3, ug) satisfying (3.9) and (3.10), we shall prove that the
map defined by the right-hand side of (3.9) and (3.10) are a contraction mapping on

X = {6 = (61.62) € (C(T20): L))" ;¢ — d|x < o0}

with
w = (’11)1,’11)2) = (—Ml(t)Dl (t)D(ml)wl, —MQ(t)DQ(t)D(mQ)U)Q),

¢ te[T,00

2
B
I9x =2 sup (50502 + 1151 05022
7j=1

where 1 < <y <2, v—8>2u>0.
Let us consider the linearized version of (3.9) and (3.10),

U1 (t) + Ml (t)Dl (t)D(ml)wl

——i /t Tt -7 (mg - (—M1(T)Dl(T)D(ml)wl)(—Mg(T)Dg(T)D(mg)w2)> dr
— Ry(t)D(my)wy + i /t T ULt = 7) Ry (7) DT wndr.
(3.11)
uz(t) + Ma(t) D2 (t) D (mz)ws
— /t AT (v% (=M (T)Dl(T)D(ml)wlf) dr (3.12)
— Ry(t)D(ma)ws + i /t h Us(t — 7)Ro(7)D(ms) (wy)? dr,

where v = (v1,v2) € X, ={¢ € X; [|¢ — 0||x < p}
We first consider (3.11). Let 0 < § < 8 < . Since Ry = My(t)D1(M; — 1)F~1
and |J1|PR;(t) = Ri(t)(—A)%, we have
I[J1]° By () D (my )wy || 2
= | Ra()(=2)% D(my)wr | 2
= (M1 = DFH(=A)2 D(ma)un]| 2
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For 0 < v < 1, we have

sinm <
4t | —

2

i

e —1]=2

By the above inequality and Lemma 3.4, we have

[(My — 1)F~H(=A)2D(my)wy | 2
<mﬁ?wwm

< Ot |l jgo + aag oo (14 [1S1(0) [ o) 11 E)]] o }
< Ct7 (log )2y | -
Thus we see

[111° By (8)D(m)wn | 2 < Ct=% (log )2 [ty | 1+ (3.13)

Similarly, we have

o0 dr
[ AR AT s
t
o0 5 dr
— [ IR Dl
t
< c/ 7 Ty dr (3.14)
<c/ 22 (| s ol oo + o [ e el )
< Ot (log )2t | 1
Also we obtain
lvjllLee < [lvj —Wjll Lo + || Lo
_ I o l=2 RN
< CEYT1P (v — )| Ea vy — y]oa ® + Ct ity ]| e (3.15)

< Ct Hpt ™" +e¢)
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for j = 1,2. Combining the above estimates (3.13), (3.14) and (3.15), we see

|u1(t) — w1 (t)]|z2 < C/ U102 — W1Wa|p2dT + || Ry () D (my)ws | 12
t
+/ ||U1(t—T)Rl(T)D(ml)wleHdeT
t

0
< C/ Ulvallzee |vr — Wil z2 + (|01 || o ||va — Wa[ 2 } dT
t
+ Ct~ 2 (log t)?|| it || 1
0 0
< C/ T_l(pT_“ + €)pT_B/2_“dT + C’/ 57'_1p7'_ﬁ/2_“d7'
t t

+ Ct™2 (log t) ||ty || -
< Cept™ 71+ Cp2t=P/2721 4 Cet /2 (log t)>
(3.16)

for all t > T if T > 0 is sufficient large.
We again use |J;|° Ry (t) = Rl(t)(—A)g. Then multiplying (3.11) by |J1|?, we obtain

| J1|% (ua (t) — 1)

= i\ /too Ui(t —7) (|71]° (T1vg — W102)) dT (3.17)

dr

% D(ml)wlwg—.
T

[Nl]ey

— Ri(8)(—=A)% D(my)wy + iA /too Us(t — )R (7)(—A)
Taking the L?-norm of the both sides of (3.17), we find

[ J117 (ua () — @1 (2))]l 2

< [P @~ Tl o .18

dr
D(ml)wleHLz 7

[V

o0
8
+ 1R (8)(=A) 2 D(my)wn || 2 +C/ [B1(7)(=4)
t
For the first term of the right hand side of (3.18), we have
11717 (@102 — @) 12 = 7| M1 (D102 — @102)| 7

= t5||(M101M2v2 — Ml’lz)lﬁg”lj)g)HHﬁ.

From direct calculation, we have
1 (M v, Mavs — Moo, Math)|| s
< CtP||vg|| o< [ My (vy — ©1) | o + C1F||oy — @1 || o< | M g2l 6
+ Ct||vy — e o [ Mrn || s + C8% |01 oo [ Mo (va — @2) | 16
< Cllogllz=ll117 (01 = @)l 22 + Clloy — @1 ]|z [[1J27va ]l 2
+ Cllvy = Wl L[| @1 || 2 4 Cllioy | Los || 2|k (ve — @2) | 22
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Since v € X, we see
_ . _ 1 _o1-1
[v; = @il < CE 517 (v = @) 12 vy — @5l 7
< Cpt—l—ﬂ—%(ﬂ—l),
for 7 = 1,2. We obtain by using above estimates
[|J1]P (Trvg — @1102)|| 2 < Cept 1 H + Cept~17H=AH+L/2, (3.19)

Substituting (3.19) to (3.18), we obtain

217 (wr () = 1) 12 < Cp/t T (e 4 prH)dr + Cpt—F (logt)?

(3.20)
< Cept™ + Cp*t= 2 4 CptO =P/ 2 (log t)2.
The same calculation shows the estimate for (3.12):
uz(t) — o ()| 2 < Cept™2 1 4+ Cp2 P27 4 Cet™/2(log t)?, (3.21)
[ J2|? (ug(t) — 2)|| 2 < Cept™ + Cp?t=2* 4 Cet =/ 2(log t)2. (3.22)

Using estimates (3.16), (3.20), (3.21) and (3.22), we find a time 7" > 0 such that u € X,.

In the same manner we can prove the estimate
_ 1 -
=l x < 5llo = lx,

where @ = (@, U2) is defined by (3.11) and (3.12) with v = (vy,v2) replaced by v =
(1, ).

Thus we conclude that the map defined by the right-hand side of (3.9) is a contrac-
tion mapping. Hence there exists a unique global solution u = (u1, uz) € (C([T, c0); L?))?
of the integral equation (3.9) and (3.10) satisfying the estimate

u; — )2 < Ct™ 3 H
J j

for j = 1,2. uy and uy satisfies

(51 (t) = Ul (t - T)Ul (T) - Z/T U1 (t - T)ﬂl”LLQ(T)dT (323)
and .
ws(t) = Us(t — T)un(T) — i /T Us(t — 7)(ur)2(7)dr (3.24)

respectively. Since uy(T),uz(T) € L?(R?), combining the argument due to [30] and L2-
conservation law for (1.1), we may show that (3.23) and (3.24) have a global solution in
C(R; L?(R?)). Thus the solution u = (u1,us) extends to all times. This completes the
proof of Theorem 3.1. O
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