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Hardy spaces with variable exponent

By

Mitsuo IzUKI? Eiichi NAKAT*™ and Yoshihiro SAWANO***

Abstract

In this paper we first make a view of Lebesgue spaces with variable exponent. After
reviewing fundamental properties such as completeness, duality and associate spaces, we re-
consider Hardy spaces with variable exponent. We supplement what we obtained in our earlier
paper. In Part I we collect some known basic properties toghther with their proofs. In Part II
we summarize and reinforce what we obtained in [30, 36].
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Notation
In the whole paper we will use the following notation:

(1) Given a measurable set S C R™, we denote the Lebesgue measure by |S| and the
characteristic function by xg.

(2) Given a measurable set S C R™ and a function f on R™, we denote the mean value

of fon S by fs or fg f(x)dx, namely, fs = f f(z)dz = I%I [ f(z)dz.
(3) The set Ny consits of all non-negative integers.

(4) Given a malti-index o = (o, ..., a,) € No™, we write

n
la] := Za,,.
v=1
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In addition the derivative of f is denoted by

olal f

Dofi=—2 I
I ozt ... 0xp"

(5) A symbol C always stands for a positive constant independent of the main param-
eters.

(6) An open cube Q C R"™ is always asssumed to have sides parallel to the coordinate
axes. Namely we can write Q = Q(z,7) := [[_,(z, — /2, x, + r/2) using x =
(r1,...,2,) € R" and r > 0.

(7) We define an open ball by
B(z,r):={y e R" : |z —y| <1},
where z € R™ and r > 0.

(8) Given a positive number s, a cube Q = Q(x,r) and an open ball B = B(x,r), we
define s@ := Q(x, sr) and sB := B(x, sr).

(9) The set © C R™ is measurable and satisfies |2 > 0.

(10) The set C25,,(€2) consists of all compactly supported and infinitely differentiable

comp

functions f defined on (2.

(11) The uncentered Hardy-Littlewood maximal operator M is given by

My (@)= sup oz [ 17,

B>z

where the supremum is taken over all open ballls B containing . We can replace
the open balls {B} by the open cubes {Q}.

(12) By “a variable exponent”, we mean a measurable function p(-) : @ — (0,00).
The symbol “(-)” emphasizes that the function p does not always mean a constant
exponent p € (0,00). Given a variable exponent p(-) we define the following:

(a) p- = ess.inf cop(z) = sup{a : p(z) > a ae z € Q}.
(b) ps = ess.sup,eqp(z) = inf{a : p(z) < a ae. z € Q).
(¢) Qo:={reQ:1<p(x)<oo}=p '((1,00)).

(d) :={reQ:p)=1}=p (1)

(€) Qoo :={z€Q: p(x) =00} =p~'(0).
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(f) the conjugate exponent p/( -):

o0 (33 S Ql),
()= 8 (xe),
1 (r € Ox),

namely, ﬁ + i) %x)

to a constant p, then of course p/(-) = p’ is the usual conjugate exponent.

= 1 always holds for a.e. € Q. In particular, if p( - ) equals

(13) We adopt the following definition of the Fourier transform and its inverse:
FIE) = [ J@)e ™ de, F 7 f(x) = | f(€)™ 4 dg
R™ on

for f € L1(R™).

(14) Using this definition of Fourier transform and its inverse, we also define

(0.1) e(D)f(x) :=F - Ffllx) = (f,F oz —"))

for f € S'/(R") and ¢ € S(R™).

Part 1
Basic theory on function spaces with
variable exponents

§1. Introduction

Recently, in harmonic analysis, partial differential equations, potential theory and
applied mathematics, many authors investigate function spaces with variable exponents.
In particular, spaces with variable exponent are necessary in the field of electronic fluid
mechanics and the applications to the recovery of graphics.

The theory of Lebesgue spaces with variable exponent dates back to Orlicz’s paper
[33] and Nakano’s books in 1950 and 1951 [31, 32]. In particular, the definition of
Musielak-Orlicz spaces is clearly written in [31]. Later, Kovac¢ik—Rdkosnik [19] clarified
fundamental properties of Lebesgue spaces with variable exponents and Sobolev spaces
with variable exponents. This important achievement leads to the present hot discussion
of function spaces with variable exponents.

Here is a table of brief history of function spaces with variable exponents:
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Orlicz [33] (1931) --- LPO(Q) with 1 < p_ < p; < oo.

Nakano [32] (1951) --- LPO(Q) with 1 < p_ < p; < 0.

Sharapudinov [37] (1979) --- LP()([0,1]) with 1 < p_ < p; < o0.

Kovacik-Rakosnik [19] (1991) --- LPO)(Q) with 1 < p_ < p; < oo, basic theory.

One of the important problems is to prove the boundedness of the Hardy-Littlewood
maximal operator M. Once this is established, we can expect that this boundedness
can be applied to many parts of analysis. Actually, many authors tackled this hard
problem. The paper [10] by Diening is a pioneering one. Based upon the paper [10],
Cruz-Uribe, Fiorenza and Neugebauer [5, 6] have given sufficient conditions for M to
be bounded on Lebesgue spaces with variable exponents and the condition is referred
to as the log-Holder condition.

Due to the extrapolation theorem by Cruz-Uribe-Fiorenza—Martell-Pérez [4] about
Lebesgue spaces with variable exponent, we can prove the boundedness of singular inte-
gral operators of Calderéon—Zygmund type, the boundedness of commutators generated
by BMO functions and singular integral operators and the Fourier multiplier results.

§ 2. The usual Lebesgue spaces-Elementary properties

In this section, we review classical Lebesgue spaces.

Definition 2.1. Let 1 < p < oco. The Lebesgue space LP(Q2) is the set of all
complex-valued measurable functions f defined on € satisfying || f||z»o) < 0o, where

(fQ | f(z)|P dl’)l/p (1<p<o0),

I7er@) =) s suprcal @) (0= 0).

Theorem 2.2 (Holder’s inequality).  Let 1 < p < co. We have that for oll f €
LP(Q) and all g € L¥' (),

/Q F@)(@)| dz < 1 Fllzo@ 9l e,

Applying Holder’s inequality, we obtain the following.

Theorem 2.3 (Minkowski’s inequality). Let 1 < p < oco. We have that for all
[, 9€Lr(Q),
1f +gllze) < I fllzr) + llgllzr -

Corollary 2.4. If1<p < oo, then ||| rr(q) is a norm.
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§ 3. Lebesgue spaces with variable exponents

Lebesgue spaces with variable exponent have been studied intenstively for these two
decades right after some basic properties was established by Kovécik—Rakosnik [19]. We
refer to the surveys [16, 17, 34] and a new book [7] for recent developments. In this
section we state and recall some known basic properties.

§3.1. Elementary properties

Definition 3.1.  Given a measurable function p(-) : Q — [1,00], we define the
Lebesgue space with variable exponent

LPC)(Q) :={f : pp(f/N) < oo for some A > 0},

where
p(5)i= [ F@PEr + 1]~ (oo
{x€Q:p(x)<oo}

Moreover, define

Remark 1.  We easily see that, if p(-) equals to a constant pg, then
L) = L0() and £l oy = 1lzoo o
are true.
Now we review the definition of modular.

Definition 3.2.  Let M(2) be the set of all complex-valued measurable functions
defined on 2 and X C M(Q). A functional p : X — [0,00] is said to be a modular if
the following conditions are fulfilled:

(a) p(0)=0.
(b) For all f € X and A € C with |A| = 1, we have p(Af) = p(f).
(¢) p is convex, namely, we have that for all f, g € X and all 0 <t <1,
p(tf + (1 —=t)g) < tp(f) + (1 —1t)p(g).
(d) For every f € X such that 0 < p(f) < oo, the function
(3.1) (0,00) 2 A= p(Af)

is left-continuous, namely, limy_,1_¢ p(Af) = p(f) holds.



HARDY SPACES WITH VARIABLE EXPONENT 115

(e) If p(f) =0, then f =0.
A modular p is said to be a continuous modular if (d)’ is satisfied:

(d)" Forevery f € X such that 0 < p(f) < oo, the function defined by (3.1) is continuous.

Theorem 3.3.  Let p(-) : & — [1,00] be a variable exponent. Then p,(-) is a
modular. If p(-) satisfies ess.sup,cq . P(T) < 00, then py(-) is a continuous modular.

Lemma 3.4.  Assume 0 < || f|| o)) < 0.

S S
(1) pp (llflle<-><m) =t

(2) If ess.sup,eqn o, P(T) < 00, then py ( > =1 holds.

Theorem 3.5.  Let p(-) : Q@ — [1,00] be a variable exponent. Then || - ||Lec) (o)
is a norm (often referred to as the Luzremberg—Nakano norm).

Lemma 3.6. Let p(-):Q — [1,00] be a variable exponent.
(L) I [ fllzec ) <1, then we have pp(f) < || fllLrc@) < 1.
(2) Conversely if py(f) <1, then ||f|lrc) () <1 holds.

(3) Assume that 1 < pi = sup,eqno. p(x) < oco. If pp(f) < 1, then ||fllppc) <
Pp(f)l/ﬁJr <L

Finally, we remark that LP(')(R") is a complete space.

Theorem 3.7.  The norm ||+ || Lo (o) is complete, that is, L*()(Q) is a Banach
space.

§3.2. The associate space

Given a measurable function p(-) : Q — [1, oo], we defined the Lebesgue space with
variable exponent by Definition 3.1.
For p(-) : 2 — [1,00], we define p/(+) : Q — [1, 0] as

By no means the function p/( - ) stands for the derivative of p(-).
The aim of this section is to state results related to duality.
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Theorem 3.8 (Generalized Holder’s inequality).  Let p(-) : & — [1,00] be a
variable exponent. Then, for all f € LPC)(Q) and all g € LP' ()(€),

/Q F@9@)dz < rllFll e 9

where
1 1
rp=14+———.
p- P+
It is well known that LP(€) (1 < p < oo) has L?' () as its dual. This is not the
case when p = oo. The notion of associated spaces is close to dual spaces, which is used
in the theory of function spaces. It is sometimes referred to as the Kothe dual. In the

case of variable Lebesgue spaces the definition is given as follows:

Definition 3.9. Let p(-): Q — (1,00) be a variable exponent. The associate
space of LP' ()(Q) and its norm are defined as follows:

L@y = {f is measurable : || f||pm)qy < OO}’

T :=sup{\ | 1@ o

: ||9||Lp/(->(s2) < 1} .

Remark 2. The condition ||g|;s(.)) < 1 is equivalent to py(g) < 1 by virtue
of Lemma 3.6.

Theorem 3.10.  Given a variable exponent p(-) : Q — [1, 00], write

1 1
rpi=1+———
p— P+
Then we have that for all f € LPC)(Q),
(32) 1 fllzrcor @) S Wy < mpllfllzecr s

in particular, LPC)(Q) = LP'C)(Q) holds with norm equivalence.
In order to prove Theorem 3.10 we use the next lemma.

Lemma 3.11.  Letp(-):Q — [1,00] be a variable exponent. If|[f|l vy <1,
then pp(f) < || fllLerc-) () holds.

In order to prove Lemma 3.11, we use the following Lemmas 3.12 and 3.13.

Lemma 3.12.  Let p(-) : Q — [1,00] be a variable exponent. If 1l oy <
oo and py(g) < 0o, then we have

< “f”LP/(')(Q)’ max{1, py(g)}-

/Q f(2)g(z) da
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Lemma 3.13.  If1 < p(z) < oo ae. € Q, pp(f) < o0 and [|f| oy <1,
then pp(f) <1 holds.

Lemma 3.11 is a direct consequence of Lemma 3.13. Indeed, if [|f|| 0y qy < 1,

(z)

f HORY
T | = d 1
pp(Hflle'm(Q)/) /Q<||f||m>(m/> s

from Lemma 3.13. Note that

1 p(x) 1
- 2 -
oy oy

because || f|| 10 (.)(q) < 1. Hence,

()
plf) 1 b g @\
Tt vl AGC ALY (IIfIIme(Q)/) relb

then we have

Hence, we have p,(f) < /]|

§3.3. Norm convergence, modular convergence and convergence in
measure

Here we investigate the relations between several types of convergences.

Theorem 3.14.  Let p(-) : Q — [1,00] be a variable exponent and f; € LP()(Q)
(j=1,2,3,...).

(1) Iflimjeo | fill Loy () = 0, then limyj 0 pp(fj) = 0 holds.
(2) Assume that |2\ Qoso| > 0. The following two conditions (A) and (B) are equivalent:

(A) ess.supyequn. P(T) < 00.
(B) Iflim; 00 pp(f;) = 0, then lim; o0 || £l o) () = O holds.

Theorem 3.15.  If a sequence {f;}72, € LPC)(Q) converges in LPC)(Q), then
f; converges to 0 in the sense of the Lebesgue measure, namely,

(3-3) Jim [{z €@« [fi(@)] > e} =0

for all e > 0.
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As an example of p(-) satisfying the requirement of Theorem 3.15, we can list

2 (¢ B(0,1)),

p(z) =2+ 00 Xp(o,1)(T) = o (x€B0.1)

Here we assumed B(0,1) C €.

§ 3.4. Duality (The generalized F. Riesz representation theorem)

Here we show that a counterpart of the LP(Q)-LP () duality is available in the
variable setting.

Definition 3.16.  Let p(-): Q — [1,00] be a variable exponent. The dual space
of LP(-)(Q) and its norm are defined by

PG (Q)* = {T . LPC)(Q) — C : T is linear and bounded} ,
1T\ oc ) = sup {|T(w)| = [l pocry < 1}

It is natural to ask ourselves whether L?'() () is naturally identified with the dual
of LP1)(Q). Half of the answer is given by the next theorem.

Theorem 3.17.  Let p(-) : Q — [1,00] be a variable exponent. Given a function
fe Lp/(')(Q) we define the functional

T(u) := /Qf(x)u(a:) de  (ue LPC)(Q)).

Then, the integral defining Tru converges absolutely. Also, the functional Ty belongs to
LPC)(Q)* and the estimate

11z ) S N Trllpeco @y < A+ 1/p— = 1/p)Ifll o o-
In particular LP () (Q) ¢ LPC)(Q)* is true.
When py < oo, then we can give an affirmative answer to the above question.
Theorem 3.18.  Let p(-): Q — [1,00) be a variable exponent such that
py < 0.

For all linear functionals F € LPC)(Q)* there uniquely exists a function f € L ()(Q)
such that

F(u) = / f(@)u(z)de (ue LPCI(Q)).
Q
Moreover, we have the norm estimate
(3.4) 1l ey S NF ooy < A+ 1/p— = 1/p )l fll L)
In particular LPC)(Q)* C LY C)(Q) is true.
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§3.5. Some estimates of the norms

The following is a crucial inequality and very useful, because it is by no means easy
to measure the LP(")(R™)-norm of the characteristic functions.

Lemma 3.19 ([30]).  Suppose that p(-) is a function satisfying (5.1), (5.2) and
0<p_ <p;<oo.

1. For all cubes Q = Q(z,7) with z € R™ and r < 1, we have |Q|/P-(@) < |Q|V/P+(Q),
In particular, we have

(3.5) |Q|1/p—(Q) ~ |Q|1/p+(Q) ~ |Q|1/p(z) ~ ”XQ”LP(');

where py (Q) = ess.sup,cop(r) and p_(Q) = ess.inf, cqQp().
2. For all cubes Q = Q(z,7) with z € R™ and r > 1, we have

IxollLec) ~ |QMP=.

Here the implicit constants in ~ do not depend on z and r > 0.

Remark 3. The equivalence (3.5) can be implicitly found in [12, Lemma 2.5].

§4. Banach function spaces

In this subsection we outline the definition of Banach function spaces and the Fatou
lemma. For further information we refer to Bennet—Sharpley [3].

Definition 4.1.  Let M(Q) be the set of all measurable and complex-valued
functions on €. A linear space X C M () is said to be a Banach function space if there
exists a functional || - || x : M(Q) — [0, 0] with the following conditions:

Let f, g, fj e M(Q) (j =1,2,...).

(1) f € X holds if and only if || f||x < oc.
(2) (Norm property):
(A1) (
(A2) (strict Positivity) || f||x = 0 if and only if f =0 a.e..
B) (Homogeneity): [|Af]x = [Al-[lf]lx-
C) (

Positivity): || f|lx > 0.

(
(C) (The triangle inequality): [ f +gllx < [Ifl|x + llgllx-

(3) (Symmetry): || fllx = [I1f][lx-
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(4) (Lattice property): If 0 < g < f a.e., then |lg]|x < | f]lx-

(5) (Fatou property): If 0 < f; < fo < ... and lim f; = f, then lim || f;||x = [|f]|x-
j—o00 j—00
(6) For all measurable sets F' with |F'| < oo, we have ||[xr|x < oc.

(7) For all measurable sets F' with |F| < oo, there exists a constant Cr > 0 such that

/F (@) da < Cr | fllx.

Example 4.2.  Both the usual Lebesgue spaces LP(2) with constant exponent
1 < p < 0o and the Lebesgue spaces LP()(Q) with variable exponent p(-) : Q — [1, 0]
are Banach function spaces.

Lemma 4.3 (The Fatou lemma).  Let X be a Banach function space and f; € X
(7 =1,2,...). If f; converges to a function f a.e. Q and liminf, ,|f;|lx < oo, then
we have f € X and ||f||x <liminf; | f;] x.

Remark 4. In the proof of Lemma 3.4 we use the Fatou lemma with X =
L' ({p(x) < 00}), L=(Qeo).

Part 11
Hardy spaces with variable exponent

The role of this part is to survey Hardy spaces with variable exponent. In this part we
summarize what we obtained in [30, 36].

8§ 5. Fundamental properties

Let p(-) : R" — (0,00) be an exponent such that 0 < p_ = ian p(z) < py =
zeR™

sup p(x) < oo. Here and below, for the sake of simplicity, we shall postulate the fol-
reR™
lowing conditions on p( - ).

1

1

5.1 log-Holder continuity) [p(x) —p(y)| S ————— for |z —y| < =,

(G1) ) 1) 20| S oy ol <
1

(5.2) (decay condition) |p(x) — p(y)| < m

for |y| = |zl.

Remark that (5.1) and (5.2) are necessary when we consider the property of maximal

operators.
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§5.1. Definition of Hardy spaces

Recall that the space LP()(R™), the Lebesgue space with variable exponent p( - ), is
defined as the set of all measurable functions f for which the quantity lef(x)|? @) dz
]Rn

is finite for some € > 0. The quasi-norm is given by

p(z)
||f||Lp<->:=inf{)\>O:/n<|f(;)|) d:cSl}

for such a function f.

In the celebrated paper [13], by using a suitable family Fx, C. Fefferman and
E. Stein defined the Hardy space HP(R™) with the norm given by

, feS'(R")

Lp

sup sup [t p(t™") * f|
t>0 peFn

[ fllzre =

for 0 < p < co. Here, in this part, we aim to replace LP(R") with LP(*)(R"™) and
investigate the function space obtained in this way.

The aim of the present paper is to review the definition of Hardy spaces with
variable exponents and then to consider and apply the atomic decomposition. As is
the case with the classical theory, we choose a suitable subset Fn C S(R™), which we
describe.

Definition 5.1.

1. Topologize S(R™) by the collection of semi-norms {py}nen given by

pn(p) = D sup (1+|z))N[0% ()|

|a|§NCD€Rn

for each NV € N. Define
(5.3) Fn i={p € S(R") : pn(p) <1}
2. Let f € S'(R™). Denote by M f the grand maximal operator given by
Mf(z) == sup{[t "Y1 ) * f(2)] 1 t >0, € Fn},

where we choose and fix a large integer N.

3. The Hardy space HP(')(R™) is the set of all f € S’(R™) for which the quantity

I f e = |IMFll pec

is finite.
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The definition of Fy dates back to the original work [38].
The following theorem about the definition of HP(*)(R™) is obtained in [30].

Theorem 5.2 ([30, Theorem 1.2 and 3.3]).  Let ¢ € S(R™) be a function such
that / o(z)dz #0. We define

, feS(R™).
Lp()

(5.4) 1l gz =

sup [t " (t™ ") * f]

>0

Then the norms || - || yo» and || fllgvc) are equivalent.
P,

Note that it can happen that 0 < p_ <1 < p; < oo in our setting.

§5.2. DPoisson integral characterization

Now we consider the Poisson integral characterization. Recall that f € S'(R™) is a
bounded distribution in terms of Stein, if f % ¢ € L>(R"™) for all ¢ € S(R™), and that
e VEAF — Fl(e Bl FF)  (f € 8'(R™)) denotes the Poisson semi-group for bounded
distributions f. We refer to [38, p.89] for more details. Let ¢» € S(R™) be chosen to
satisfy

(5.5) XQ0,1) < FY < X00,2)-
With this preparation in mind, we can define
e e e O R IR G

if f is a bounded distribution.
We have the following characterization.

Theorem 5.3 ([30, Theorem 3.4]).  Suppose that p(-) satisfies (5.1), (5.2) and
0<p_ <py<oo. Let f € S'(R™). Then the following are equivalent.

1. f € HPC)(R™),

2. fis a bounded distribution and sup [e”*V =2 f| € LPC)(R™).
>0

§5.3. Atomic decomposition

Here is another key result which we shall highlight. To formulate we adopt the
following definition of the atomic decomposition.

Definition 5.4 ((p(-),q)-atom). Let p(:): R™ — (0,00), 0 < p_ <py < ¢q<
oo and ¢ > 1. Fix an integer d > dp(.) := min{d c NU{0} : p_(n+d+1)>n}. A
function a on R™ is called a (p(-), g)-atom if there exists a cube @ such that
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(al) supp(a) C @,

QI
Ix@llLec)

(a2) [lallze <
(a3) / a(x)z® dx =0 for |a| < d.
The set of all such pairs (a, Q) will be denoted by A(p(-),q).

Under this definition, we define the atomic Hardy spaces with variable exponents.

Here and below we denote
(5.6) p:=min(p_,1).

Definition 5.5 (Sequence norm A({x;}52;,{Q;}52,) and Hg,fc;rf{q(R”)). Given
sequences of nonnegative numbers {#;}32; and cubes {Q;}72,, define

(5.7)

p(z)
p

p) 2
> dr <1

KiXQ; (il'})
AMlxa; llec

A({r;1721,{Q;152,) = inf A>0‘/n 2(

The atomic Hardy space H?' )’q(]R") is the set of all functions f € S'(R™) such that it

atom

can be written as

(5.8) f=> rja;in S'(R™),

Jj=1

where {r;}52, is a sequence of nonnegative numbers, {(a;,Q;)}52; C A(p(-),q) and
A({r;}521,{Q;}52,) is finite. One defines

[Fllgoc o i= inf A({k; 1721, {Q5}721),
where the infimum is taken over all admissible expressions as in (5.8).

Suppose that 0 < p_ < p; < oo. Under these definitions, in Section 6 we formulate
the following.

Theorem 5.6.  The variable Hardy norms given in Theorem 5.2 and the ones

given by means of atoms are isomorphic as long as

q>p+ =21, org=1>p,.
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Remark that we could not specify the condition of ¢ precisely in [30] but as the
calculation in [36] shows ¢ > p; > 1 or ¢ = 1 > p suffices.

§6. Atomic decompositions

In this section we consider decomposition.
Here, we define an index d,.y € NU {0} by

(6.1) dpcy:=min{d e NU{0} : p_(n+d+1) >n}.

For a nonnegative integer d, let P4(R™) denote the set of all polynomials having
degree at most d.

Let p(-) : R" — (0,00), 0 < p— < py < ¢ < oo and ¢ > 1. Recall that we have
defined (p(-), ¢)-atoms in Definition 5.4.

In the variable setting as well, we have that atoms have LP(')-norm less than 1.
We denote by A(p(-),q) the set of all pairs (a, @) such that a is a (p(-), ¢)-atom and
that () is the corresponding cube.

Remark 5.

1. Define another variable exponent ¢(-) by
1 1
(6.2) — = _+cj— (x € R™).
Then we have

(6.3) 1 - gllzecH S llgllzall fllpac

for all measurable functions f and g [21].

2. A direct consequence of Lemma 3.19 and (6.3) is that |al/z».) < 1 whenever

(@.Q) € A(p(-),q). N

Of course, as is the case when p(-) is a constant, Remark 5 can be extended as
follows:

Proposition 6.1 (cf. [30, Proposition 4.2]).

1. Let ¢ > max(1,p4). If p(-) satisfies 0 < p_ < py < o0 as well as (5.1) and (5.2),
then we have

lall o) S 1

for any (a,Q) € A(p(+),q).
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2. If p(-) satisfies 0 < p_ <py <1 as well as (5.1) and (5.2), then we have
lallgec) S 1

for any (a,Q) € A(p(-),1).

The function space H, ), q(R”) was defined to be the set of all functions f such that

atom

it can be written in the form f = Z rkja; in 8'(R™), where A({r;}52,,{Q;}52;) < o0
j=1
and {(a7,@5)}yen € Ap(-), ). One defines

[l goc .o i= inf A({r; 1721, {Q515721),

where the infimum is taken over all expressions as above.

Observe that if p(-) = p. = p_, that is, p(-) is a constant function, then we can
recover classical Hardy spaces. Unlike the classical case, (p(-), 00)-atoms are not dealt
separately. Consequently we have two types of results for (p(-), co)-atoms.

Definition 6.2 (Hp( )00 % (R™), [30, Definition 4.3]). Let p(-) : R® — (0, 00),

atom,*

0<p_ <pr<g<ooandqg>1 Then f € S (R") is in P 7 (R™) if and only if

atom,*

there exist sequences of nonnegative numbers {r;}32,; and {(a;, Q;)}52; C A(p(-),00)
such that

(6.4) f= ijaj in §'(R™), and that Z/ (

For sequences of nonnegative numbers {x;}72; and cubes {Q;}32,, define

p(z)
) dx < oo.
||XQJ||LP< )

p()
A" ({r;}5721,{Q5}521) ==inf §A >0 / Z (W) dr <1

Now we formulate our atomic decomposition theorem. Let us begin with the space
HPC )4 (R with ¢ = oo

atom,*

Theorem 6.3 ([30, Theorem 4.5]).  If p(-) satisfies 0 < p_ < py < oo, (5.1)
and (5.2), then, for all f € S'(R™),

£ ~ gy~ [ gy
The atomic decomposition for A(p(+), ¢) can be also obtained.

Theorem 6.4 (cf. [30, Theorem 4.6]).  Suppose either (i) or (i) holds;

(1) 0<p_ <py<qg<ooandpy >1;
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() 0 <p- <py <1<g<oo.

Assume p(-) satisfies (5.1) and (5.2). Then, for all f € S'(R™), [[fllgec) ~ [ £l 1o )a-

§ 7. Applications of atomic decomposition

This section is a small modification of [30, Section 5]. We first state Theorem 7.2
based on Theorem 6.4, which refines [30, Theorem 5.2]. And then we recall what we
obtained in [30].

§7.1. Molecular decomposition

Now we investigate molecular decomposition as an application of Theorems 6.3 and
6.4. Here we present a definition of molecules.

Definition 7.1 (Molecules [30, Definition 5.1]). Let 0 < p_ < p; < ¢ < o0,
q>1andd € [d,(.),00) NZ be fixed. One says that M is a (p(- ), ¢)-molecule centered
at a cube @ if it satisfies the following conditions.

Q|+

1. On 2y/nQ, M satisfies the estimate 19| a2 mq) < W
XQllLr®)

|z — 2|

1
2. Outside 2y/n@Q, we have |M(z)| < —— (1 +
Ve R Fon e i (e)

—2n—2d—3
> . This condi-

tion is called the decay condition.

3. If a is a multiindex with length less than d, then we have

/ z*M(x) de = 0.
This condition is called the moment condition.

By definition (p(-), g)-atoms are (p(-),g)-molecules modulo a multiplicative con-
stant.

As we did in [30], we are able to prove the following result.

Theorem 7.2 (cf. [30, Theorem 5.2]). Let 0 < p— < p; < q¢ < o0 and d €
7. U |dy(.y,00). Assume either

pr<l=qorqgq>ps=1.

Assume in addition that p(-) satisfies (5.1) and (5.2).
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Suppose that {Q;}52, = {Q(2,4;)}52, is a sequence of cubes and, for each j € N,
that we are given a (p(-),q)-molecule M; centered at Q;. If a sequence of positive
numbers {k;}52, satisfies

3

I~
8

=

I

K5 .
A dzx S 17
Ixq; lLee

n

Al Qi) = 1 tharis, [ S

j=1

then we have

(7.1) >k <1.
J=1 Hr()

§7.2. Boundedness of singular integral operators

If we combine Theorems 6.4 and 7.2, then we obtain the following theorem.

Theorem 7.3 ([30, Theorem 5.5]).  Assume that p(-) satisfies 0 < p_ < py <
0o, (5.1) and (5.2). Let k € S(R™) and write

Ay = sup |z|"TV™k(x)|]  (m e NU{0}).
reR”

Define a convolution operator T by

Tf(z):=k=xf(z) (f€L*R")).

Then, T' can be extended also to an HPC)(R™)-HP()(R™) operator and the norm depends
only on || Fk| L= and a finite number of collections Ay, As, ..., Axy with N depending

only on p(-).
§7.3. Littlewood-Paley characterization

Now we consider the Littlewood-Paley characterization of the function spaces.
We are going to characterize HP( ')(R”) by means of the Littlewood-Paley decom-

position.

The following lemma is a natural extension with |-| in the definition of M f replaced
by (*(Z).

We introduce the £2(7Z)-valued function space HP(')(R™;¢%(Z)). Suppose that we

are given a sequence {f;}22__ C S'(R").
Let 1 € S(R™) be such that xg(0,1) < ¥ < x@(0,2)- We set ¢ (§) := P(27%¢). With
this in mind, we define

=

o0

{352 aollmmrezy = ||sup | D [ (D)f;?

ez \ ;70

Lp()
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Observe that this is a natural vector-valued extension of

[l zrecr ~ ||sup [25"F~1ap(2F-) = f]
kEZ

Le()
We characterize Hardy spaces with variable exponents. Let us set ¢;(x) := p(277z),

;i (D)f == F @277 ) Ff] for f € S'(R").

Theorem 7.4 ([30, Theorem 5.7]).  Let ¢ € S(R™) be a function supported on
Q(0,4)\ Q(0,1/4) such that
[e.9]
> lei©F
j=—o00

for € € R™\ {0}. Then the following norm is an equivalent norm of HP()(R™):

2

(7.2 s, = | [ 3 1 C res®E)
=m0 Lp()

§ 8. Campanato spaces with variable growth conditions

§8.1. Definition of Campanato spaces with variable growth conditions

Recall that d,,. is defined in (6.1) to be
dpc.y:=min{d e NU{0} : p_(n+d+ 1) >n}.

Let LI, (R™) be the set of all LI(R™)-functions having compact support. Given a

comp

nonnegative integer d, let

Lt (R) = {feLcomp< Y [ et de=o |a|§d}.

Likewise if @ is a cube, then we write
194Q) = {1 € 1%Q): [ )t do =0, Jal <a}.
Q

If d is as in (6.1), then LLZ (R™) is dense in HY ¢ )q(]R”) Indeed, it contains all the

comp atom

finite linear combinations of (p(-), ¢)-atoms from the definition of H;’t(orfq’q (R™).
Recall that Py(IR™) is the set of all polynomials having degree at most d. For a
locally integrable function f, a cube ) and a nonnegative integer d, there exists a unique

polynomial P € P4(R™) such that, for all ¢ € Py(R™),

/ (f(2) - P(a))g(x) d = 0.
Q
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Denote this unique polynomial P by Pg f. It follows immediately from the definition
that ng = g if g € Py(R™).

Definition 8.1 ([30, Definition 6.1], L4 4.4(R™)). Let 1 < ¢ <oc. Let ¢ : Q —
(0,00) be a function and f € L{ (R™). One denotes

1/q
£, = 50 (|Q| / f() = PAf(a >|de) ,

when ¢ < oo and
171 sup ——||f — P4
Loba — _— — oo .
w1 Dee #(Q) QNE=(Q)

when ¢ = co. Then the Campanato space Ly 4 .4(R") is defined to be the sets of all f €
L (R™) such that || f||z, ,, < co. One considers elements in £ ¢ 4(R™) modulo polyno-
mials of degree d so that L, 4 ¢(R™) is a Banach space. When one writes f € L 4 q¢(R"),

then f stands for the representative of {f + P : P is a polynomial of degree d }.

Here and below we abuse notation slightly. We write ¢(z,7) := ¢(Q(x,r)) for
x € R" and r > 0.

§9. Duality H?()(R")-Lg4a(R")

In this section, we shall prove that the dual spaces of H p(')(R”) are generalized
Campanato spaces with variable growth conditions when 0 < p_ <p; <1.

§9.1. Dual of H?(R") N HY(R") with 0 <py <1

In this subsection, let pg be a constant with 0 < pg < 1. This subsection is an
auxiliary step to investigate HP(')(R™)*.

If p(-) is a constant function, then the dual is known to exist [14].

Keeping this in mind, we now seek to investigate the structure of £, 4 4(R™).

Recall that bmo(R™), the local BMO, is the set of all locally integrable functions
f such that

I£llmo = sup | ’f(a:)— 1w dy‘ ot sup | [f(@)]ds < o
QeRJQ Q QReQJQ
|QI<1 Q=1
Then from the definition of the norms || - ||pmo and || - ||bmo We have || fllBymo S | f]lbmo-

By the well-known H!(R")-BMO(R™) duality, bmo(R") is canonically embedded into
the dual space of H(R"™).
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Theorem 9.1 ([30, Theorem 7.3]). Let 0 < po < 1 and 1 < ¢ < oo. Set
1

D1 (Q) = |Q|%_1 and $2(Q) == |Q|7 ' +1 for Q € Q. Then we have Ly.py.a(R") —
Ly.6,,a(R™) + bmo(R™) in the sense of continuous embedding. More quantitatively, if
we choose 1 € S(R™) so that xg0,1) < ¥ < XQ(0,2), then we have

[P(D)ll2g0,.0 SN9lLe0yar 11 =2(D))gllbmo S ll9ll2y 6y .a-

§9.2. Dual spaces of HP(')(R")

Now we specify the dual of HP( ')(]R”) with 0 < p_ < py < 1. It follows from the
definition of the dual norm that, for all £ € (Hp( ' )’q(R”))*,

atom

||£||(Hp(')'q(Rn))* = SHP{|£(f)| : ||f||H§éon1q < 1}

atom

is a norm on (HPLY(R™))*. We prove the following

iS ﬁnite and ||€||(Hpt(-),q(Rn atom

atom )*

theorem.

Theorem 9.2 (cf. [30, Theorem 7.5]). Let p(+):R" = (0,00), 0 < p_ < py <
1, pr <qg<ooandl/q+1/q =1. Suppose that the integer d is as in (6.1). Define

(0.1) 65(Q) = % Qe ).

If p(-) satisfies (5.1) and (5.2), then

(H o (R™))" == Lys . a(R")

atom
with equivalent norms. More precisely, we have the following assertions.

1. Let f € Ly ¢,,a(R™). Then the functional

lf:a€ LLE (R™) a(z)f(x)dx € C

comp
R™

extends to a bounded linear functional on (Hg,fc;rf{q(R”))* such that

||€f||(H§t(OH)];Q)* S./ ||f||‘cq/,¢3,d'

2. Conversely, any linear functional £ on (H;’t((;g;q(R"))* can be realized as above with

some f € Ly ¢y,a(R") and we have ||fllz,, , , < ||€||(H§t<o-n>],q)*-

In particular, we have
(HPC(R™) = Lgr,g5,a(R").
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Namely, any f € Ly 4,.a(R") defines a continuous linear functional on (HPC)(R™))*
such that

L¢(a) = /n a(x) f(z)dz

for any a € LEE (R™) and any continuous linear functional on (H PC)(R™))*

1s realized
with some some f € Ly 4, a(R™).

Note that there was no need to assume ¢ > 1 in Theorem 9.2, since we refined
Theorem 6.4. When ¢ > 1, this theorem is recorded as [30, Theorem 7.5].

§9.3. An open problem

Open Problem 9.3. Do we have analogies of Theorems 9.1 and 9.2 for general
cases ?

A partial answer is;
Proposition 9.4. When p_ > 1, then we have
HPO (R ~ LPO(R™) ~ Hp'(')(R”).

How do we characterize the dual of HP()(R") for general cases, that is, without
assuming p; < 17

Besov spaces and Triebel-Lizorkin spaces are useful tools but about the dual we
have the folloing;:

Proposition 9.5. For0<p<1,
WP(R™) ~ Fo(R™) — BYE™(R™).
Forp=1,
hP(R™) ~ F,(R™) — bmo(R") = Fo,(R™).
Forp>1,
hP(R™) ~ Fo(R™) — Fpo(R™).

So, starting from the Triebel-Lizorkin scale, the resulting duals can be both Besov
spaces and Triebel-Lizorkin spaces. Once we mix the situation about p, it seems no
longer possible to determine duals.

§10. Holder-Zygmund spaces with variable exponents

In this section we assume that

(10.1) 0<p_<py<l.
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We consider the function spaces of Holder-Zygmund type and we connect them in
particular with the function spaces E(’Z b3 (R™) that we are going to define, where again

we let ¢3(Q) = % for Q € Q.

§10.1. Definition of Holder-Zygmund spaces with variable exponents

We define A’fb to be a difference operator, which is defined inductively by
(10.2) Abf=Anfi=f(+h)—f, Af:=AfoAFT k>2

Definition 10.1 ([30, Definition 8.1], Ay 4(R™)).  Let ¢ : R x (0,00) — (0, 00)
and d € NU {0}. Then Ay q(R™), the Holder space with variable exponent p(-), is
defined to be the set of all continuous functions f such that ||f[[s, , < oo, where

1
flla, , = sup ———— A f(2)].
Il = 0 STy 140 )
One considers elements in Ay 4(R™) modulo polynomials of degree d so that Ay 4(R™)
is a Banach space. When one writes f € Ay 4(R™), then f stands for the representative

of {f + P : P is a polynomial of degree d }.
Several helpful remarks may be in order.

Remark 6 ([30, Remark 8.2]).

1. Assume that there exists a constant p > 0 such that ¢(Q) < |Q|* for all @ with
|Q| > 1. If a continuous function f satisfies || f|a,, < oo, then f is of polynomial
order. In particular the representative of such a function f can be regarded as an
element in S’'(R™). Actually, since f is assumed continuous, f is bounded on a
neighborhood Q(0, 1). Using || f[/a, , < 0, inductively on k € NU {0} we can show
that |f(z)] < (k+ 1)¥#+L for all x with k < |z| <k + 1.

2. It is absolutely necessary to assume that f is a continuous function, when d > 1.
We remark that there exists a discontinuous function f such that AZH f(x) =0 for
all x,h € R™. See [23] for such an example.

3. The function space Ay q(R™) is used to measure the Holder continuity uniformly,
when ¢ does not depend on x. Such an attempt can be found in [22].

As for Ay q(R™), we have the following equivalence.

Theorem 10.2 ([30, Theorem 8.4]).  Assume that ¢ : Q — (0,00) satisfies the
following conditions.
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(A1) There exists a constant C' > 0 such that

1<

<C, (xeR", r>0).

(A2) There ezists a constant C' > 0 such that

-

(z,7)

P(y,7)

cl< <C, (z,yeR",r>0,|z—yl<r).

(A3) There ezists a constant C' > 0 such that

/r @dt < Co(x,r), (xeR™ r>0).
0

Then the function spaces Ay q(R™) and Lq ¢ q(R™) are isomorphic. Speaking more pre-
cisely, we have the following :

1. For any f € Ay a(R™) we have |[fllz, 0 S 1fllagq-

2. Any element in Lg 4 q(R™) has a continuous representative. Moreover, whenever
€ LypaR")NCR™), then f € Ay a(R") and we have || fla, . S |Ifllc

q,¢,d"

§11. Local Hardy spaces with variable exponents

What we have been doing can be transplanted into the theory of the local Hardy

spaces. For example, if ¢ € S(R™) is such that / Y(x)dx # 0, and if we define the
]Rn
norm by

sup sup |t_"g0(t_1-) x f|
0<t<l peFn

(11.1) [ fllpecH =

)

Lp()

then we see that

(11.2) I fllpecy ~

Y

Le()

sup [¢;(D) f|
JEN

where ;(§) = 1(277€).
To conclude this paper, we establish the norms of 2?(*)(R") and Fg(_)Q(]R”) are
equivalent. Let ¢ € S(R™) be a bump function satisfying xg0,1) < ¥ < x(0,2) and set

;= (277 =277
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for j € N. In [11] Diening, Hast6 and Roudenko defined the function space F 19( , )Q(R”),
the one of Triebel-Lizorkin type, with the norm

2

= (D) flleocr + ||| D s (D) £
j=1

2

rs
Lp()
for f € S'(R™).

Theorem 11.1 ([30, Theorem 9.2]). Let 0 < p_ < py < oo. The function

spaces h?()(R™) and F]?(_)Q(]R”) are isomorphic to each other.

Other results of the present paper have counterpart for hp(')(]R”). For example,
when we consider the local Hardy spaces, their duals will be the Besov spaces defined
in [1] by virtue of the counterpart of Theorems 9.2. The proofs being analogous to the
corresponding proofs for HP(*)(R™), we omit the details.
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