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The Hardy-Littlewood maximal operator
on Lebesgue spaces with variable exponent

By

Mitsuo IzUKI! Eiichi NAKAT* and Yoshihiro SAWANO™***
)

Abstract

The aim of the present paper is to consider the boundedness of the Hardy-Littlewood
maximal operator on the generalized Lebesgue space L? ) (R™) with variable exponent. On the
generalized Lebesgue space LP (')(]R”) with variable exponent, the boundedness of the Hardy-
Littlewood maximal operator was proved by Diening and Cruz-Uribe, Fiorenza and Neugebauer
at the beginning of this century. In this paper we rearrange their proof. After giving a
simple proof of the boundedness of the Hardy-Littlewood maximal operator, we provide some
examples showing the necessity of some regularity conditions on p(-) for the boundedness. As an
application of the auxiliary pointwise estimate for the Hardy-Littlewood maximal operator we
prove some density results for generalized Lebesgue and Sobolev spaces with variable exponent.

Contents

§1. Introduction
§2. Weight class 4,
§3. Boundedness of the Hardy-Littlewood maximal operator on domains

§4. Pointwise estimate

Received September 30, 2012. Revised January 21, 2013.
2000 Mathematics Subject Classification(s): 42B25
Mitsuo Izuki was partially supported by Grant-in-Aid for Scientific Research (C), No. 24540185,
Japan Society for the Promotion of Science.
Eiichi Nakai was partially supported by Grant-in-Aid for Scientific Research (C), No. 24540159,
Japan Society for the Promotion of Science.
Yoshihiro Sawano was partially supported by Grant-in-Aid for Young Scientists (B), No. 24740085,
Japan Society for the Promotion of Science.
*Department of Mathematics, Tokyo Denki University, Adachi-ku, Tokyo 120-8551, Japan
e-mail: izuki@mail.dendai.ac.jp
**Department of Mathematics, Ibaraki University, Mito, Ibaraki 310-8512, Japan

e-mail: enakai@mx.ibaraki.ac.jp

***Department of Mathematics and Information Science, Tokyo Metropolitan University, 1-1 Minami-
Ohsawa, Hachioji, Tokyo 192-0397, Japan.
e-mail: ysawano@tmu.ac. jp

(© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



52 MiTsuo Izuki, E1lCHI NAKAI AND YOSHIHIRO SAWANO
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§1. Introduction

The aim of this paper is to develop a theory of variable Lebesgue spaces. Mainly
we consider the Hardy-Littlewood maximal operator. This paper contains some of well-
known results and their proofs for convenience.

On the generalized Lebesgue space LP(") (R™) with variable exponent, the bounded-
ness of the Hardy-Littlewood maximal operator (see (1.1) for its definition) was proved
by Diening [6] (2004) and Cruz-Uribe, Fiorenza and Neugebauer [4, 5] (2003, 2004). In
the present paper we rearrange their proof. Our proof may be simpler than the original.
This idea was given in [28, 29] by Mizuta and Shimomura.

For a variable exponent p(-) : R" — (0, 00), let

p_ :=essinf p(x), p4 = esssupp(z).

zER™ x€R"

Let LP()(R™) be the set of all measurable functions f on R” such that || f|| Lr() (Rn) < OO,

where
p(x)
[fllLrrgny == 1inf A >0 / der<1y.

If1 <p. <p; < oo, then ||f||Lrc)(rn) is @ norm and thereby LP()(R™) is a Banach

f(x)

A

space. For a function f € L} (R") and z € R", the Hardy-Littlewood maximal function
M f(x) is defined by

) Mf@ s f 1wl f 1wl o [ 1)
B>zJB B |B | B

where the supremum is taken over all balls B containing x. It is well known that

the operator M is bounded on LP(R™) if 1 < p < oo. Here, to discuss the difference

between the case for variable Lebesgue spaces and the classical case, we recall its proof

in Section 8. See Theorem 5.1 as well, where a plausible analogy is not available. Indeed,
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in Theorem 5.1, for a measurable function p(-) : R™ — [1, 00), we shall show that p(-) is
a constant function, if there exists a constant C' > 0 such that

(M ()@ dz < © / (@) P@ da
R» R~

for all measurable functions f : R™ — C. This carries over to the non-doubling setting.
Diening [6] and Cruz-Uribe, Fiorenza and Neugebauer [4, 5] proved the following:

Theorem 1.1 ([4, 5, 6]).  If p(-) satisfies

Cx 1
(1.3) Ip(z) — p(y)| < m Jor |z —y| < 9
(1.4) () = p)| < (e for 2 Jel

for some positive constants c, and c*, then the operator M is bounded on Lp(')(]R”).

The boundedness follows from the next pointwise estimate and the boundedness of
M on LP-(R™) for p_ > 1.

Theorem 1.2 ([4, 5, 6]).  If p(-) satisfies (1.3), (1.4) and 1 < p_ < py < o0,
then there exists a positive constant C, dependent only on n and p(-), such that, for all
functions f with || f| o) @ny < 1,

Mf(z)P) < CM(IFCPOP=) (@)= + (e + [a)™"=)  for all x € R™.

We prove Theorem 1.2 in Section 4 by using the idea of Mizuta and Shimomura in
[28, 29].

Admitting Theorem 1.2, let us prove Theorem 1.1. In the present paper we use C'
to denote various positive constants, which may differ from line to line. Also, here and
below it will be understood that

Mf(@)P@ = {Mf()}""™)  (z e R").

By no means M f(x)P(*) is equal to M| f|P*)](z). Remark that both appear in the proof
and they should be dealt as different things.

Proof of Theorem 1.1. By homogeneity, it is enough to prove that, there ex-
ists a positive constant C' such that ||Mf| prc)@ny < C for all f € LPO)(R™) with
[ £l r) (mny < 1. Note that || f|| o) @ny < 1 is equivalent to

/ |f ()P da < 1.
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In this case, letting g(x) := | f(z)[P(*)/P~ | we have ||g||z»- ®~) < 1. By Theorem 1.2 and
the boundedness of M on LP-(R"™) for p_ > 1 (see Theorem 8.2), we have

dx
M f(2)P®) dz < C Mg(x)P-de+C —_
o M o 1) e e 7 a7

< C’/ g(x)P~dx+C

<C.
This shows that @)
M PR
T
since 1 < p_ <py <oo. That is [|Mf|ec)wn) < C. O

Before we go further, we state properties of p(-). From p; < oo and (1.3) it follows
that

(1.5) Ip(x) —p(y)| < ¢ for all x,y € R".

~ log(e +1/]z —yl)

From (1.4) it follows that there exists a constant po, such that

C n
(1.6) Ip(2) — Poc| < Togle 712 for all x € R™.

The theory of Lebesgue spaces with variable exponent dates back to Nakano’s books
in 1950 and 1951 [33, 34] and Orlicz [36]. In particular, Nakano defined Musielak-Orlicz
spaces explicitly in [33]. However, it remained intact for a long time until the advent of
the papers Sharapudinov [39] and Kovécik—Rakosnik [20]. Finally, the pioneering works
[6, 8] by Diening paved the way with which to connect harmonic analysis and variable
exponent Lebesgue spaces.

Compared with the proof on classical Lebesgue spaces in Section 8, a barrier of the
proof of the boundedness on Lebesgue spaces with variable exponent is the disability
of using Lemma 8.4. As is described in (8.4) appearing in the proof of Lemma 8.4, we
have

(7) [ lat@lde= [z e B ot > ) at

for all measurable functions f : R™ — C. As is remarked above and in Theorem 5.1, it
is not possible to prove

(1.8) (M@ de<C | |f@)P™ do
Rn Rn

unless the function p(-) is a constant.
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If one mimics the argument in Lemma 8.4, then we are faced with the difficulty:
Indeed, we cannot apply the change of variables in (8.4). From (1.7), we readily have

[ ir@pae = [ er s 15@P® > ar

0

but it is not possible to change variables t — sP(*) because we can not deal with sP(*)~1
in a satisfactory manner.
Faced to such difficulties, we seek a method of proving a weak-type inequalities:

(1.9) iu%)‘||X{Mf>)\}”LP<'> < Ol fll e
>

Note that (1.9) is a consequence of Theorem 1.2. The thrust of considering (1.9) is the
weak inequality

I X{zerr: Mp@)sayle = [{z € R™ @ M f(x) > AP < CA N flloe@ny,

which is discussed in (8.3). The proof seems similar to the proof of Theorem 8.2(1),
which asserts that the Hardy-Littlewood maximal operator M is of weak type (1,1),
namely,

{z € R : Mf(z) > M < CA|fllzrn
holds for all A > 0 and all f € L*(R™). However, since there is no way to control
X {aer>ayllzec)

even after we prove Theorem 8.2(1), this method does not seem to work. Inequality
(1.9) is proved by Cruz-Uribe, Diening and Fiorenza [1]. See Proposition 9.1 below.

§2. Weight class 4,

Recently it turns out that the theory of maximal operators on variable Lebesgue
spaces has a lot to do with the theory of weights.

By “a weight” w, we mean that it is a non-negative a.e. R and locally integrable
function. Below we write

w(S) = / w(z) dx
S
for a weight w and a measurable set S.

Definition 2.1. Let w > 0 be a weight and 1 < p < oo a constant. The weighted
Lebesgue space LP (R™) is defined by

L% (R™) := {f is measurable and complex-valued : | f||pz gn) < o0},

e = ([ @Pute) dx>””.

where
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Of course if w(xz) =1, then LP (R™) means the usual Lebesgue space LP(R").

Proposition 2.2 (Muckenhoupt [30]).  Let w > 0 a.e. R™ be a weight.

(1) If 1 < p < o0, then the following three conditions are equivalent:

(a) The weight w is the Muckenhoupt A, weight, i.e.,
p—1
(2.1) [w]a, = [w]a, &) = Supwp ([w_l/(”_l)]B> < 00,

where the supremum is taken over all open balls B.
(b) The Hardy-Littlewood mazimal operator M is bounded on LP (R™).

(¢c) M is of weak type (p,p) on LP(R™), namely, we have that for all f € LP (R™)
and all A > 0,

w({e €R™ : M) > ADYP < OA [[fllp )
(2) The following two conditions are equivalent:
(a) The weight w is the Muckenhoupt Ay weight, i.e.,
Muw(x) < Cw(z),

or equivalently

Muw(z)
22 = ny =
(2.2) holay = [w]ay ey 1= esssup =7 s
holds.
(b) M is of weak type (1,1) on L. (R™), namely, we have that for all f € L} (R™)
and all X > 0,

w({z eR" : Mf(z)>A}) <OX [ fllp gny -

Example 2.3 ([11]). Let a € R. We consider the power weight |z|* defined on
R™.

(1) Let 1 < p < co. Then the weight |z|* is the Muckenhoupt A, weight if and only if
—n<a<n(p—1).

(2) The weight |z|* is the Muckenhoupt A; weight if and only if —n < a <0.



THE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON LEBESGUE SPACES WITH VARIABLE EXPONENT 57

The theory carries over to the spaces on open sets. Let (2 be an open set in R™
and, for measurable functions f on €2, define

(23)  Mf() :=sup]{m|f<y>|dy, ]ém|f<y>|dy:=i @)l dy.

B |B| BN

where the supremum is taken over all balls B containing x.
In analogy with (2.1) and (2.2) for an open set {2, we write

p—1
(2.4) [w]a, @) = SUp WpNO ([w_l/(p_l)]BnQ) < 00,

where B runs over all balls and

Muw(z)
w(z)

[w] 4, (Q) i= esssup
xeQ)

In the definition above, we are tempted to use cubes instead of balls because we need a
geometric property of cubes.

The next result is an analogy of the one due to Lerner, Ombrosi and Pérez [25].
Let @ be a cube and = € R™. Define D(Q) the set of all dyadic cubes with respect to
Q. More precisely, let @ := x + [—r/2,r/2]". Then a dyadic cube with respect to @ is
a cube that can be expressed as

QN (z+ (r/2" HYm+[0,r/2T™), meZ" vel
Denote by D(Q), the subset of all cubes in D(Q) that contain x.

Theorem 2.4.  Let w € A1(Q2). Define

1
M@ ayadic:ow(z) 1= sup w(y)dy (z€R"™).

RED(Q)q |R| Jrna
If we set 6 := %, then we have

2ntw]a, (@

1

fE=
( Mg dyadic:ow(x)’w(x) da:> < 2][ w(z) de
QN
for all cubes Q.

Observe that Mg dyadic; is controlled by M; Mg qyadic;ow < CMw.

Proof. First we note that, for any positive constant r, we have

(min(w, 7)., <[w]a,,
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from the definition of the Muckenhoupt A; weight. Then, by replacing w with min(w, r)
with 7 > 0, we can and do assume that w € L (R™). Abbreviate meQ w(z)dr to p.

Then we have

MQ’dyadiC;Q'LU(x)é?.U(x) dx
QNQ

1 o0
= @/ SNy {r € QNQ 1 Mg dyadicow(z) > A} dA
0

1 12 oo
0 I

1 o0
< ,u5+1 + @/ SN Ly {xr € @NQ : Mg ayadic;ow(z) > A} dA.
m
Let A > p. Then we can decompose
{£€QNQ: Mgayadicow(z) > A} = JQ;nQ
J
into a union of dyadic cubes {Q;}; such that
1
— w(z)dr >\ > w
Q5| Jo,ne 2"Q;1 Jg,ne

and that

1
() da = mw(Qj neQ)

Q;NQy =0 (j#7).

Hence

w {.17 € Q neaQ: MQ,dyadic;Qw(x) > /\}

= Z ’LU(QJ‘ N Q)

J
<273 1Q;IA
J

= 2"\ |{£l'} eEQRN . MQ’dyadiC;Qw(@ > )\} |

Inserting this estimate, we obtain

ra/ 5)\6—1“} {a': S Q N Q MQ,dyadic;Qw(a'f) > /\} d)\
I

2n 0
= @/ I |{z € QN+ Mg ayadicow(w) > A} | dA
2n ‘LLOO
< @ (5)\5 |{3j € Q NnQ MQ,dyadic;Q’U)(aj) > )\} | d\
0
AL ][ s
- M ,dyadic;QW .17) + dx.
146 Jona &% (



THE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON LEBESGUE SPACES WITH VARIABLE EXPONENT 59

Therefore, it follows that

MQ,dyadiC;Q'LU(x)é?.U(x) dx
QNQ

AL
541, 270

0+1 onQ
51 2"0[w]a, (o)
60+1

S M6+1 + MQ,dyadic;Qw(x)l_Hs dz

<u Mg ayadicow(z)’ Mw(z) dz

< 2 ][ MQ,dyadic;Qw(aj)éw(a‘:) dx
QNN

1
— MQ,dyadiC;Q/lU(x)(S/lU(a?) dzx.

541
+
2 Jona

<

Now that we are assuming that w € L>°(R"™), it follows from the absorbing argument
MQ,dyadic;Qw(l’)éw(l’) de < 2u°t =2 <][

that
1445
u(x)dx) .
QNN QNQ

The proof is therefore complete. U

§3. Boundedness of the Hardy-Littlewood maximal operator on domains

In this section we recall some known results. To formulate results let us use the
following notations, which are standard in the setting of variable exponents.
Given a measurable set 2 of R", we recall that we wrote

1
Aff(w)=:;ggjglny)hhh jg|fxy>|dy.::12ﬂ [ iran
We write

p_ :=essinf p(x), p; = esssupp(z).
e zeQ

Definition 3.1.

(1) The set P(Q) consists of all variable exponents p(-) : @ — [1,00] such that 1 <
p— < py < 00.

(2) The set B(2) consists of all variable exponents p(-) € P(Q2) such that the Hardy-
Littlewood maximal operator M is bounded on LP()(Q).

(3) A measurable function r(-) :  — (0, 00) is said to be locally log-Hélder continuous
if
C
re)—rwy) < ————m——-
T )
is satisfied. The set LHy(2) consists of all locally log-Hélder continuous functions.

(lz =yl < 1/2)
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(4) A measurable function r(-) : 2 — (0,00) is said to be log-Holder continuous at oo
if

C
r(z) —r(y)| < Tog(e 1 |2]) (ly| > |=|)

is satisfied. The set LH()) consists of all measurable functions being log-Hoélder

continuous at oo.

(5) The set LH(2) consists of all measurable functions satisfying the two log-Holder
continuous properties above, namely, LH(Q) := LHy(Q2) N LH(2).

It could not be better if everything were settled in the framework of P(£2). However,
we have a counterexample. See Section 6.
Before we proceed further, a helpful remark may be in order.

Remark 1.  We can easily check the following facts.

(1) As we have seen, given a measurable function r(-) :  — (0,00), we see that the
following two conditions are equivalent:

(a) r(+) € LHx(Q).

(b) There exists a constant r, such that

Ir(z) — roo] < (z € Q).

log(e + ||)
(2) Let a variable exponent p(-) : Q — [1,00) satisfy p; < oo. Then p(-) € LH(Q) if
and only if 1/p(-) € LH(Q).
(3) Let p(-) € P(£2). Then p(-) € LH(?) holds if and only if 1/p(-) € LH(2) holds.
There are some famous results on sufficient conditions of variable exponents for
the boundedness of the Hardy-Littlewood maximal operator. If a variable exponent
p(+) : R™ — [1, 00] satisfies 1 < p_ < py < oo, we define
1 fllzeer = IX{p<oo} fllLro) (fpeoct) T IX{p=co} fllLoe-
Proposition 3.2.
(1) Diening [6] (2004): If Q is bounded, then P(2) N LHy(2) C B(S2) holds.
(2) Cruz-Uribe-Fiorenza—Neugebauer [4] (2004): Let Q be an open set of R™. Then
P(Q)NLH(Q) C B(Q).

(3) Cruz-Uribe-Diening—Fiorenza [1] (2009) and Diening—Harjulehto-Héast6—Mizuta—
Shimomura [9] (2009): If a variable exponent p(-) : R™ — [1,00] satisfies 1 <
p— <py <ooand 1/p(-) € LH(R™), then the Hardy-Littlewood maximal operator
M is bounded on LPC)(R™).
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Next we state a necessary condition for the boundedness of the Hardy-Littlewood
maximal operator.

Proposition 3.3 ([9]). Let p(-) : Q — [1,00] be a variable exponent. If M is
bounded on LPY)(Q), then p_ > 1 holds.

The proof is originally by Diening, Harjulehto, Hasto, Mizuta and Shimomura [9)].
However, Lerner extended this result to Banach function spaces when 2 = R"” (see [24,
Theorem 1.2] and [22, Corollary 1.3]). Here we transform Lerner’s proof to our setting.

Proof of Proposition 3.3. First we show that, if M is bounded on Lp(')(Q), then
M is also bounded on LPO)/(1H+9)(Q) for some § > 0: Since M is assumed bounded on
L) (Q), there exists a constant Cy > 0 such that

M fll oy < Collfllpeer-

Define

o) =3 o @),

where it will be understood that M° f(x) = | f(z)|. Observe also that ||g||zec) ~ || f]l oc)-
Since M is sublinear, we have

<
Il
=

This means that ¢ is an A;-weight and the Aj-constant is less than 2Cy. Thus, we are
in the position of using the reverse Holder inequality (Theorem 2.4) and we obtain

M[g"*](z) < Clg(x)|""°  (z € Q).
Here the constants C' and § depend only upon n and Cy. Thus, we obtain
IMIFI N o sass < 1M oeorsars < CIgl oo )0 < CUF Il oo ).

The function f € LP()(Q) being arbitrary, it follows that the operator M is bounded



62 MiTsuo Izuki, E1lCHI NAKAI AND YOSHIHIRO SAWANO

Next, with this in mind, assume that M is bounded on Lp(')(Q) with p_ = 1. Then
M is also bounded on LP()/(1+9)(Q) for some § > 0. In this case, the set

U:{QJEQmB(O,R% ffi; < 1+15/2}

has positive measure for large R > 0. Hence there exists f € LP()/0+9(Q) such that
fQﬂB(O R) |f(z)|dr = oo. For example, we partition U into a collection {U;}32, of
measurable sets such that

We let -
1 . n
f(aj) = meUj c Lp( )/(1+5)(R )
j=1""7

Then
1

(z,]z] +2R) /QOB(:(;,|m|+2R)

on  and by virtue of the generalized Holder inequality (see, for example, [16, Theo-

Mf(@EB fy)dy = o0

rem 3.8]), we obtain

||f||LP<-)/(1+6) < CR||f||L1/(1+5/2)
1+6/2

o0

=Cr | > _|U;|*?

j=1

< 0

and hence the inequality | M f||rrcr/avs) < C||fllLe¢rsa+e fails. This is a contradiction.
Therefore, we have the conclusion. O

8§4. Pointwise estimate

We aim here to prove Theorem 1.2. We supply a simpler proof by using an idea by
Mizuta and Shimomura in [28, 29].
For a nonnegative function f on R™ and a ball B(x,r), we write

an  Te=den=f  gwdn J=den=f ey

Then, observe that

Mf(z) ~supl and M(f()PPO)(z) ~ sup J.
r>0 r>0
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Let

Fotyi= {1 € LR (0) 2 1o 1(5) =0 for each y € B and /] posgaey < 1,

G := {f € Li . (R"):0< f(y) <1 for each y € R”}.

It counts that we do not postulate any condition of || f||;») on G. To prove Theorem 1.2

we state two lemmas concerning pointwise estimates.

Lemma 4.1.  Let p(-) satisfy (1.3) and 1 < p_ < py < co. Then there ezists a
positive constant C, dependent only on n and p(-), such that, for all functions f € Fy.)
and for all balls B(x,r),

I< C.Ji/p@)

Lemma 4.2.  Let p(-) satisfy (1.4) and 1 < p_ < py < co. Then there ezists a

positive constant C, dependent only on n and p(-), such that, for all functions f € G
and for all balls B(x,r),

I <COIYP) 4 (e +|2))™™).

Proof of Lemma 4.1. Let B = B(x,r) and let f € Fp(.).

Case 1: J > 1. In this case 1 < J < 1/|B| = 1/(v,r™), since [ f(y)P® dy < 1,
where v,, denotes the volume of the unit ball in R”. Let m = [1 + log 1/v,], where [a]
denotes the integer part of a € R. Then

1 m 1 m—+n
(4.2) 1<J< <e—<<e—|——) .

Let K = JY/P(*) Then, for y € B(x,r), using (1.5) and (4.2), we have

(p(z) — p(y))log K| = W

< @) =W 1og (6+ })

= o

log J

C(m+n) ( 1)
< logle+—-) <C,
p_logle+ /e —yl) o\ 7
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that is, K?(®) ~ KP®)  Hence

I :]{B FWxir<ry(y) dy +]{B TWxr>ry(v) dy

S]{BKdy +]{B f(y) (%)p(y)_l dy

K+ T dy
B

Kp)

K e — v 71/
SC(K+WJ>_CK_CJ .

Case 2: J < 1. Recall that f € Fp.). In this case, using f(y) < f(y)PW) | we have
I<J< Ji/p(x)

Therefore we have the conclusion. O

Proof of Lemma 4.2. Let B = B(x,r) and f € G. Let

Er={yeB:ly <lzf, (e+y)™" " < fly) <1},
Ey={yeB:lyl <z, 0< fy) < (e+]y) "'}
Es={yeB:y|>lz], (e+]z))7"" < fly) <1},
Ey={yeB:lyl >lz|, 0< f(y) < (e+|z[)"" '}

Observe that {E;}#_; partitions B. So we have

1 1
E/Bf(y)dy:;ﬁ/&f(y)dy'
Case 1: Integration over Ey. By (1.4), we have
|(p(x) = p(y)) log f(y)| = |p(z) — p(y)[log(1/f(y))
— log((e el
< oo Bl )™
- C,

that is, f(y)?@® ~ f(y)P¥). Let K = J'/P() Then

1 1 1 f(y)>p(”’)_1
— dy< — | Kdy+ — — d
] Elf(y) Y] . y+|B| Elf(y)( 7 y

K 1
< - . p(y)

K _ e — o 71/p(a)
§0<K+WJ>_OK_OJ .
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Case 2: Integration over Fj.

(a) If r <|z|/2, then |z| ~ |y|. Hence

1 1 dy
fydy< L [ W
B /o, WY =15 [, T
1 dy
<(C— —_—
B Js, e+ o
| Es|
=C
Bl(e + o)
1
Cr e

(b) If » > |x|/2 and |z| > 1, then, using the fact that |B| = v,,r", we obtain

1 1 dy
fy)dy < —
1Bl /i, 1Bl Jg, (e + [yt
P
B Jrn (e + [yt
< ¢
T-'I’L
. ©
~ (et ]z

(c¢) If |x| <1, then the estimate is simple:

1 4qn
B o, T WSS

Case 3: Integration over F3. By (1.4), we have

_ ploa((e +[a)™Y)
) = log(e + Ja])

that is, f(y)?®) ~ f(y)?®). Then, by the same calculation as Case 1, we conclude

=C,

[(p(x) — p(y)) - log f(y)| = |p(x) — p(y)| - log

1

fy)dy < 9 j1/p(@)

1B /g,

Case 4: Integration over F4. A crude estimate using 0 < f(z) < (1+]z]) ™ ! for all z € Ey4
suffices

1 1 dy | B, 1

Bl Lo /WY S T5] |, T ) T Bl e S (e f e
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Therefore, we have the conclusion. O

Proof of Theorem 1.2. Let ||f]r»¢y < 1. We may assume that f is nonnegative.
Split f by f = f1 + f2, where

1= IXqr>100 f=0}, f2 = [Xqo<p<i}-

Write p(x) := p(x)/p—. Then P still satisfies (1.3), (1.4) and 1 <p_ <P, < oo. In this
case || f1]|z) < 1, since f1(y)P®) < f1(y)PW) < f(y)PW), that is, f1 € Fp(.y and f2 € G.
Let

_ _ o T e B(y)
I=I(z,r) Ji Iy T T ]{3 TP

I = L, r) = ][ Fi)dy,  Js = i) = ][ LW dy, i=1,2.
B(x,r) B(z,r)

By Lemmas 4.1 and 4.2 we have
I=0L+1< 0L 4 oL 4 (e 4 |2))™) < C(TVP® 4 (e + |a]) ™).

Then
P < C(JP~ + (e + |a])"P-),

that is,

p(x) -
(f fy) dy) <C ((f Fly)r@)/r- dy> +(et |$|)_np_> ,
B(z,r) B(a,r)

for all balls B(z,r). Then we have the conclusion. O

With Lemmas 4.1 and 4.2 proven, the proofs of Theorems 1.1 and 1.2 are complete.

85. Modular inequalities

An interesting result is proved by Lerner [21, Theorem 1.1], where Lerner considered
the size of A, constants. In this section, we give an alternative proof. Our proof can
be extended to the setting of the non-doubling measures readily. Recall that

P(R™) :={p(-) € L=(R"™) : p(-) is positive and satisfies 1 < p_ < py < oo}.

Theorem 5.1 ([21]). If p(-) € P(R™), then the following two conditions are
equivalent:
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(a) We have that for all f € LP()(R™)

(5.1) (M (@)@ dz < © / F@)P® da.
Rn R™

(b) The variable exponent p(-) equals to a constant.

The implication (b) = (a) is well known, see Section 8 for its proof. It counts
that (a) = (b) is true. This implies a difference between the norm inequality and the
modular inequality (5.1). In particular we see that the inequality (5.1) shows a stronger
condition than the norm one. Izuki [14] has considered the similar problems for some
operators arising from multiresolution analyses and wavelets.

Here we shall supply a new proof without using the notion of A..,-weights, which
was obtained by carefully reexamining the original proof of Lerner [21].

Proof of Theorem 5.1. As is remarked above, the heart of the matters is to prove
that (a) implies (b). The indicator function testing (5.1) essentially suffices. Assume
that (a) holds and that p(-) is not a.e. equal to a constant function on a ball B. Let

p—(B) =essinfp(x), py(B)=esssupp(z).
zeB xrEB

For € > 0, we write
E.:={zx e B : p(x)>py(B)—c}

Since p_(B) < p4(B), there exists € > 0 such that p(B) —2¢ > p_(B) + . In this
case we have 0 < |B\ Ey.| < |B| and |E.| > 0.
Let t > 1. Then, from (5.1) by letting f := txp\ g,., we obtain

/ M[tXB\EQE](a?)p(m) dr < M(txp\EB,.] (x)P(w) dr
B R™

<C [ (o (@) do
=C/ @) dg

B\ Es
< Ct+B)=2%| B\ Ey|.

Since M[txp\ g, |(z) > %XEE (2)t, it follows that

B\ E p(z)
/ MItxp\ g, ) ()" dz > / (%) X, (2)P@ de
B B

p+(B)
> (%) |E,|tP+(B)—=,
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From both inequalities we have

B
RC( B| )“”IB\EQeI
~ B\ Bz B

for any ¢ > 1. This is a contradiction. O

The proof carries over the setting of the (non-doubling) metric measure spaces,
where the notion of A,.-weights is immature. Recall that in the metric measure space
(X,d, ), the uncentered maximal operator

1

T Jo, N ) < Bl = x}

My f(x) = Sup{

and the centered maximal operator

1
My f(z) = sup {m /B(x’r) |f(y)lduy) = r> 0}

satisfy

p2P p2P
(5.2) | M3 Sl Lo < Ellfllm(m, | Mafle < Ellfllmm,

respectively. Here

1fllze ) = (/X |f (@)[? du(%’)) v .

For estimates (5.2) for M4 and My we refer to [35] and [37, 41] respectively.
Mimicking the above proof, we can prove the following for a measurable function.

Theorem 5.2.  Let p(-) : X — [1,00) be a measurable function.

1. Let k > 3. If there exists a constant C > 0 such that
[ sy au) < € [ 1@ duo)
X X

if and only if p(+) is equal to an a.e. constant function.

2. Let k > 2. If there exists a constant C' > 0 such that

/ My f(2)P@ du(z) < C / (@) P du(a),
X X

if and only if p(-) is equal to an a.e. constant function.
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§6. Counterexamples

In this section, to show the necessity of some regularity on p(-), we give several
examples of p(+) for which the Hardy-Littlewood maximal operator M is not bounded
on LPO)(R™) with n = 1.

We will use the following fundamental facts in Propositions 6.1 and 6.3, respectively:
For a > 0, we shall show

M“ . |_0X(0,a]](x) > C|x|_9X[—a,0)U(O,a] (J}), if 0<6<1,
(see (6.2)) and
M| - |_9X[a,oo)]($) > C|$|_9X(—oo,—a]u[a,oo)($), if 6>0.

We learned these propositions from Diening’s talk.
The variable exponent p(-) in the following proposition doesn’t satisfy the local
log-Holder continuity condition (1.3):

Proposition 6.1.  Letn =1 and p(-) := 4X(—0c,0) + 2X[0,00)- Then the operator
M is not bounded on LP)(R).

Proof. Let f(z):=|z|7*3x(01)(z). Then
~1/3

(6.1) /Z ‘%) - / 73

Hence || f||.») = v/3. On the other hand, for x € (—1,0),

T

2 1,.-2/3
dxr = / L dr = 1.
0 3

6 Mz [ rwa= g [ > [
' =2l ), T T o] ), v="9

Then, for any A > 1,
0
L,

That is, | M f|| »c) = oo. O

Mf(x)

4 1 0
dx > —/ 2| =43 dx = .
A 1

(2A)*

By the same argument as Proposition 6.1, we can prove the following

Corollary 6.2. Letn =1 and p(-) := 2X(~00,—2] T 4X(~2,0) T 2X[0,00)- Then the
operator M is not bounded on LPC)(R).

The variable exponent p(:) in the following proposition doesn’t satisfy the log-
Hélder type decay condition (1.4):
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Proposition 6.3. Letn =1 and p(-) : R — (0,00). If p(x) <2 on (—o0,—k)
and p(x) > 4 on [k, 00) for some k > 0, then the operator M is not bounded on LP()(R).

Proof. Let f(zx):= |x|_1/3x[max(1’k)’oo)(x). Then
f(z) | /3

%) p(z) oo 4 oo x—4/3
dx < / dx < / dr = 1.
/—oo {4/3 max(1,k) <4/g 1 3

Hence || f||.o) < v/3. On the other hand, for < —2max(1, k),

1>)M L iy s [ i gy » 2
> > — > — - > —
W2 2 g [ sz g [ e
Then, for any A > 1,

oo p(x) — max(1,k) 2

[ s | M@
I Y . )
1 —max(1,k) B
=NUNE / o] 2% e = oo

That is, | M f|| p»c) = oo. O

A similar argument works and we obtain the following variant of the above propo-
sition.

Corollary 6.4. Letn=1 and p(-) : R — (0,00) be an exponent. If

limsupp(z) <2, liminfp(z) > 4,

T——00 T—+00

then the operator M is not bounded on LP()(R).

The next example shows that the log-Holder type decay condition (1.4) is necessary

in a sense.

Proposition 6.5 ([4]). Fiz ps € (1,00). Let ¢ : [0,00) — [0,poc — 1) be such
that
$(0) = lim ¢(z) =0, lim ¢(x)logz = oc.

T—r 00 T—r0

Assume in addition that ¢ is decreasing on [1,00). Define

p(x) = poo — ¢p(max(z,0)) (z € R).

Then M is not bounded on LP()(R).
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Proof. Note first that

. Poo
lim {1 — ——)logax = —o0.
( p(2x)>

Hence

lim gl—Pe/rP(2z) _ (.
Xr—r 00

Thus, we can find a negative sequence {c,, }52; such that

Cngl < 20p < —4, ey |FTPe/PClenl) <27 (for all n e N).

Define -
f(CC) = Z |Cn|_1/p(2|cn|)X(2cn,cn)(x)'
n=1
Since
o
/ |f(2)|P@) da = Z |en| 7P /PClenD e | < 1,
R n=1

we have f € LPO)(R). Meanwhile, if x € (—cp, —2¢,), then

_1 —2cp _1 Cn, 1 - e
Mf(x) > —/ fly)dy > — Fy)dy = Z|0”| 1/p(—2¢5)
2

~ 4e, on ~ 4, %,

Hence, assuming that |c,| > 1, we conclude

0 —2¢n
/ (M f ()} dz > 12 / | P@/P(=2e0) gy
R 4 n=1Y "¢n

o0 —2¢pn
> i Z/ |Cn|—p(—26n)/p(—2cn) dr

This shows that M f ¢ LPC)(R™). O

Remark 2.  Keep to the same setting as Proposition 6.5. The above proof shows

that the Hardy operator

||

1
i@ = [ 1@ @em)
is not bounded on LP()(R™).

The next example is due to Cruz-Uribe’s web page. This example shows that it

does not suffice to assume the continuity only.
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Proposition 6.6. Forx € R, let
p(z) := 3 + cos(2mzx).
Then M is not bounded on LP()(R).

The point is that M recovers the missing part of f: Mf(z) > Cplz|~/3 for all
x > 0. See (6.4).

Proof. Note that p(x) > 3+ cos(w/4) for x € [j,7+1/8], j=1,2,---.
Let f(x) := |z[~ 1/32] 1 X[0,1/8)( — 7). Then

oo jt1/8
J1r@pe =3 [7 a5 as
R =l

o0

j+1/8
/ |x|—(3+cos(7r/4))/3 dx
J

AN
g

j—(3—|—cos(7r/4))/3

(6.3) < 00.

[\
| =
1M

On the other hand, for x € (j,j+ 1), 7 =1,2,---,

J+1 j+1/8 (~_|_1/8)—1/3 (~_|_1)—1/3
dy = gy > > .
f(y)dy /j Yl y > S

(64) Mf(z)> -

J

Since p(z) <3forx e [j+1/4,j+3/4],j=1,2,---,

p(x)

° Jj+1 -1/3
/Mf(x)f’(w)d 2/ (”1 ) dz
R =
0o jt3/4 —1/3
5 ()
> j -1 =
_2x83;(9+1)

(6.3) and (6.5) disprove that M is bounded on LPO)(R). O

(6.5)

We remark that another example can be found in (9.2).

§ 7. Applications to density

We shall state and prove basic properties about density, which seem to have never
explicitly appeared in any literature. As an application of what we have obtained, we
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consider a density condition. Here we place ourselves in the setting of domains. Let
Q2 C R™ be an open set. We define

Coomp () :={f € C=(Q) : supp(f) is compact},

where supp(f) := {z € Q : f(z) # 0}. We are interested in the condition that Cgg,,,(£2)
is dense in LP()(9).

Definition 7.1.  Given a measurable function p(-) : Q — [1, 0], we define the
Lebesgue space with variable exponent

LPOQ) == {f : pp(f/N) < oo for some A > 0},

where

ool f) = /Q L ME@POd 1l o

and
Qoo ={r € Q: p(z) = o0}

Moreover, define

Theorem 7.2.  If a variable exponent p(-) : Q — [1,00] satisfies

esssup p(x) < oo,
€N\ Qoo

then the set
G :={g e LP(Q) : g is bounded} = LPV)(Q) N L>=(Q)
is dense in LP()(Q).
Proof. Take f € LP()(Q) arbitrarily and for each j € N define

G; ={r c Q\ Q. : |2] < j},

f(z) (x € Gj U Qo [f(2)] <),
fiw) =i f@)]f(@)|™" (x€GUuQe, [f(2)]> ),
0 (CC ¢ Gj U Qoo)

Then we see f; € G and that |f;| < min{yj, |f|}. Thus, we are in the position of using
the Lebesgue dominated convergence theorem and we obtain

(7.1) jlggo pp(fi — f) =0,

that iS, hm]_mo “fj — f“LP(')(Q) = 0. O
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Theorem 7.3.  If a variable exponent p(-) : Q@ — [1,00) satisfies p; < oo, then
the following hold:

(1) The set C(Q) N LPO(Q) is dense in LPC) ().

(2) If Q is an open set, then C2,, (Q) is dense in LP1)(Q).

comp

Proof. Take f € LP()(Q) and e > 0 arbitrarily.

We first prove (1). By virtue of Theorem 7.2, we can take a bounded function
g € LPO)(Q) so that || f — gl () < . Now we use the Luzin theorem (cf. [12, 13]) to
get a function h € C(Q2) and an open set U such that

B P+
(7.2) |U| < min {1, (—) } ,
2/lgll e (o)

that

(7.3) sup [h(x)| = sup |g(x)| < [lgllLe (9,
x€2 xeQ\U

and that

(7.4) g(x) = h(x) for all z € Q\ U.

By the triangle inequality, we have

lg = hllze) < lgllzee @) + |Rllze @) < 2[|gllze=(0)-

p(x)

Since tP(*) < max(1,#P+) holds for ¢ > 0, we obtain
x) — h(z
gla) = h@) [

g—nh :/
Pr £ Q £
2 - P+
SIUI-maX{l, ( ||9||§ (Q)) }

(7.5) <1,

namely, ||g — hl|sc) () < €. Therefore we have

If = Pllerer ) < MIF = glleeer ) + 19 = Al oo @) < 26

Next we assume that 2 is open and prove (2). Again we fix ¢ > 0. For f € LPO)(Q),
take h € C(Q) such that [|f — hl[1s¢)(q) < 2e. Since py < oo, we have Cg,,, () C
LP0)(Q) and

h

Pp (2) <max{e P*, e P~ }p,(h) < 0.
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Thus if we take a bounded open set G C €2 so that

hxo\a
pp (T\> S ]-7

then we get

(7.6) 1h = hxallLro) o) < e
Now we take a polynomial Q(z) so that

sup |h(z) — Q(x)| < emin{l, |G|™'}

zeG

by using the Weierstrass theorem. Then, since min{1, |G|~*}*®) < min{1, |G|~} for
all x € G, we have

(hXG’ e
Pp\ ———————

~9XC) < Glmin1, 6 <1,

that is,

(7-7) ||hXG - QXG”LP(')(Q) <e.

Qxc
154

) < 0o, we can take a small constant a > 0 so that

Pp (Q—XG\KQ> <1

€

By virtue of p, (

where K, is a compact set defined by
K, :={z € G : dist(z,0G) > a}.
Thus we obtain

(7.8) 1@xc — Qxk. ||LP(-)(Q) <e.

Now we fix a function ¢ € Cg5,,,(2) such that
supp(p) CG, 0<¢p<lonG, ¢=1onkK,
to get

(7.9)  1@xc — Qe vy ) = 1QlIxe — ¢lllLrr ) < QI — XK. lllLetr @) < &,
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where the last inequality follows from (7.8). Combing (7.5), (7.6), (7.7) and (7.9), we
have Qp € Cg,,,(€2) and

1f = QLo (0

<|f = hlleror) + 1h = hxallLeo @) + [1hxe — Qxall e ) + 1@ — Qe ()
<2+e+e+e

= de.

Thus, the proof is therefore complete. O

§8. Appendix — the boundedness of M on LP(R™) —

As an appendix, we supply the proof of the boundedness of the Hardy-Littlewood
maximal operator M on LP(R™).
Recall that, for a function f € L. _.(R") and z € R™, the uncentered Hardy-

Littlewood maximal function M f(z) is defined by

M () == sup ]{3 £l dy, ]{9 )l dy :=ﬁ /B )l dy.

B>x

where the supremum is taken over all balls B containing . Meanwhile, for a function f €
Li (R") and x € R", the centered Hardy-Littlewood maximal function Mcentered f ()

loc

is defined by

8.1) Moentorea f () = sup ][ F()] dy.
r>0J B(z,r)

Due to the estimate Mcentered () < M f(2) < 2" Meentered f (), most of the results for
M f carry over to those for Mceptereaf- We do not allude to this point, unless there is
not difference between M f and M eptereqa f- First, we check that M f and Mcenterea f are
both measurable functions. Our proof is simpler than that in the textbook [26].

Proposition 8.1.  Let A > 0. Then the sets Ey := {x € R" : M f(x) > A} and
B :={z € R" : Mcentereaf(z) > A} are open.

Proof. To prove this, we choose z € E) arbitrarily. Then by the definition (1.1)
of M f, we can find a ball B such that

1
(8.2) ve B o /B F)ldy > A

Then, by the definition of M f, B C E), and hence x is an interior point of Ey. The
point x being arbitrary, we see that E is open.
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We modify the above proof to obtain the proof for EY. In view of the definition (8.1),
the ball B in (8.2) must be centered at z, so that B assumes the form of B = B(x,r)
for some r > 0. By choosing « slightly larger than 1, we have

1

_ fy)ldy > A
B Jor @

Let y € B(x,(k — 1)r). Then a geometric observation shows that B(y,xr) D B(z,r).
Thus, it follows that

1

(FoTmpy [f(y)l dy =
|B(y7 HT)' B(y,kr)

F=ToYi () dy > A
|B($,/€T)| B(z,r)

Hence, B(z, (k—1)r) C Ej. Since z is again arbitrary, it follows that EY is an open set
as well. O

Classically the boundedness of the Hardy-Littlewood maximal operator is shown
as follows:

Theorem 8.2.

(1) The Hardy-Littlewood mazimal operator M is of weak type (1,1), namely,
{z € R : Mf(x) > M| < CA e
holds for all A > 0 and all f € L*(R™).
(2) If 1 < p < oo, then M is bounded on LP(R™), namely,
M fllLr@ny < C | fllze@n)
holds for all f € LP(R™).
Before we proceed further, a couple of remarks may be in order.

Remark 3.

(1) If p = oo, then Theorem 8.2 (2) is immediately proved by the definition of the norm

| | oo ).
(2) If 1 < p < oo, then M is of weak type (p,p), namely,
(8:3) e €R™ : Mf(2) > MNP < OX Y| flloogen)

holds for all A > 0 and all f € LP(IR™). This fact is easily checked by the Chebychev
inequality and Theorem 8.2 (2).
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(3) One of the important reasons why we are led to the weak (1, 1) inequality is that M
always maps L!(R™) functions to non-integral function except the zero function. To
explain why let us place ourselves in the case of n = 1. Then, a simple computation
shows that M(x(_11]) ¢ L*(R) but that x;_11; € L'(R). By a similar reason, in
R", M f ¢ L*(R™) unless f = 0.

(4) The remark (3) above is also valid for the centered Hardy-Littlewood maximal

operator.
In order to prove Theorem 8.2 we will use the following two lemmas.

Lemma 8.3 (Vitali’s covering lemma).  Given a bounded set E C R"™, we take a
covering {B(zj,r;)}; of E. If {rj}; is bounded, then there exists a disjoint subfamily
{B(zjr,7j)} such that E C U; B(xjr, 5rjr).

We introduce some Japanese books, for example, Igari [12], Mizuta [27] and Sawano
[38] for further information on the covering lemma. In [38] a covering lemma is presented
as Theorem 2.2.8 but the condition supycp 7y < 0o was indispensable.

Lemma 8.4. If1<p< oo and f € LP(R™), then we have

/n |f(x)|pdx=p/ootp—1|{xeman | f(x)] > t}] dt.

0

Proof. 1If we define the set A := {(x,s) € R"™ x [0,00) : |f(x)|P > s}, then we get
by Fubini’s theorem,

/n |f(x)|1’dx:/n (/0|f(w)|p1ds> dx
:/n (/OOOXA(:c,s)ds> do
:/Ooo (/nXA(x,s)dx> ds

:/OOO {z € R : |f(2)|]P > s}| ds.
In summary, we obtained
8.4 var= [ [z eR | f@)F > s} ds.
(8.4 [ f@pras= [ laer : |r@p > ) ds

If we change variables, then we obtain

/n If(w)lpdx=/ootp—1|{xeman L | f(2)] >t} dt.

0
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This is the desired result. O

Proof of Theorem 8.2. We first prove (1). For every A > 0 and N € N, we write
Ey = {CE cR"” : Mf(:l'}) > )\} and EA,N = F) ﬂB(O,N).

By the definition of M f(z), for each € E) there exists a ball B, such that = € B,
and that

ﬁ /B F@)ldy > A

We remark that {By}.cg, is a covering of a bounded set E y and that the radius of
B, is bounded, since |B;| < || f|1®n)/A. By virtue of Vitali’s covering lemma, there
exists a disjoint subfamily

(8'5) {Bj = Biﬂj }j C {Bx}xGEA
such that

1
Ban c|J5B; and —|Bj|/B @) dy > A
J J

Since {B,}; is disjoint, we obtain

|Exn] < (5B <5"> By <5" ) (A—l /B |f(y)|dy> < 5N o -
7 7

j j
Moreover by Ex n C Ex nyy1 C -+ and U?vozl Ey\ N = E\, we have
{z €R" : Mf(x) > A} = lm | n] < 5"\ fllzager.

Next we prove (2). Let 1 < p < co. Take a > 0 arbitrarily and define

[ (@) = fa(@) := f(z) = f*(x) (x€R").

Since

Mf(x) < M(f*)(x)+ M(fo)(2) < M(f)(@)+5 (@ €R"),

we have
{x eR” : Mf(z)>a} C{z eR" : M(f*)(z) > a/2}.

The weak (1, 1) inequality gives us

o €R" : Mf(r) > a}| < |z €R" : M) (&) > a/2} < O 2 | f*llpacany.
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By virtue of Lemma 8.4 we get

o

/ (Mf(a:))pda::p/ a? 1 |{r € R" : Mf(x)>a}| da
n 0
o
<Cp [ a2 s ey da
0

—co [ ([ @ irwlda) an

Now we note that

< 21f ()l . 1 . gp—1
| @lda= [ @il da = = @U@ W] = W)
0 0 P p—1
Consequently we have
c2r—1p
| sy e < S22 [ irieay.
Thus, the proof is therefore complete. O

Recall that Meptered is the centered Hardy-Littlewood maximal operator generated
by balls. Here and below we write Mcentered, balls for definiteness. The following result
is known about the mollifier.

Lemma 8.5 ([11, Section 2]).  Let ¢» € L*(R™) be a radial decreasing function.
Define

U(z) =t "P(x/t) (> 0).
Then we have that for allt > 0 and all f € L _(R™),

loc

(86) |¢t * f(x)| S ||¢||L1Mcentered,ballsf(x)~

The function v x f is often called a mollifier.

Let Mcentered,cubes be the centered Hardy-Littlewood maximal operator generated
by cubes. Since the volume of unit ball is 77/2/T'(1 4 n/2), we have

Mcentered,ballsf(x) S F(l + n/2)2n7r_n/2Mcentered,cubesf(x)~

Thus, if we use Lemma 8.5, then we obtain

|7>bt * f(x)l < ||¢||L1 Mcentered,ballsf(x) < P(l + n/2)2n7r_n/2||¢||L1Mcentered,cubesf(x)'

But the next lemma shows that the bound can be improved for large n.
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Lemma 8.6.  Let ¢ € L*(R™) be a radial decreasing function. Define
Pi(x) =t "p(xz/t) (t>0).

Then we have that for allt > 0 and all f € L (R™),

loc

|'¢t * f(x)| S 22n||'¢||LlMcentered,cubesf(x)-

Proof. Taking K > 0 arbitrarily, we have

/[KK [t (a/t) f y)| dy

/ _— " (/) f(x — y)| dy
(k1,... k )EN™ {o:27 " K<|zj|<27 R K j=1,--- ,n}

< > tTMETREK,. 27K )

(kl,...,kn)ENn
o=kt f 2=kntlp
/ / e - y)| dy.
—2-kitlK —2-kntlK

By using the operator M entered,cubes, We obtain

/ |t_”¢ (x/t)f | )| dy
[—K,K]"
< Y tTMETREK,. 27K )

(kl,...,kn)GNn
X (QK)nQ_(kl+"'+kn)+nMcentered,cubesf(x)

=25 N" @M (2R K ) (2K L 27 )
(K1,...,kn)ENP

X Mcentered,cubesf(x)

271K/t 27 K/t
S 23” Z (/2 te /2_ | ( )| dy) centered cubesf( )

—k1—1 kn —
(k1. kn)ENT 1K/t nTlK/t

— 93n (/ | ( )| dy) centered cubesf( )
[0,K/(20)]"
S 22”“¢”L1 Mcentered,cubesf(x)a

that is,

|'¢t * f( / |t_n¢ x/t | dy < 22”||¢||L1Mcentered cubesf( )

Thus, the proof is complete. O
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§9. Open problems

Here we state open problems about the boundedness of the Hardy-Littlewood max-
imal operator M on variable Lebesgue spaces. To this end, we need to consider a couple
of conditions. We first formulate the conditions and then we propose open problems.
Related to these open problems, we shall state a known result for the boundedness of
the Hardy-Littlewood maximal function (Theorem 9.6) and we improve it in Theorem
9.7.

First of all, we recall that Cruz-Uribe, Diening and Fiorenza proved the following
weak-type results.

Proposition 9.1 ([1]).  If a variable exponent p(-) : R™ — [1,00] satisfies 1 =
p— <py <ooand1/p(-) € LH(R"™), then M is of weak type (p(-),p(-)), namely, for
all A > 0 and all f € LPC)(R™) we have the inequality

||X{Mf(x)>>\}||Lp(->(Rn) <OA! ||f||Lp<->(Rn) .

In the case of 2 = R™ Diening [8, Theorem 8.1] has proved the following equivalence.
Below ) consists of all families of disjoint open cubes.

Proposition 9.2 ([8]).  Given a variable exponent p(-) € P(R™), the next four
conditions are equivalent:
(D1) p(-) € BR™).
(D2) p'(-) € B(R™).
(D3) There exists a constant q € (1,p_) such that p(-)/q € B(R™).
)

(D4) For allY €Y and all f € LPC)(R™) we have
Z |floxa <C ”f“LP(')(]R”)'
QeY Lp(')(]R”)

If we take an arbitrary open cube @ and put Y := {@Q} and f := f x¢ in Proposition
9.2 (D4), then we get a weaker condition

(A1) For all open cubes @ and all f € LPO)(R™) we have
|f|Q||XQ||LP('>(]R”) <C|f XQ||LP('>(Rn)~

Lemma 9.3.  Condition (A1) is equivalent to the following (A2) called the Muck-
enhoupt condition for a variable exponent p(-):
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(A2)
1
(9.1) Sup @”XQ”LP('>(]Rn)||XQ||LP/(')(]Rn) < 00,

where the supremum is taken over all open cubes Q).

We define the class A(R™) as the set of all variable exponents p( - ) satisfying (A1)
or (A2). We can easily see that B(R™) C A(R™) NP(R™).

Proof of Lemma 9.3. Take an open cube Q and f € LP(")(R™) arbitrarily. We
first prove (A1) = (A2). Let us assume (Al). Using the associate norm, we obtain

1
@ Ixqllzec: ) (R™) IxellLrc )(R™)

1
<c. @—|||XQ||LP<-><Rn>sup{ / F@xe@)] d = [l e < 1}

=Csup {|flolxallLecr@ny = [1FllLocr@ny < 1}
SCSUP{”fXQHLP(-)(]Rn) : ||f||LP('>(lR") < 1}
<C,

namely, (A2) holds. Next we prove (A2) = (Al). Assume (A2). By virtue of the
generalized Holder inequality we get

1
|f|Q||XQ||Lp<->(Rn) = IQ_I /Q |f(y)| dy - ”XQ”LP(')(R")

1
=¢ |Q_|||fXQ||Lp<->(Rn>||XQ||Lp’<-><Rn)||XQ”L"<‘><R">
<C|f xellzec) @ny-

Therefore (Al) is true. O

We can conjecture the following equivalence for variable exponents similar to the
Muckenhoupt A, weights.

Open Problem 9.4.  Let p(-) € P(R™). Get some conditions for p(-) so that
three conditions (C1), (C2) and (C3) are equivalent:

(C1) p(-) € AR™).
(C2) p(-) € B(R™).
(C3) The Hardy-Littlewood mazximal operator M is of weak type (p(-),p(-)).

Remark 4. Let p(-) € P(R™). Some facts on Open Problem 9.4 are known.
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(1) We can easily show (C3) = (C1). Assume (C3) and take an open cube @ and
f € LPC)(R™) arbitrarily. If |f|o = 0, then (A1) holds immediately. We have only
to consider the case |f|g > 0. If we take A = |f|g/2, then CM(f xq)(z) > A
(x € Q) because of |floxo(z) < CM(f xo)(x). Thus we have

[flelxellzeoo @y < Ifle [Ixiemr xo)@ >l Loc ey
<[fle - CAIf xell Loe > @ny
=C|If xql et ®ny-

This implies that p(-) satisfies (A1).

(2) In the case of that p(-) equals to a constant outside a ball, Kopaliani [17] has
proved that (C1) = (C2) holds, namely, three conditions (C1), (C2) and (C3) are
equivalent.

(3) In the case of that p(-) is radial decreasing, i.e.,

p(x) = ply) (=] < [y)),

Lerner [23] has proved (C1) = (C3) is true, namely, two conditions (C1) and (C3)
are equivalent.

(4) In the case of n > 2, Kopaliani [18] has proved (C1) = (C3) is not always true by
giving the following counter example: Take constants 1 < p; < pa < oo and define
a function k£ € C*°(R) so that

=N (t §E [073])7

S (p17p2) (t € [07 1] U [273])
Then the variable exponent
(9.2) p(z) :=k(x1) (z=(x1,...,2,) € R")

satisfies (C1), but does not satisfy (C3). Of course, this example is not radially
decreasing.

In the case of p_ = 1, we can conjecture the problem corresponding to the Muck-
enhoupt A; weights. This is also still open.

Open Problem 9.5.  Let p(-) : R® — [1,00] such that 1 = p_ < py < oo.
Obtain some conditions on p(-) so that the following two conditions are equivalent:
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(C1) p(-) € AR™).
(C3) The Hardy-Littlewood mazimal operator M is of weak type (p(-),p()).

As is mentioned above, Kopaliani [17] has proved the next theorem. Lerner [23]
has given an alternative proof of the theorem.

Theorem 9.6 ([17, 23]).  Let p(-) € P(R™). Assume the following conditions:
(CO) p(+) equals to a constant outside a ball.
(C1) p(-) € AR™).
Then we have p(-) € B(R™).
We remark that the condition (C0) can be relaxed.
Theorem 9.7.  Let p(-) € P(R™). Assume the following conditions:
(CO)" p(-) € LHo(R™).
(C1) p(-) € AR™).
Then we have p(-) € B(R™).

We will use the following lemmas, which we admit, in order to prove the theorem.
The first lemma is due to Kopaliani [17] and Lerner [23]. The second one is known as
the classical weak type inequality for M (cf. [40]). The third lemma follows from the
definition of the norm.

Lemma 9.8 ([17, 23]).  Let E C R" be a measurable set such that |E| > 0 and
p(-) € AR™). Then we have that for all f € LPC)(R™),

1
() —
I Pxelncser) < clprr) ma {1, Il F25 ey | 1o
where c(p,n) > 0 is a constant depending only on n and p(-).

Lemma 9.9 ([40]).  We have that for all o > 0 and all measurable functions f,

{z €R" : Mf(z)>a}| < ca—l/{l2f|> 1S de

Lemma 9.10.  Let p(:) : Q — [1,00] be a variable exponent.

(L) I [ fllzec ) <1, then we have pp(f) < || fllLrc@) < 1.
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(2) Conversely if py(f) <1, then ||f|lrc) () <1 holds.

Proof of Theorem 9.7. 1t suffices to prove that
IMflLee)gny < C
for all f € LPO(R") with || f||1o()gny = 1. We have that
M fll Loy @ny < M F)xqrs13llneo @ny + 1M )xqp1<3 o6 @e)-
By Lemma 4.2, we conclude

(M f)xqpi<iy e @ey < C.

On the other hand, by virtue of Lemma 9.9 and 9.10 (1) we obtain

|meR":Mﬂw>1Hsc/ ()] da

{12f|>1}
C
- 2/ ()] dx
{I12f|>1}
<C 2 (2)P®) de
2 Jy2f1>1}
SC/|ﬂ@W@M
Rn
=C.

Therefore, by |f| < M f and Lemma 9.8, we get

(M O)x 50l ro@ey < NM x> o @e)

1

) _
< c(p, n) max {1, ||X{Mf>1}||Lp<->(Rn)} £l Lpe ()
<C.

§10. Application to density — Sobolev spaces with variable exponent -—

In this section we give alternative proofs for two theorems on density as applications
of some results in previous sections.
Recall that the Schwartz class is defined by

S(R") := {u € C®°(R") : sup |z®D’u(x)| < oo for all a, B € Ng"}.
zER™
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The Schwartz space S(R™) is topologized by the family {pn} nven, where

pn(p) = D sup (1+[z)N[D%(2)].

|a|§NmER"

As the topological dual, S’(R™) is defined and usually it is equipped with the weak-*
topology.

Given a function f € Li (R") and o € No", we define the derivative D*f in the
weak sense by

- DO f(x)u(x) de = (—1)° - f(z)D%u(z)dx (ue S(R™)).

Definition 10.1. Let s € N and X(R") C Li _(R") be a subspace equipped

loc

with a norm || - || x. Suppose that for every f € X (R™) there exists N € N such that

< Npn(p) (v e SRY)).

f(@)p(x) da
Rn

The Sobolev space Xs(R™) and its norm are defined respectively by

Xs(R"):={f e X(R") : D*f € X(R") for all &« € No", |a| < s},
Iflx. = > 1D%flx-

lo <s

The above is a very general framework. Here we provide an example. We let
X = LPO)(R™). Assume that p(-) satisfies (1.3) and (1.4) as well as 1 < p_ < py < oo.
Then in [31], we proved that

1/2

(10.1) e ~ ([ Do [F @) F AP :

j=—00
Lr()

where ¢ € S(R™) satisfies

supp(p) C B(8)\ B(1) and > 0(277¢) = xrm\ 0} (€)-

j=—o0

Thus, by using the vector-valued boundedness of the Hardy-Littlewood maximal oper-

ator, we have

1/2
o0

e ~ ||| D (L2591 F (2 F AP

j=—o00
Lr()
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Note that

o0

f=>Y @Dy

Jj=—00
takes place in S’(R™).
We remark that (10.1) is a consequence of the extrapolation result in [3]. We refer
to [15, 19] for related results.
Now we state two theorems on density. The following result is proved by Diening.

Theorem 10.2 (Diening [7]). If p(-) € B(R"), then Cg,,,(R") is dense in
PO (@®m).

Recall that the set LH(2) consists of all locally log-Hélder continuous functions.

Theorem 10.3 (Cruz-Uribe-Fiorenza [2]).  If p(-) € LHy(R™) and 1 < p_ <
P4 < 00, then CS5, (R™) is dense in LIS’(')(R”).

comp

We will give alternative proofs of the two theorems above. In order to prove The-
orem 10.2 we invoke the next theorem due to Nakai-Tomita—Yabuta [32].

Theorem 10.4 ([32]).  Assume the following four conditions:
(1) xB € X(R™) for all open balls B C R™.
(2) If g € X(R™) and |f]| < |g| a.e. R™, then f € X(R™).

(3) If g € X(R™), |fj] < lg| (4 =1,2,...) a.e. R" and lim;_, f; = 0 a.e. R", then

lim; o0 [ f5lx = 0.
(4) The Hardy-Littlewood mazximal operator M is bounded on X (R™).

Then C.(R™) is dense in Xs(R™).

comp

We give a proof of Theorem 10.4 later for convenience. Theorem 10.2 is a direct
consequence of Theorem 10.4.
We admit the next theorem, which follows from the definition.

Theorem 10.5.  Let p(-) : Q — [1,00] be a variable exponent and f; € LP()(Q)
(j=1,2,3,...).

(1) Iflimj o || fill Loy () = 0, then limy oo pp(f;) = 0 holds.

(2) Following two conditions (A) and (B) are equivalent:

(A) esssup,eq\q., P(T) < 00,
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(B) Iflim; e pp(fj) = 0, then lim; oo || f5ll o) () = O holds.

Proof of Theorem 10.2. We suppose p(-) € B(R™) and apply Theorem 10.4 with
X = LPC)(R™). Theorem 10.4 (1), (2) and (4) are obviously true. We shall check (3).
If g € LPORY), ;| < lgl ( = 1,2,...) a.e. R” and lim; o f; = 0 a.e. R™, then we
have

polf) = [ 5@ do< [ lg@P® o, g0 € LR

Thus by the Lebesgue dominated convergence theorem we obtain

lim pp(f;) :/ lim |f;(z)[P® dz = 0.
Rn ]

j—00
Therefore we get lim;_,« || ;|| »¢) = 0 by Theorem 10.5. O

Now we prove Theorem 10.4. Note that the assumptions (1) and (2) imply that
Cn(R™) C X (R™). We will use the following lemma.

comp

Lemma 10.6.  Define
X comp(R") := {f € Xs(R™) : supp(f) is compact}
and assume the condition (3) of Theorem 10.4. Then, X comp(R™) is dense in X (R™).

Proof. Take a cut-off function ¢ € Cg;,,,(R") so that

(lzl < 1),

1
0ECSL =g

Given a function f € X (R"), we define
filx) = f(@)¢(x/7) ( €N).
Then we have f; € X, comp(R™) and by condition (3),
j—oo
Thus, the proof is complete. O

Proof of Theorem 10.4. First note that (1) and (2) imply that Cg5,,,(R") is a
subset of X(R"). Fix a non-negative and radial decreasing function ¢ € Cgg,,,(R")
such that ||¢||,r = 1 and define 9 (z) := t7"¢(x/t) (t > 0). By virtue of Lemma 10.6,

we shall prove

(10.2) %1_1)1(1) |f == fllx, =0 forall fe X comp(R").
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Remark that

n

D (e @) = [ (D*f)la = pyuntw) dy
for every o € No™ with |a| < s. Thus if we prove
(10.3) %in(l) |f == fllx =0 forall f e X(R") with compact support,
—)

then (10.2) is obtained. Take f € X (R™) with compact support. Then Lemma 8.5 gives
us the estimate

e x f(2)] < M f()

and due to condition (4) we see that M f € X(R™). On the other hand, we have that
limy_o(f — 9 * f) = 0 a.e. R™. Therefore, by virtue of condition (3), we conclude that
limg o || f — e * fllx = 0. u

Next we give a proof of Theorem 10.3. In order to prove the theorem we will use
the following lemmas.

Lemma 10.7.  If a variable exponent p(-) : R™ — [1,00] satisfies py < oo, then
the set
Leomp(R™) :== {f is bounded and compactly supported}

is dense in LPC)(R™).

Proof. Take f € LPO)(R™) and € > 0 arbitrarily. By Theorem 7.2 we can take a
bounded function g € LP)(R™) so that || f —g||L»() < &. Now we define g; := gxp(0,j) €
LSmp(R™) (j € N). Then, since p; < oo, the Lebesgue dominated convergence theorem
implies that

(10.4) lim pp,(g — g;) = 0.
j—o0
Thus there exists J € N such that ||g — g;|/z»c) <€ for all j > J. Namely we get
If = gilleey <Nf = gllrer + g = gill ooy < 2e.
Thus, the proof is complete. O

Lemma 10.8.  Let ¢ € Cg,,,(R"). If p(-) € LHo(R™) and 1 <p_ < p; < oo,
then, for all N € N, for all f € LPO)(R™) supported on B(0,N) and for all t > 0,

|9 * fll o)y < ON [ fllLeeys

in particular, 1, x f € LPC)(R™).
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The proof of Lemma 10.8 is based on the next lemma.

Lemma 10.9.  Let p(-) € LHy(R") and 1 < p_ < py < oo. Then there exists a
constant C' > 0 such that

p(x)
p(y)
(10.5) (]é » If(y)|dy> §O<]{B i dy+1>

for allt > 0 and all f € LPO(R™) with || f|| 1oy < 1.

Proof. In (4.1), we defined
P10 =f  Afelay T= w0 =f P
B(a,t) B(z,t)
By Lemma 4.1, then we have

1< CJYve) 4,

If we insert the definition of I and J, then we have the desired result. O

Proof of Lemma 10.8. Assume | f||;»c) = 1 and the support of f is included in
B(0,N). Let t € (0,1]. Then the support of 1 * f is included in B(0, N +2). We write

pp(Ye x f) out in full:

p(x)
dx.

Pp(¢t*f):/

B(0,N+2)

[t = norw) i

Applying (10.5) we obtain

p(x)
poltby ) < C /B - (]é ) dy> Iz

<c 1wy ) do
B(0,N+2) B(x,t)

— C|B(0,N +2)|
C

1B(0,t)] JB(0,n+2)

< C(B(0,N +2)[ +1).

+ (/ X{jo—yl<t} (T )| F () [PV dy) da
Rn

Therefore by Lemma 9.10 we get ¢y * f|| o) < Cn. O

Proof of Theorem 10.3. Take a non-negative and radial decreasing function v €
Co(R™) so that ||¢]L1 = 1. By Lemma 10.6, it is enough to prove that

comp
lim || f =ty % fll o =0,
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for all f € Lg(')(]R”) with compact suport. Since

D (4 % f)(x) = / (D*f)(@ — y)n(y) dy

n

for every o € No™ with |a| < s, it is also enough to prove that

(10.6) }1_13% 1f =t * fllppr =0
for all f € LP()(R™) with compact suport.
Now, let f € LPC)(R™) and supp f € B(0,N). Since LSmp(R™) is dense in

LPC)(R™) by Lemma 10.7, for € > 0 we can take a function g € LESmp(R™) such that
1f = gllLec) rny < €/(2(Cn +1)), where Cy is the constant in Lemma 10.8. In this case
we may assume that supp(f — ¢g) C B(0,N). Then, using Lemma 10.8, we have that,

for t € (0,1],

|e * f = flloeey < lbex f— e gllpoey +1|0e x g — gllpeey +1lg — fllzee
<CONnIf = 9gllpeey + b x g = gllpeey + lg — fllzee
<€/24 ||t * g — gllprer-

We note that ¢y * g(r) — g(z) a.e. z ast — 0. From g € Lgg,,,(R™) it follows that
|e * gllpee < ||g||z and that supp; * ¢ is included in B(0,N + 2) for 0 < t < 1.
Hence the Lebesgue dominated convergence theorem gives us lim;_, pp(g — ¢ * g) = 0.
Consequently we can take 0 < t. < 1 so that ||f — ¢ * f||z»c) < € holds whenever

0<t<te. O
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