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Estimates for bilinear Fourier multiplier operators
and bilinear pseudo-differential operators

Akihiko Miyachi

The purpose of this article is to give a brief survey of some results on bilinear
Fourier multiplier operators and bilinear pseudo-differential operators, which were
recently obtained in the joint work of Naohito Tomita, Loukas Grafakos, and the
author. The details will be published in [16], [25], and [26]. !

1 Linear operators

We recall some classical results on linear Fourier multiplier operators and linear
pseudo-differential operators.
For m € L*>(R™), the linear Fourier multiplier operator m(D) is defined by

~

7MDvwwa/e%Mm@>@ma f € SERY),

n

where fdenotes the Fourier transform defined by

~

flo = [ e

The function m is called the multiplier.

For 0 < p < oo, we write HP(R™) to denote the usual Hardy space on R" (see,
e.g., [28, Chapter III]). We shall simply say that m(D) is bounded in H?(R") if there
exists a constant C,, ,,, such that the estimate

Im(D) fllr@) < Cragnpll fll ) (1.1)

holds for all f € S(R™) N HP(R™). We want to find a simple sufficient condition on
m for m(D) to be bounded in HP(R™). A well-known criterion is the following.

Theorem 1.1. If m(§) is C™ away from the origin and satisfies the estimates
Ogm(€)] < Cale] ™ (1.2)
for all o, then (1.1) holds for all 0 < p < co.

In fact, for a fixed 0 < p < oo, the boundedness (1.1) holds if we assume (1.2)
only for a up to certain order. Several sharp conditions generalizing (1.2) are known.
One of such conditions is given in terms Sobolev norms.
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Definition 1.2. For f € §'(R"), the Sobolev norm is defined by

R 1/2
ey = ([ o+ le)IFepae)
Taking a function ¥ € C§°(R™) such that supp ¥ C R" \ {0} and

> U(E/¥)=1, ¢eR"\{o},

JEZ

we define

Ag(m) = sup [m (27 )@ () s ey (1.3)

The following theorem was essentially proved by Hérmander [19, cf. Theorem
2.5].

Theorem 1.3 (Hormander). If m € L®(R™) and As(m) < oo with an s > n/2,
then (1.1) holds for all 1 < p < oo.

Generalization of this theorem to the case 0 < p < 1 was given by Calderén and
Torchinsky [6, Theorem 4.6].

Theorem 1.4 (Calderén-Torchinsky). If 0 < p < 1 and if m € L*(R"™) satisfies
As(m) < oo with an s > n(1/p —1/2), then (1.1) holds.

It is known that Theorems 1.3 and 1.4 are ‘sharp’ in the sense that the numbers
n/2 and n(1/p — 1/2) can not be replaced by smaller numbers. We shall observe
that these critical numbers are related to the boundedness of m(D) for m satisfying

|9gm(§)] < Ca(1+ €))7 (1.4)

Such an m is sometimes called exotic multiplier. Here we shall consider the general
situation of pseudo-differential operators with exotic symbols. For a function o €
L>®(R™ x R™), the linear pseudo-differential operator o(X, D) is defined by

-~

o(X.D)f(w) = [ o OF(Ode, e R feSE)
The function o is called the symbol of the operator. As a generalization of m
satisfying (1.4), we consider symbols o(z,§) that satisfy

105070 (2,€)] < Ca(1+[€)7° (1.5)

for all multi-indices «, 5.
For o(X, D) with o satisfying (1.5), the following basic L*-boundedness was
given by Calderén and Vaillancourt [7].

Theorem 1.5 (Calderén-Vaillancourt). If o satisfies (1.5) with b = 0, then o(X, D)
is bounded in L*(R").

Corresponding theorem for LP(R") and HP(R") were given by Coifman and
Meyer [8], [9] (an independent proof was also given by the author [23], [24]), which
reads as follows.
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Theorem 1.6 (Coifman-Meyer). If 0 < p < oo and if o satisfies (1.5) with b =
n|1/p —1/2|, then o(X, D) is bounded from HP(R™) to LP(R™).

The number n|1/p—1/2| of Theorem 1.6 is known to be sharp. We shall observe
that the critical order n|1/p — 1/2| of Theorem 1.6 is related to the sharp differ-
entiability condition of Theorem 1.4. To see this, simply notice that if m satisfies
(1.4) for all « then it also satisfies (1.2) for |o| < b (if b is not an integer, the
derivatives must be interpreted in some generalized sense). Thus if the the number
n(1/p —1/2) in the theorem of Calderén-Torchinsky could be improved, then the
number n|1/p — 1/2| in Theorem 1.6 would also be improved. But this is not the
case.

In this article, we shall observe similar but somewhat different features for bilin-
ear Fourier multipliers and bilinear pseudo-differential operators.

2 Bilinear Fourier multiplier operators

For m € L>®(R*"), the bilinear Fourier multiplier operator T, is defined by

Lot = [ [ e e pfieg i, e R

where f, g € S(R™). The function m is called the multiplier. If we use the kernel
K = F~'m (inverse Fourier transform of m on R®"), we can write

1)@ = [ [ Ko - gt dnde. 2 <R

where the integral should be taken in an appropriate generalized sense if K is not
integrable.

In this section, we consider the multipliers m that satisfy, in certain weak sense,
the conditions

1902 m (€, M < Cayan (1€] + ) 7101712l (2.1)

and we will be concerned about the following boundedness of T}, between Lebesgue
or Hardy spaces:

Ty : HP(R™) x HY(R™) — L"(R™), 1/p+1/q=1/r.

The restriction 1/p+1/q = 1/r is natural since in the most simplest case m(&,n) = 1
we have T,,(f, g9)(z) = f(z)g(x) for which Holder’s inequality || fgllz- < || f|lz»|lg|lra
holds only for 1/p +1/q = 1/r. We always adopt the convention that

HP(R") = LP(R") if 1<p<oc.

In the case p = ¢ = r = 00, we shall consider L>* x L>* — BMO instead of
L> x L*® — L. We write
| Lo || 27 x o v
to denote the smallest A, possibly infinity, that satisfies | T, (f, 9)||z- < Al flz» 9]l e
forall f € SNH? and g € SN HY. We define ||}, || L x - pamo in the same way by
replacing the norms || [z, || |z, || |- by || [lzoe, | 1z, || - [ Baso, respectively.
For smooth multipliers satisfying (2.1), the basic result reads as follows.
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Theorem 2.1. If m satisfies (2.1) for all multi-indices oy, g, then || Ty || gexgasir <
oo for all 0 < p,q,r < oo satisfying 1/p+1/q=1/r > 0 and || Tin|| Lo xro—BMm0 <
00.

Theorem 2.1 is due to Coifman and Meyer [8], [9], [10] (the case p, ¢, r > 1),
Kenig and Stein [21] (the case 1/2 < r < 1), and Grafakos and Kalton [15] (full
range p, ¢, v > 0).

As in the case of linear Fourier multiplier operators, to assure the boundedness of
the bilinear operator T,, it is sufficient to assume the condition (2.1) for derivatives
up to certain order. In the papers cited above, the authors are mostly assuming (2.1)
for |ay| 4 |ae| < 2n+ 1. We shall consider the problem to find weak differentiability
conditions of the type (2.1) that assure the boundedness of T,,.

Before going into the problem, we shall see that the bilinear Fourier multiplier
operators naturally appear in several problems in analysis. We shall see this in the
following two examples.

Example 1. As a first example, we consider the Cauchy integral, which was also
the basic motivation of the study of Coifman and Meyer [8], [9], [10]. The Cauchy
integral is defined by

B fy)
Iaf(x) = /R z—y+i(Alz) — Ay))

where A is a real-valued function on R with A" € L*. One of the way to study this
integral is to write it as

aflo) =S -ir [ S

_ k+1
p y)

dy,

The term corresponding to £ = 0 is nothing but the Hilbert transform:

Hi@) = [ =ty = =i | &Ssion ©F 0

which is the typical example of m(D) of Theorem 1.1. The term corresponding to
k =1 is, except for the factor —1,

Caf(a) = / A@) = AW) gy,

This is called Calderén’s commutator, and is an example of bilinear Fourier multi-

plier operator. In fact, by writing A(x) — A(y) = / a(z)dz, a = A, we have
Yy

Caf(x) = / / F&amym(e, ) =€ dedn = T,u(f,a)(x)

with

1
m(&,n) = —m'/o sign (£ + tn)dt
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0 if £€<0,6+n<0,
E+n)/n if £<0,641>0,
—&/n if £€>0,6+n<0,
1 if £€>0,&+n>0.

The following is the picture of this multiplier.

U
(&+mn)/n 1

Y
Iy

&/

Except for the origin, the multiplier m(&,n) is Lipschitz continuous and hence has
the first order derivative in the classical sense. If we use the differentiability in
L? sense, we see the following: if ¥ € C5°(R?) and supp ¥ does not contain the
origin, then m¥ € W*(R?) for s < 3/2. The theorem to be given below (Theorem
2.3) covers such multipliers and shows, in particular, that C'4 is bounded in L?(RR),
1 <p<oo,if A/ € L*. (For the Cauchy integral and Calderén’s commutator,
many approaches are known. A recent approach is given by Muscalu [27].)

Example 2. As the second example, we consider the inequality

1D*(f e S D fllzellglizee + [1f1lLellD°gll Lo,
where D*(f) = F1(|¢ |$J/C\(€)) This inequality and its variants are called the Kato-

Ponce inequalities (see [20]). In a proof of the above inequality, we take a function
P € C°(R™\ {0}) satisfying -2 4(277¢) = 1 and decompose f and g as

F=> v@ID)f= > fi, g=> »27D)g=> g,

j=—o0 j=—o0 j=—o0 j=—o0
We have
Fa="Fo= >+ > + > .
Jk€EZ j<k—10  |[j—k|<10  j>k+10

To estimate D*(fg), the essential part comes from |j— k| < 10, typically from j = k,
where we are led to consider the following bilinear multiplier:

=27 O (E + )W (27U Wy (27U ),

7>0 keZ
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where U4, Uy, and O are smooth functions supported in some annulus. It is straight-
forward to verify that m satisfies condition (2.1) for |ay|+|az| < s but not for larger
|a1| 4 |az|. For more details, see [14] and [16, Introduction and Appendix BJ.

Now, we come back to the problem of finding weak differentiability conditions
for bilinear Fourier multipliers. We want to find conditions similar to those in
Hormander’s theorem or in the Calderén-Torchinsky theorem. In this direction,
there are some recent results. Tomita [29] proved that ||T,||rrxrisrr < 00, 1 <
p,q, T < 0o, if

sup |[m(27 )W () [|wsreny < 00 (2.2)
JET
with an s > n. Grafakos and Si [17] proved that Tomita’s result can be extended
to r < 1 if we strengthen the assumption (2.2) by using L*-based Sobolev space,
1< a<2.

In this article, we consider the problem in a different formulation; to measure
the smoothness of multipliers, we use, instead of the usual Sobolev norm on R?”?, the
product type Sobolev norm. In this setting, we can obtain ‘sharp’ differentiability
conditions, and the result implies some improvements of the results of Tomita and
Grafakos-Si.

We begin with the following definition.

Definition 2.2 (Product type Sobolev norm). For s;, s > 0 and for functions
F € L*(R?"), we define

1/2
1 E vy o1 000 (momy = (// (L4 |z ])* (1 + |@o]) [ F (21, 22) ] dxldx2> .

We take a function ¥ such that
U € C°(R?™), supp ¥ C R*™\ {0},
ST w(E/2 /) =1 (v(&n) € R*\{0}), (2.3)

j€L
and, for m € L>(R?"), we define

A(sl,sz) (m) = Sug ||m(2]€7 2]77)\11(57 77) ||W(31’S2)(R2")'
je

We consider the estimate

”Tm”HPXHq—)LT S_, A(Sl,SQ)(m)’ (24)

where 0 < p,q,r < oo and 1/p+1/q =1/r. In the case p = ¢ = r = 0o, we consider
the estimate for L™ x L>* — BMO in place of H? x H? — L".
The following is the main result of [16] and [25].

Theorem 2.3 ([16], [25]). Let 0 < p,q,r < oo and 1/p+1/q=1/r. If

sy > max{n/2,n(1/p—1/2)}, s2>max{n/2,n/q—n/2},

2.5
s1+ s3> n/r—n/2, (2:5)
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then the estimate (2.4) holds, where H? x HY — L" is replaced by L™ x L>° — BMO
when p = q = r = oo. Conversely, if (2.4) with the convention that H? x H? — L"
18 replaced by L x L™ — BMO when p = q =1r = oo holds, then

s1 > max{n/2,n(1/p—1/2)}, sy > max{n/2,n/q—n/2},
s1+ 82 > n/r —n/2. (2:6)

Thus, in terms of the product type norm A, ,,), the condition (2.5) or (2.6) is
the sharp condition for (2.4) (the equality cases of (2.6) are open).

To see easily the various conditions of Theorem 2.3, we divide the region of
(1/p,1/q) into 7 regions Iy, ..., Is as in the following figure.

1/q I\
L | L Ig
1
I3 I
1/2" IO
I
U VCR 1/p

The assumptions of (2.5) are written as follows:

s1>n/2, s9>n/2 it (1/p,1/q) € Iy;
s1>n/2, sy >nfqg—mn/2 it (1/p,1/q) € Ly;
s1>n/p—mn/2, sy >n/2 it (1/p,1/q) € I;

>n/2 >n/2
{31 n/2, s9>n/2, if (1/p,1/q) € Is;

s1+s2>n/p+nfqg—n/2

s1>n/2, sy >nfq—n/2, :
{1 /2. s2>n/qg—n/ it (1/p.1/q) € I;

s1+s2>n/p+nfqg—n/2

—n/2 2
{81>n/p n/2, sy >n/2, it (1/p,1/q) € Is;

s1+s2>n/p+nfqg—n/2

{81 >n/p—n/2, Ssy>n/q—n/2, i (1p.1/q) € I

s1+s2>n/p+nfqg—n/2

Notice that the condition s; + se > n/p+mn/q—n/2 is necessary only in the regions
]3, ]4, ]5, and IG-

Similar but partial results for multilinear Fourier multiplier operators are also
given in [16].
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3 Bilinear Pseudo-differential operators

We next consider bilinear pseudo-differential operators and want to find a theorem
corresponding to Theorem 1.6. We begin with the definition of bilinear pseudo-
differential operators.

Definition 3.1. For a function 0 = o(z, £, ) on R" x R" x R", we define the bilinear
pseudo-differential operator T, by

~

Tfo)w) = [[ ot e mfean ddn. xR,

where f,g € S(R™). The function o is called the symbol of the operator.
We shall consider the following class of symbols and operators.

Definition 3.2. For m € R, we define the symbol class BSg|, as the set of all C'™
functions o = o(x,&,n) on R™ x R™ x R™ that satisfy

020,00 (2, &, m)| < Capry (14 [€] + )™

for all multi-indices a, 3,v. We write the corresponding class of bilinear pseudo-
differential operators as

Op(BSyy) = {1, | o € BSgy}-

Bényi-Bernicot-Maldonado-Naibo-Torres [1] considered the symbol class BST's
for 0 < p,0 < 1 and showed that symbolic calculus in the corresponding operator
class Op(BS)’s) works in a similar way as in the linear case. In this section, we
restrict our study to the case p = = 0.

In contrast to the Calderén-Vaillancourt theorem (Theorem 1.5), operators in
the bilinear class Op(BSj,) do not have good boundedness. In fact, Bényi and
Torres [4] proved the following.

Theorem 3.3 ([4]). There exists a symbol 0 € BS),, such that T, is not bounded
in LP x LY — L" for any 1 <p, q,r <oo, 1/p+1/qg=1/r.

Recently, Michalowski, Rule, and Staubach [22] proved that operators of class
Op(BSg) are bounded in L* x L* — L' if m < —n/2. Generalizing this, Bényi,
Bernicot, Maldonado, Naibo, and Torres [1] proved the following.

Theorem 3.4 ([22], [1]). Operators of class Op(BSgy) are bounded in LP x L9 — L,
L<p.qr<oo, 1/p+1/g=1/r i

~ 111 1
m<m(p,q) =—n|maxs -, —, —, 1 ——¢ |.
2 pq r

Our purpose is to refine Theorem 3.4. We consider the problem in the full range
0 < p, q, r < oo by replacing some L spaces by the local Hardy spaces h? or by bmo
(the definitions of these spaces will be given below) and we completely determine
the values of m for which the operators of class Op(Bngo) are bounded between AP,
LP  and bmo. In particular, as for the boundedness in L? x L9 — L", 1/p+1/q=1/r
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in the range 1 < p, ¢, r < 0o, we will show that m(p,q) given in Theorem 3.4 are
sharp and also show that the boundedness still holds in the critical case m = m(p, q)
except for (p,q) = (1,00), (00,1), (00, 0).

In order to give our results in a precise form, we recall the definitions of h? and
bmo.

Definition 3.5 ([14]). Let 0 < p < 1 and take a ¢ € S(R") such that [,, ¢(z) dx #
0. For f € S'(R™), we define

P 1/p
lcser ={ [ ((up 160 D@ ) e}

where ¢(x) = t7"¢(x/t). The set of all f € S'(R") such that || f|[pr@n) < 00 is
denoted by h?(R™).

It is known that h?(R™) does not depend on the choice of ¢. Obviously A?(R™) D
HP(R™). The Schwartz class S(R™) is a dense subspace of h?(R").

Definition 3.6. For locally integrable functions f on R", we define

1 1
ey = s 12 [ 150) = falde + sup 20 [ ()] d

where @ denotes cubes in R" and fo = [Q]™ [, 9 f(y)dy. The class bmo(R") is defined
to be the set of all locally integrable functions f on R™ such that || f||pmoemr) < 00.

Obviously bmo(R™) € BMO(R™). Tt is known that the dual spaces of h!(R™) is
bmo(R™) (14, Corollary 1, p. 36]).
We use the following notation:

hP (R") if 0<p<l,
X? = XP(R") = ¢ LP(R"™) it 1<p<oo,
bmo(R™) if p=oc.
If0<p,qr<ooand1l/p+1/q=1/r, we define

ITo || xpxxamxr = sup{[|T6(f, 9)lx- [ f €S, g €S, |[fllxr = llgllxe =1}

If |7, || xrxxa—sxr < 00, then, with a slight abuse of terminology, we say that T, is
bounded in X? x X7 — X",
The following is our main theorem.

Theorem 3.7 ([26]). Let m € R, 0 < p,q,r < o0, and 1/p+1/q = 1/r. Then all
the operators of class Op(BSyYy) are bounded in XP(R™) x X(R™) — X"(R") if and

only if o L
mSm(pvq)z—n<maX{—, -, _,1__7___}>.
2'p g rlr 2

To see the various values of m(p,q) of this theorem, we divide the region of
(1/p,1/q) into 5 regions Jy, ..., Jy as follows:
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1/q A
14
J J4
1/2
J1
J
Jo ’
0 1/2 1 1/p
Then
(n/r—n it (1/p.1/q) € Jo;
—n/2 if (1/p,1/q) € Ji;
m(p,q) = { —n/q if (1/p,1/q) € Jo;
-n/p if (1/p,1/q) € Js;
\n/2—n/r if (1/p,1/q) € Ju,

where 1/r = 1/p+1/q. Observe that m(p, ¢) of Theorem 3.7 coincides with m(p, q)
in the region 1/p+1/q < 1.

We shall briefly explain some ideas to prove Theorem 3.7.
First we explain the idea to prove the ‘only if” part of the theorem. Here we use
Khintchine’s inequality: if 0 < p < oo, then
p1y1/p
S o ] }
m

1/2
(Srr) = {]
for all {¢,,} € C with > |em|? < oo, where {r,,} denotes independent and identi-
cally distributed random variables on a probability space with

1
Prob {r,, =1} = Prob{r,, = -1} = 5

and E[ - -] denotes the expectation. (For this inequality, see, e.g., [30, Chapter V,
Section 8].)
Applying Khintchine’s inequality to ¢, = a,e

mimz e obtain the following.

P 1/p
dx] }

Lemma 3.8. If 0 < p < oo, then

(Ser) " ~{e[ [,

m

E TG eZﬂ"Lm:c
m

for all {ay,} C C with Y, |am|* < cc.

This implies the following.
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Corollary 3.9. If > |am|* < o0 and 0 < p < oo, then there exist a sequence of %

signs such that
‘ 1/2
| S| <o (St (31)

Lr(T™) m
and also there exist a sequence of + signs such that

1/2
(Z |am|2) < Cp Ziame2wimm

The inequalities in this corollary may be considered as an ‘improvement’ of Par-
seval’s identity or the Hausdorf-Young inequality. In fact, if we don’t use + sign,
then Parseval’s identity and the Hausdorf-Young inequality give

H E amGQﬂ'zmw
m

and these are the best we can expect. If, however, we have freedom to choose +
signs as in (3.1), then we have inequalities with p and ¢ in a wider range. Similar
observation may be possible for (3.2).

(3.2)

Lo(Tny

1/q
S(Z'am|q) , 1<¢g<2<p< o0, 1/p+1/(]:1,
Lp(Tn) ™

Now we give a brief sketch of the proof of the following assertion: if 2 < p < oo,
2<qg<oo,1/p+1/qg=1/r > 1/2, and if all the operators of class Op(BSgy) are
bounded in LP x LY — L", then m < —n/2.

Take a 1 € S(R") such that ¢ = 1 on [~1/4,1/4]", and suppt) C [—1/2,1/2]".
For a sequence of complex numbers {cg}reczn satisfying supy, jezn [cre| < 1, we
consider

o) = Y crell+ [k + ()™ b(E — k)b(n — 0).

kLeZn

Then
02000 (¢,m)| < Cap(L+ €]+ )™,

with C, s independent of {¢; ¢}. By the assumption and by the closed graph theorem,
there exists a constant C' independent of {c,} such that

1To(f; 9)ller < Cllfllzellgllza- (3.3)

Take a € S such that 6 = 1 on [~1/8,1/8]", and suppf C [—1/4,1/4]". Let ¢ > 0.
By Corollary 3.9, we can take o = £1 and f, = £1 so that

floy=" Y oxlk[ P 0(x) € LP(R™),
keZ™, k#0
g(:lf) — Z /8£|€|—n/2—6627ri&09(l,) c Lq(Rn)

(€T, 640

For these f and ¢, we have

T (f.9)(x) = > cwBuckelk| > 10> (1 + k| + €)™ FH070(x),
k,££0
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Take arbitrary 7, = £1 (v € Z™) and choose ¢ so that aySBecrs = Vite. Then

T5(f, 9)(r) = Z 7Vau€2ﬁiyz9($)2a

veZL™
D D L e [ (RN VT i
k,0+£0,
k+{=v

By calculation, we have

a, ~ (1+ |V|)m_2€.

The inequality (3.3) implies

Z ’)/yay€27riy$0($)2

veL™

<C

LT

with C independent of 7, = +1. Hence by Khintchine’s inequality (Lemma 3.8) we
have > |a,|* < C, which is possible only when m — 2e < —n/2. Letting ¢ — 0, we
obtain m < —n/2.

Next we shall briefly sketch the proof of the ‘if” part of Theorem 3.7.
To prove the ‘if’ part of Theorem 3.7, we prove the following three estimates.

(1) o € BSyg”* = T, : L* x L* — h'.
(2) 0 € BSy", 0<p<1=T,:h" x bmo — h.
(3)o € BSyy", 0<p<1=T,:h" x L* = ", 1/p+1/2=1/r,

By obvious symmetry, the conclusions of (2) and (3) can be replaced by bmo x h? —
h? or L? x h? — h™, respectively. By duality, (1) implies the following:

(1) o€ BS&g/Z =T, : L* x bmo — L* and bmo x L* — L*.

These estimates combined with interpolation and duality arguments will yield the
whole ‘if” part of Theorem 3.7. See the picture below, where the points (1/2,1/2),
(1/2,0), (0,1/2) and the four half lines

(1/p,1/q) |1 <1/p < oo, 1/q =0},
(1/p,1/q) |1 < 1/p < oo, 1/qg=1/2},
(1/p,1/q) | 1/p =10, 1 < 1/q < oo},
(1/p,1/q) | 1/p=1/2, 1 < 1/q < o0},

{
{
{
{

are the places where we prove the estimates directly.
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1/q
1
0 1/2 1

Notice that we do not directly prove the estimates h' x bmo — h', bmo x h* — h!,
and bmo X bmo — bmo; these will be derived with the aid of interpolation and
duality from (1’) and (2). (this procedure goes back to [23]).

(1) 0 € BSy> = T, : L* x L? — h'.

Here, instead of T, : L? x L? — h', we shall sketch the proof of the estimate
T, : L? x L? — L*; to replace L! by h'! requires only a slight modification. To prove
this estimate, we assume that m is supported on {|¢| 4 |n| > 2} since compactly
supported m is easy to handle. By using appropriate partition of unity, we may also
assume that m is supported in a small cone in R?".

First, suppose o € BS&Q/Q and

supp o C {[¢]/8 < [n| < 8[|} N {I¢] + |n| = 2} (3.4)

Using a W satisfying (2.3), we decompose o as
oz, &n) =Y o(z,&n)T(27E,27n) = oz, n). (3.5)
Jj=1 j=1

By (3.4), || =~ |n| &~ 27 on suppo;. Hence we can take a 1 € Cg°(R™ \ {0}) such
that

TO‘]‘ (fv g) = TO‘j (fjvgj)a fj = ¢(2_]D)fa g5 = ¢(2_JD)9 (36)

- ZTaj(fjvgj)'
j=1

To estimate each term in the right hand side, we use the following lemma.

Thus

Lemma 3.10. Let N be a sufficiently large positive integer and suppose o(x,&,n)
satisfy

020 (2, &, m)| < r"P1{[E] <} (3.7)
for |al, 18], |v] < N with some r > 0. Then
1T5(f, 9l < ClANz2llgll > (3.8)

Here N and C can be taken depending only on n and independent of r > 0.



26 AKIHIKO MIYACHI

Proof of Lemma 3.10. We write

Tfa)w) = [ e ([ ot g matn dn) Fie) dg

~

(3.9)
_ / (g, ) () dE = 7(g5 X, D) f (@),

The following pointwise estimate is easy to prove:

~

1/
(0@ = e X, D)) £ (X [ 1eertgeoPde) Flo). 310

la|<N

For = (| s ) g 1y

This inequality and Schwarz inequality give

> [ et o ) 17

la|l<N

( Z //Rann 0g'7(g; 7, €)|2dxd§> 1|z

la|<N

1T )l < (

The assumption (3.7) and the Calderén-Vaillancourt theorem (Theorem 1.5) give

[ 1oer(gin )P de S 771(l¢] < gl
Rn

Hence integration with respect to & gives

2 // o T ’5>|2dwd€</ r L] < rhdé flglze & gz

la|l<N

Combining the estimates, we obtain (3.8). (The idea of using the formula (3.9) and
the inequalities (3.10)-(3.11) is due to [22].)

We come back to the proof of T, : L?* x L* — L' for o € BS&{,‘” satisfying (3.4).

For o € BS,, 0 / 2, o; satisfies the assumption of Lemma 3.10 with r ~ 27. Hence
Lemma 3.10 yields

1o, (i 9l S W fill 21l g5l 22

Taking sum over j and using Schwarz inequality, we obtain

ITo(Fs )l < DT, (Fiy ) ller S D il llgsll e
i i

1/2 1/2
< () (Slolee) S Ihislolee
J J

which is the desired estimate.
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Next, consider o € BSj ¢ /2 such that

suppo C {|¢] < [nl/2} N {[E] + Inl = 2} (3.12)

We again decompose o as in (3.5). In the present case, (3.6) no longer holds; instead,
we have

To,(f,9) =Ts,(f.95), 95 =¢(27/D)g,

with some ¢ € C3°(R™\ {0}). Here, to simplify the argument, we assume that
o(x,& n) does not depend on z, thus o(z,&,n) = (&, n). From (3.12), it follows
that | 47| ~ 27 on supp 0, which implies that the support of the Fourier transform
of T,,(f,g) is included in {¢ | B~'2 < |¢| < B2’} for some B > 1 (here we used
the assumption o(z,&,n) = o(&,n)).

We use the following lemma, which is well known in the Littlewood-Paley theory
for Hardy spaces.

Lemma 3.11. Suppose {F;} C S’ and suppose there exists B > 1 such that
supp F; C {¢ € R : B7'29 < [¢| < B2}. Then

1/2
SRl S (Z |Fj|2>
J J

Hl

Ll
By this lemma, we have
1T (f )l =D Toi(f 0| S{D Loy (fr0)
j:l Ll j:1 Hl
o 1/2
s|(Smcar)
j=1 Ll

With the aid of this inequality, the argument is again reduced to the estimate of L?
norms of 75, (f, g;); we omit the rest of the argument. The idea of using Littlewood-

Paley theorem to reduce the estimate to L? norms of functions goes back to Tomita
[29].

To prove the estimates of T}, in h? x bmo — h? and in h? x L? — h", we use the
basic result of atomic decomposition in h?.

Definition 3.12. For 0 < p < 1, a function a on R" is called an hP-atom of first
kind if there exists a cube @ = @, with |Q| < 1 such that

suppa C Q, |lallz= < [Q7H7, (3.13)
and

/n z%a(x)dz =0, la| < [n/p—nl,

where [n/p — n| denotes the integer part of n/p —n. A function a on R" is called an
h?-atom of second kind if there exists a cube @ = @), with |Q| = 1 satisfying (3.13).
Both kind of atoms are simply called hP-atoms.
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Lemma 3.13 ([14, Lemma 5]). Let 0 < p < 1 and f € S'(R™). Then f € h?(R")
if and only if f can be written as f = >0, Nia; with {a;} a sequence of hP-atoms,
{Ai} a sequence of non-negative real numbers such that .=, A\ < oo, and the series
> Nia; converging in S'(R™). Furthermore,

oo 1/p
£l ~ inf (Z M) ,
i=1

where the infimum is taken over all representations of f.

(2) 0 € BSyp'", 0 <p<1=T,:h?x bmo— h”.
By virtue of Lemma 3.13, the boundedness T, : h? x bmo — h? follows if we
prove the estimate

1T (a 9)llwe < Nl gllomo

for all hP-atoms a. For sufficiently larger M, we have
1F e ST DY F 2.
Thus it is sufficient to prove the weighted L2-estimate

1+ 1 DM (as 92 < Nlgllomo-

This estimate can be proved, with the aid of the basic estimate (1), in almost
parallel way as in the linear case given in [23]; we omit the details.

(3) 0 € BSyy", 0<p<1=T,:h?xL* = h", 1/p+1/2=1/r.

Here again, instead of h? x L? — h", we shall sketch the proof of the estimate of
hP? x L? — L"; to replace L™ by h" requires only a slight modification.

To prove the boundedness T, : h? x L? — L", we prove the following: for any
hP-atom a, there exists a function u such that

2 1/2
o)) 1) [ i) —u@ie) 1

and ||ul|z» < 1. From this we can derive the desired estimate in the following way.
We decompose f € h? as f = Z;O:O Ajaj, where a; are hP-atoms, \; are non-negative
real numbers, and 3 7% AY ~ || f||;,. We take the function u; corresponding to a;

as mentioned above. Then
|T f7 |<Z)‘|T a],g|NZ)\u]
Holder’s inequality gives

1T )l < \ e

We have |32 = cllgz» and

1/p 1/p
\ < (ZA;?nujn’zp) < (ZA?) ~ £l
Lr J J
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Thus |To(f, 9)ller S [ fllwrllgllL> as desired.
Here we omit the proof of (3.14), which is similar to the argument given in [25,
Section 4]. Notice that the L"-norm-estimate

1T (a, 9) (@)l - < Mlgll 2

for hP-atoms a is not sufficient to get the boundedness T}, : h? x L? — L. In fact,
in the atomic decomposition of f, we only have control of 7%\ = || f|[},,, and we
can not estimate

e’} r e} T 0
Z)\jTa(ajvg) < )\jTO'(aj’g) SJ Z)\SHQHEQ
j=0 L j=o0 L j=0

for r < p.
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