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On the Dirichlet problem of the biharmonic equation
for the half-space

By

Naohiro YAGINUMA™* and Minoru YANAGISHITA**

Abstract

In this paper, we solve the first boundary value problem (Dirichlet problem) of the bi-
harmonic equation for the half-space with respect to slowly growing and regular boundary
functions. The relation between a particular solution and certain general solutions of this
problem is discussed.

§1. Introduction

Let n be a positive integer satisfying n > 2. Let R""! be the (n + 1)-dimensional
Euclidean space. A point in R is represented by

M = (X,y) = (xla"wxn;y)

with
M| = (2% +... + 22 +y7)2.

By OF and E we denote the boundary and the closure of a subset E of R"™, respec-
tively. By T,,4+1 we denote the open half-space

(M= (X,y) e R"" :y >0}

Then OT,,41 is identified with R"™ and the n-dimensional Lebesgue measure at N €
0T, 41 is denoted by dN. The sphere of radius r centered at the origin of R s
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represented by S”*1. When g is a function defined on
Tpy1(r) = Ty O SPTH (r > 0),

we define the mean of g as follows:

M(g;r) = 2(sn+1r”)_1/ g(M)dopy  (r>0),
ont1(r)
where s,,,1 is the surface area of S™! (the (n + 1)-dimensional unit sphere S™) and
doyy is the surface element on S™™1 at M € o, 1(r).
Let the (n + 1)-dimensional Laplace operator be defined by

"L 92 0?
A= ; 8_.7:3 + 3—3/27
and let the pth iterated Laplacian operator be defined by AP = A(AP71), A0 = 1,
(p=1,2,---).

Let m be a positive integer. For a subset Q of R"!, C™(Q) stands for the space
of m-times continuously differentiable functions on ©Q and C(£2) denote the space of
continuous functions on 2. A function w € C*(T,,41) is biharmonic in T,, 11 if A%2w =0
in Tn_|_1.

Let fo and f; be two functions defined on 0T,,;1. A solution of the first boundary
value problem of the biharmonic equation for T, ; with respect to fo and f; is a
biharmonic function w in T, 4; such that

(L1) lim  w(M) = fo(N), Ow

M—N, MeT, 11 M—)N’h]I\IfleTn_i_l 6y (M):fl(N)

for every point N € 0T, ;.

Schot [8] gave a particular solution of the first boundary value problem of the
biharmonic equation for T, ;1 by using an iteratively defined system of two Dirichlet
problems. Let fy and f; be given two functions which are sufficiently regular and
bounded on 0T, ;1. Then

w2 won= 2 [ L - o0 ban

(M = (X,y) € T,41) is a solution of the first boundary value problem of the biharmonic
equation with respect to fo and f; for T, 4.

Let Fjpny1 (I > 1) be the set of continuous functions f(N) on 0T, 11 = R" such
that

F(N
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We say that h is a solution of the (classical) Dirichlet problem for T, with respect
to a continuous function f on 9T, 41, if A is harmonic in T, and

M—)N,ll&neTnJrl h(M) - f(N)

for every N € 0T, 41

With respect to the Dirichlet problem for the half-space T, 1, Yoshida [10] used
the generalized Poisson integral Hj n41f(M) with f € Fj 41 and gave the following
results.

If f € Fj py1, then Hy 41 f(M) is a solution of the Dirichlet problem for T,,1; with
f satisfying

(1.4) M(yHy s flir) = o(r™2) (1 — 00)

([10, Theorem 1]). If h(M) is a solution of the Dirichlet problem for T, ; with f €
Fi 41 (I > 1) such that

M(yh™;r) = o(r"™?)  (r — o),
then
(1.5) M) = Hypi1f(M) + yI(h) (M)

for every M € T,,,1, where II(h)(M) is a polynomial of M = (z1,zs, ..., z,,y) € R"H!
of degree at most [ — 1 and even with respect to the variable y ([10, Theorem 2]).

In this paper, from these results, we shall show that a particular solution of the first
boundary value problem of the biharmonic equation for T, with respect to slowly
growing regular boundary functions f will be constructed by the generalized Poisson
integrals H; p,41f in (1.4) and generalize the result of (1.2) (Theorem 2.1). We shall
also give the corresponding result to (1.5) (Theorem 2.2).

§2. Statements of results

In this section we use the following notations
B"Q)={PeR":|P-Q|<r} (QeR™r>0)

and
B"={PeR":|P|<r} (r>0).

Let M and N be two points in T,,+; and 0T, 1, respectively. By < M, N > we
denote the usual inner product in R™". We note

o0
(M = NI = ekns| NI M Lnas(p) - (IM] < [N,
k=0
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where

<M,N > k+n
2.1 =N > e
( ) P |M||N| ) Ck, +3 ( k' )

and Ly n4+3 is the (n + 3)-dimensional Legendre polynomial of degree k. We remark
Linis(1) =1, Linia(—1) = (=1)%, Lonis =1 and Ly ,,43(t) =t (see Armitage [2, p.
55)).

Let [ be a non-negative integer. We set
-1
Y s NI UM Ly ia(p) (N> 1, 121),

Sn—l—l
Vin M,N) = k=0
N =14 (N <1, 1>1),

0 (1=0),
for any M € T,,11 and any N € 0T,,+1. The generalized Poisson kernel K p41(M,N)
(M €T,41,N € 0T,,;1) is defined by

2y

Kiny1i(M,N) =Ko pt1(M,N) = Vi1 (M,N) (1>0),

where

2 e
KO,n—i—l(MaN):S _yH|M—N| net

(Siegel [9, p.7] and Armitage [2, p.56]).
Let | be a non-negative integer. By G 41 we denote the set of locally integrable
functions f on 9T, 1 = R", if there exists rq > 1 satisfying

[f (V)

(2.2) / I N < .
R™\ B [N [ntied

Let [ be a non-negative integer and f € G ,41. Then we shall see that the gener-
alized Poisson integral Hj 1 f(M) with f;

Hipi1 f(M) = /aT Kiny1(M,N)f(N)dN

is a harmonic function on T, ([10, Lemma 2]).

Theorem 2.1.  Letl (I > 1) be an integer and fo € Giny1, fi € Gi—1n+1. Then

Wiss1 (For (M) = Hus fo(M) = 35 s o(M) + yHi s ()
(M = (X,y) € Tpi1) is biharmonic on Tp.1 satisfying
(2.3) MYWini1(fo, f1)l;7) = O@*2)  (r = o0),
(2.4 MO 5 Waa( o 1)) = OGH2) (7 = ),
(2.5) MEP AW 1 (for fOli ) = OGH2) (5 = 00),
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Furthermore, if fo € Gini1 N C?*(0Th11) and fi € Gi_1pi1 N C(OT,41), then
Wi n+1(fo, f1)(M) is a solution of the first boundary value problem of the biharmonic
equation for T, 11 with respect to fo and f;.

Remark 2.1. Applying Theorem 2.1 to fo € G141 N C?(0T,y1) and —f; €
Go,n+1 NC(OT41), we obtain following particular solution W1 ,,+1(fo, —f1)(M);

0

Wint1(fo, —f1) (M) = Hy i1 fo(M) — Vo,

Hyny1fo(M) —yHo pi1f1(M)

=Hynt1fo(M) — y%Ho,ano(M) —yHopt1f1(M)
292 +1 1
~ o o AT ~ o0

This particular solution is similar to (1.2), and these boundary functions are not neces-
sary bounded. So we generalize the result of Schot.

The next result concerns a type of uniqueness of solution of the first boundary value
problem of the biharmonic equation for T,, ;.

Theorem 2.2.  Let | (I > 3) be an integer and let fo € Gy i1 NC*(0T,41) and
f1 € G111 NC(OT 41). If w is a solution of the first boundary value problem of the
biharmonic equation for T, 1 with respect to fy and f1 satisfying

(2.6) Mywt;r) =002 (r = ),
2.7) M (G2) i1 =06 (r =),
(2.8) My (Aw)tyr) = 0('?)  (r — o0),
then
n ORE
w(X,y) = Wi (fo, )X 9) + 57 )y AVPA(X) +9° Y Bjy¥ AT Pio(X)
=0 =0

for every (X,y) € Tpy1, where Py(X) is a polynomial of X of degree less than k + 1
(ke{l—1, 1—2}) and

o — (—1)7 ?;(]3:21)), (j=0,1,2,---,[%]),
’ 0 (j = [£], Uis even),
Blj+1 , I
B = (=1) U+1 (G=0,1,2--,[=] — 1).

(2 +3)! 2
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§ 3. Preliminaries

We require some preliminary results.
Let k (k> 1) and m (> 0) be two integers. We know that

d

(3.1) ELk,m(t) = O‘k,mLk—l,m—FQ(t)a
where
k(k+m —2)
Qg = —————————
m—1

(Miiller [7, Lemma 13]). We also know that

(3-2) [ Lien ()| <1

for any p in (2.1), any non-negative integer k and any positive integer m > 2 (see
Armitage [2, Theorems C and DJ).

Lemma 3.1.  Let k be a positive integer. Let M € R™ and p in (2.1). Then

0 _
(33) o Do) < ansalMI7 (2 1),
82
(3.4) L) € @i+ ) M1 (5 2,

Proof. From (3.1) we have

0 _
8—yLk,n+3(P) = —apni3y|M|?pLi-1mis(p)  (k>1),

02 _
a—yng,n+3(P) = —apn+3|M|?pLr—1,n15(p)

+3ak i3y M|~ pLi—1ny5(p)
a3 105y’ M| 0 L2 nir(p) (k> 2),

Hence from (3.2) we obtain (3.3) and (3.4). O

Lemma 3.2. Let | be a non-negative integer. For any M € T, and any
N € 0T, +1 satisfying 2|M| > |N| and |[N| > 1, we have

(3.5) U Vimss (M. N)| < ao| N|-E2 M|,
0 g

(3.6) y2]a—yw,n+1<M,N>\ < o N[ M,
32

(3.7) ) a—yzvl,nH(M,N)\ < ag| N1 M,

where a; (j =0,1,2) are constants depending only on | and n + 1.
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Proof. Here we shall prove (3.6) only. Take any M € T, ; and any N € 0T,
satisfying 2|M| > |N| and |N| > 1. Then from (3.2) and (3.3) we have

-1

S Clmsal NI M Ly ()
Sn+l 175

9
0y

2

Vs (M, N)\

211

chn+3k|N| o 1|M|k 2|Lkn+3(P)|
S”+ k=0

-1

0
L3 cunealNI A

L 3<p>]
y +

Sn—i—l
-1
2| M|
N|—"— 1 c 2- k (_)

-1 k
2y n—1{5y|—2 k ( 21M]
|N| |M| Ck n_|_3l€2 e
o kzo N

-1 k
K [ 21M]

Z Ck,n+30%, n—|—32 W

k=0

-1

2l
chn+3 1+ k+ appis)2 "

< |N|—l—n|M|l 1

If we put

-1

Z Ck,n—|—3(1 + k + ak,n+3)2_k7
k=0

2l

Sn—l—l

a; =

then we obtain (3.6).

Similary we can prove (3.5) from (3.2), and (3.7) is proved from (3.2), (3.3) and
(3.4). O

Lemma 3.3. Let | be a non-negative integer. For any M € T, and any
N € 0T, +1 satisfying 2|M| < |N| and |[N| > 1, we have

(3.8) Y| Kpne1 (M, N)| < bo|N |7 M| 1+2,
0 e

(39) | i, < Va2
82

(3.10) v |2 Kin (M, N)‘ < by| N~ A2,

where b; (j =0,1,2) are constants depending only on | and n + 1.

Proof. Take any M € T,.; and any N € 0T, satisfying 2|M| < |N| and
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|N| > 1. Then we note that

Kin1(M,N) = chn—|—3|N| = MR L s (p).

3n+1

By a similar argument of the proof of Lemma 3.2, put

2l—|—1 0

by = D chnra(l 4k + apnis)2”"
Sn+1 Tl

Then we easily see that by is finite and so we obtain (3.9). Similarly we obtain (3.8)
and (3.10). O

§4. Proof of Theorem 2.1

Let [ be a non-negative integer. For a function f € G; 41 we define

_ |f(N)]
o) = /B;\B;@ TN (> 0)

We know that
(4.1) W(r) =o(r) (r — o0)
(see Yoshida [10, p.606]).

Lemma 4.1.  Let ! be a non-negative integer and f € Gy 1. Then

(4.2) M| Hinia fir) = OGH2) (= oo),

(4.3) M(yﬂﬁﬂz,nﬂﬂ;r):o<rl+2> (r = oo),
2

(4.4) <|8 Hymir flir) = OGH?)  (r = o0).

Proof.  Here we shall prove (4.3) only. Suppose that 2r > 1. We see first that
0
M(92|a—yﬂl,n+1f|;7°) <L+ I + I3,

where

2 0
I = n/ / |f(N)|Z/2‘—Kl,n+1(M,N)‘dN doa,
Sn41T Ont1(r) Rn\B')zq,r 8y

2
L= —2_ / / F(V)ly?
Sn_|_11” an+1(1") B

n
2r

0
a_yKO’n—i—l(M’ N)’ dN} dO'M,
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2 0
13 - |f(N)|y2 _W,n+1(M,N) dN dO’M.
" 0
Snt11™ Jo i (r) /BBy Y

From Lemma 3.3 we have

[f (V)]
I, < byrtt? / EASAY/ BN
R\ gy, [N

Since f € Gy py1, there exist A > 0 and rg such that

[f (V)

/l{n\Bn WdN < A (7" > 7"0).
2r

Hence we obtain
L =002 (r— o).

We remark that

2
M@YKo pni1(,N);r) < A

T (n+1)spp

for any N € R"™ and any r > 0 (see Kuran [6, Lemma 2] and Helms [5, p.109; Example

2]). Let
2
Lot
Sn+1T" Jo i1 (r) B

0
ya—yKo,nH(M, N)

|f(N)|yKO,n+1(M, N)dN} dO’M.
2r

Since

< (n+2)Kon1(M,N)

for any M € T, 41 and any N € R", it follows that Iy < (n + 2)I}. We have

B= [ )Mo (- N)ir)dN

op—ntl

S G Do o Y

2r—ntl p 9p—n+1 .
. ——— N)|dN + —/ N)|dN
<n+n&WL@;w?”()' e m el M

2l—|—n—|—1rl—|—l N 27,—n—|—1
:—/ Iy 4 / F(N)|AN
(n+1)sns1 Jpp \5p (2r) (n+1)sn+1 Jpp
2l—|—n—|—1 Qr—n—l—l

L (r) +

/ F(N)[dN.
BT

<« S
T (n+1Dspm (n+ 1)sn41

And so (4.1) gives I} = o(r'*2) (r — 00). Hence Iy = o(r'*2) (r — 00).
We see from Lemma 3.2 that

I3 < ayr'™ep(r)
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and hence we have from (4.1) I3 = o(r'*2) (r — 00). Thus we obtain (4.3).

Similary we can prove (4.2) and (4.4). O

Lemma 4.2 (Gilbarg and Trudinger [4, Theorem4.8]).  Let  be an open subset
of R"™ . If u(M) is a harmonic function on S, then

k

sup yk
MeQ

u
— | < Chiq sup |[u(M)|, (k=0,1,2),
S| < ot sup [u()]. )

where Cpy1 1S a constant depending only on n + 1.
For any point NV in 0T,,+1 and a positive number §, we set
Uns =By (N)NThy1, Was=ByTH(N)NOT,41.

Lemma 4.3 (Gilbarg and Trudinger [4, Lemma 6.18]).  Let N be any point in
OT 41 and let § be a positive number. If o € C*(Uns) and v € C(Uns) NC%(Uns) is
a function satisfying Av =10 in Uns, v =¢ on Wy, then v € CQ(UN,(; UWns).

Proof of Theorem 2.1. We see from Yoshida [10, Lemma 2] that H; 41 fo(M) and
Hi_1n+1f1(M) are harmonic on T, ;. And so Hj 41 fo(M), ya%Hl,n+1f0(M) and
yH;_1 py1f1(M) are biharmonic on T,y;. Hence W ,11(fo, f1)(M) is biharmonic on

T,i1.
Since we have

MW ni1(fo. f1)57) < M(y|Hi g fols )

0
+M(y2|8—yﬂl,n+1f0|;r)
+rM(y|Hi—1 iy fil;7),

M E W a7 < MO H i foli )
8y n+1\J0,J1)]s = ayQ n+1J0]|,
+rM(y|Hi—1m11f1l57)

0
+TM(y2|a_yHl—l,n+lfl|;T)a

82

M(P AW, i1 (fo, f1)]57) < 2M(y3|8—y2Hl,n+1fo|; r)

0
+2rM(y2|8—sz—1,n+1f1|; ),

(2.3), (2.4) and (2.5) hold in view of Lemma 4.1.
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To prove (1.1), it is enough to show that

) 0
(4.5) M—>N],§\I4neTn+1 ya_yHl,n—l—lfO(M) =0,

. 0
(4.6) M_>NB\I411€T“+1 ya_yHl—l,n—i-lfl(M) =0,

2
(4.7) lim 0

Z Hypir fo(M) =0,
M—>N,MeTn+1y8y2 L1 fo(M)

for every point N € 0T, 1.
Let N be any fixed point on 0T, 1. We put

u(M) = Hini1fo(M) = fo(N) (M € Tpq).

Let € be any positive number. Since Hj 41 fo(M) is a solution of the Dirichlet problem
for T,,+1 with fo ([10, Theorem 1]), we take a positive number ¢ such that

lw(M)| <e (M€ By (N)NTht1).

By Lemma 4.2, we have

0
sup y ‘8_Hl,n+1fO(M)‘ < Chyie.
MeUn, s Yy

Hence we obtain (4.5). In the similar way to (4.5) we also obtain (4.6).
To prove (4.7), we set

o(X,y) = fo(X) ((X,y) € Tpy1UIT 1),

. Hl,n+1f0(X7 y) ((X7 y) S Tn+1)7
Xy = {fo(X) ((X,0) € 0T 41).

By Lemma 4.3, we have (4.7). O

8§5. Proof of Theorem 2.2

If N € 0T, 1 and a and r are positive numbers, we put
D(N; a, r)={M =(X,y) € Tp11: y=a, [(X,0)—N|<r}.

A function g : T\,11 — R will be said to be locally convergent in mean to 0 on 0T, 41
if for each point N of 0T, ;1 there is a positive number r such that

/ 9(X,a)ldX =0 (a — 04).
D(N; a, 1)
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Remark 5.1. From Lebesgue’s bounded convergence theorem, if u is continuous
in T,,4+; and has the properties
(i) for each point (X,0) € 0T, 41, there exists a positive number r = r(X) such that u
is bounded in T, +1 N B*(X,0),
(ii) for each point (X,0) of 0T 41,

Jim u(X,y) =0,

then w is locally convergent in mean to 0 on 0T,,41 (Armitage [1, p.44]).

Let p be a positive integer. For a subset 2 of T, 4, we say that a function w €
C??(Q) is p-harmonic in Q if APw =0 in Q.

Lemma 5.1 (Armitage [1, Theorem 5]).  Let w be p-harmonic in Ty 11. If each

function
ow oty
w, 8_y’ ’ W
is locally convergent in mean to 0 on 0T, 11, then w has the p-harmonic continuation
w*
w(X,y)  (y>0),
w'(X,y) =40 (y =0),
v(X,—y) (y<0),
where -
oX9) = 3 G0 AN (X)),
k=0

When g is a function on S7! we define

M(g;r) = (Sn—i—lrn)_l/ g(M)daM.

Sn-‘,—l

r

Proof of Theorem 2.2. We put

u=w— Wi ni1(fo, f1)-

For each point N € 9T,,;1, we have

0
(5.1) lim  w(M) =0, im 2
MET, 1, M—N MET, 41, M—N Oy

(M) = 0.

Since u and g—z are both locally convergent in mean to 0 on 0T,,;; from Remark 5.1,
Lemma 5.1 shows that w has a biharmonic continuation. So we have
0%u

rer 0y, (Vg M) =0 (N €0Twp).
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From 0 0 0? 0 0?
U U u U U
(y):U‘i‘Z»/_: (yz): 5 tV55
dy dy dy 9y "y
we see that each function yu, %yu), % is locally convergent in mean to 0 on 0T, ;.

Since u is biharmonic on T,,41, yu is 3-harmonic on T,,+;. So Lemma 5.1 shows that
yu has a 3-harmonic continuation ¢ to R""! such that

yu(X,y) (y > 0),
9(X,y) =40 (y =0),

h
where %

3
ay(X,y)ﬂ/ Au(X,y).

v(X,y) = yu(X,y) — 2y

Since

M(gTir)=Myu;r) + MvT;r)
ou

< 2M(yuT;r) + 2M(y? (8_y>_ ;) + My (Au) i),

it follows from (2.3), (2.4) and (2.5) that

L MgTr)
Hence by [3] g(M) is a polynomial of M = (z1,22, "+ ,Zy,y) of degree at most | + 2,

and so u is a polynomial of degree at most [ + 1. We put

+1
w(X,y) =Y Py,
=0

where Pj_j11 = P—j+1(X) is a polynomial of X = (z1,22,---,2,) of degree at most
[ —j+1. And we write Ax =" | 66—;. From
I+1 I+1
Au=Y AP 1 +2) jG -1y PAxPjn
Jj=0 Jj=2
I+1
+> i -G =26 =3y P
j=4

=y AL P + Y PAL Py
-3 . .
- +2)! +4)!
+ E 1y’ {A2X-Pl—j—|—l + 2(] 7 ) AxP_j_1+ (]]+')-Pl—j—3}
j=0 ’ ’
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and the biharmonicity of u on T, 11, we see that

(J+ 2)! (J+4)

(5.2) AP i1+ 2 AX Py + P =0

for each 7 =0,1,--- ,1—3
It follows from (5.1) that P, =0 and P, = 0, and so we have

(5.3) A%P1(X)=0 and A%P(X)=0.
Thus from (5.2) and (5.3) we see that

21k + 1)
2k + 2)!

L3Nk + 1)

A% Py, P = (—1) 2k 1 3) X 12

Pl—(2k+1) = (_1)

(k=0,1,2,--+). If we put

o .
aj = (_1)3322?:21))! (j=0,1,2,--- 7[%])7
0 (j=[ |, lis even),
SBlG+1) ]
then we obtain
%] o [4]-1 o
u=y? ZaijJAJPl_l(X) 4 Z Bjy%AjPl_Q(X),
j=0 =
Thus we have the conclusion. _
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