On the Dirichlet problem of the biharmonic equation for the half-space

By

Naohiro Yaginuma* and Minoru Yanagishita**

Abstract

In this paper, we solve the first boundary value problem (Dirichlet problem) of the biharmonic equation for the half-space with respect to slowly growing and regular boundary functions. The relation between a particular solution and certain general solutions of this problem is discussed.

§ 1. Introduction

Let n be a positive integer satisfying $n \ge 2$. Let \mathbf{R}^{n+1} be the (n+1)-dimensional Euclidean space. A point in \mathbf{R}^{n+1} is represented by

$$M = (X, y) = (x_1, \dots, x_n, y)$$

with

$$|M| = (x_1^2 + \ldots + x_n^2 + y^2)^{\frac{1}{2}}.$$

By ∂E and \bar{E} we denote the boundary and the closure of a subset E of \mathbf{R}^{n+1} , respectively. By \mathbf{T}_{n+1} we denote the open half-space

$$\{M = (X, y) \in \mathbf{R}^{n+1} : y > 0\}.$$

Then $\partial \mathbf{T}_{n+1}$ is identified with \mathbf{R}^n and the *n*-dimensional Lebesgue measure at $N \in \partial \mathbf{T}_{n+1}$ is denoted by dN. The sphere of radius r centered at the origin of \mathbf{R}^{n+1} is

Received January 30, 2013. Revised June 12, 2013.

²⁰⁰⁰ Mathematics Subject Classification(s): Primary 31B20; Secondary 31B30

Key Words: half-space, first boundary value problem, biharmonic function

^{*}Nippon RAD Inc., 2-2-5 Toranomon, Minato-ku, Tokyo 105-0001, Japan. e-mail: yaginuma-n@nippon-rad.co.jp

^{**}Department of Mathematics and Informatics, Division of Fundamental Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan. e-mail: myanagis@g.math.s.chiba-u.ac.jp

^{© 2013} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

represented by S_r^{n+1} . When g is a function defined on

$$\sigma_{n+1}(r) = \mathbf{T}_{n+1} \cap S_r^{n+1} \quad (r > 0),$$

we define the mean of g as follows:

$$\mathcal{M}(g;r) = 2(s_{n+1}r^n)^{-1} \int_{\sigma_{n+1}(r)} g(M)d\sigma_M \quad (r>0),$$

where s_{n+1} is the surface area of S_1^{n+1} (the (n+1)-dimensional unit sphere \mathbf{S}^n) and $d\sigma_M$ is the surface element on S_r^{n+1} at $M \in \sigma_{n+1}(r)$.

Let the (n + 1)-dimensional Laplace operator be defined by

$$\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y^2},$$

and let the pth iterated Laplacian operator be defined by $\Delta^p = \Delta(\Delta^{p-1}), \ \Delta^0 = 1, (p = 1, 2, \cdots).$

Let m be a positive integer. For a subset Ω of \mathbf{R}^{n+1} , $C^m(\Omega)$ stands for the space of m-times continuously differentiable functions on Ω and $C(\Omega)$ denote the space of continuous functions on Ω . A function $w \in C^4(\mathbf{T}_{n+1})$ is biharmonic in \mathbf{T}_{n+1} if $\Delta^2 w \equiv 0$ in \mathbf{T}_{n+1} .

Let f_0 and f_1 be two functions defined on $\partial \mathbf{T}_{n+1}$. A solution of the first boundary value problem of the biharmonic equation for \mathbf{T}_{n+1} with respect to f_0 and f_1 is a biharmonic function w in \mathbf{T}_{n+1} such that

(1.1)
$$\lim_{M \to N, \ M \in \mathbf{T}_{n+1}} w(M) = f_0(N), \quad \lim_{M \to N, \ M \in \mathbf{T}_{n+1}} \frac{\partial w}{\partial y}(M) = f_1(N)$$

for every point $N \in \partial \mathbf{T}_{n+1}$.

Schot [8] gave a particular solution of the first boundary value problem of the biharmonic equation for \mathbf{T}_{n+1} by using an iteratively defined system of two Dirichlet problems. Let f_0 and f_1 be given two functions which are sufficiently regular and bounded on $\partial \mathbf{T}_{n+1}$. Then

(1.2)
$$u(M) = \frac{2y^2}{s_{n+1}} \int_{\mathbf{R}^n} \left\{ \frac{(n+1)y}{|M-N|^{n+3}} f_0(N) - \frac{1}{|M-N|^{n+1}} f_1(N) \right\} dN$$

 $(M = (X, y) \in \mathbf{T}_{n+1})$ is a solution of the first boundary value problem of the biharmonic equation with respect to f_0 and f_1 for \mathbf{T}_{n+1} .

Let $F_{l,n+1}$ $(l \ge 1)$ be the set of continuous functions f(N) on $\partial \mathbf{T}_{n+1} = \mathbf{R}^n$ such that

(1.3)
$$\int_{\mathbf{R}^n} \frac{|f(N)|}{1 + |N|^{n+l+1}} dN < \infty.$$

We say that h is a solution of the (classical) Dirichlet problem for \mathbf{T}_{n+1} with respect to a continuous function f on $\partial \mathbf{T}_{n+1}$, if h is harmonic in \mathbf{T}_{n+1} and

$$\lim_{M \to N, \ M \in \mathbf{T}_{n+1}} h(M) = f(N)$$

for every $N \in \partial \mathbf{T}_{n+1}$

With respect to the Dirichlet problem for the half-space \mathbf{T}_{n+1} , Yoshida [10] used the generalized Poisson integral $H_{l,n+1}f(M)$ with $f \in F_{l,n+1}$ and gave the following results.

If $f \in F_{l,n+1}$, then $H_{l,n+1}f(M)$ is a solution of the Dirichlet problem for \mathbf{T}_{n+1} with f satisfying

(1.4)
$$\mathcal{M}(y|H_{l,n+1}f|;r) = o(r^{l+2}) \quad (r \to \infty)$$

([10, Theorem 1]). If h(M) is a solution of the Dirichlet problem for \mathbf{T}_{n+1} with $f \in F_{l,n+1}$ $(l \ge 1)$ such that

$$\mathcal{M}(yh^+;r) = o(r^{l+2}) \quad (r \to \infty),$$

then

(1.5)
$$h(M) = H_{l,n+1}f(M) + y\Pi(h)(M)$$

for every $M \in \mathbf{T}_{n+1}$, where $\Pi(h)(M)$ is a polynomial of $M = (x_1, x_2, \dots, x_n, y) \in \mathbf{R}^{n+1}$ of degree at most l-1 and even with respect to the variable y ([10, Theorem 2]).

In this paper, from these results, we shall show that a particular solution of the first boundary value problem of the biharmonic equation for \mathbf{T}_{n+1} with respect to slowly growing regular boundary functions f will be constructed by the generalized Poisson integrals $H_{l,n+1}f$ in (1.4) and generalize the result of (1.2) (Theorem 2.1). We shall also give the corresponding result to (1.5) (Theorem 2.2).

§ 2. Statements of results

In this section we use the following notations

$$B_r^m(Q) = \{ P \in \mathbf{R}^m : |P - Q| < r \} \quad (Q \in \mathbf{R}^m, r > 0)$$

and

$$B_r^m = \{ P \in \mathbf{R}^m : |P| < r \} \quad (r > 0).$$

Let M and N be two points in \mathbf{T}_{n+1} and $\partial \mathbf{T}_{n+1}$, respectively. By $\langle M, N \rangle$ we denote the usual inner product in \mathbf{R}^{n+1} . We note

$$|M - N|^{-n-1} = \sum_{k=0}^{\infty} c_{k,n+3} |N|^{-k-n-1} |M|^k L_{k,n+3}(\rho) \quad (|M| < |N|),$$

where

(2.1)
$$\rho = \frac{\langle M, N \rangle}{|M||N|}, \qquad c_{k,n+3} = \binom{k+n}{k}$$

and $L_{k,n+3}$ is the (n+3)-dimensional Legendre polynomial of degree k. We remark $L_{k,n+3}(1) = 1$, $L_{k,n+3}(-1) = (-1)^k$, $L_{0,n+3} = 1$ and $L_{1,n+3}(t) = t$ (see Armitage [2, p. 55]).

Let l be a non-negative integer. We set

$$V_{l,n+1}(M,N) = \begin{cases} \frac{2y}{s_{n+1}} \sum_{k=0}^{l-1} c_{k,n+3} |N|^{-k-n-1} |M|^k L_{k,n+3}(\rho) & (|N| \ge 1, \quad l \ge 1), \\ 0 & (|N| < 1, \quad l \ge 1), \\ 0 & (l = 0), \end{cases}$$

for any $M \in \mathbf{T}_{n+1}$ and any $N \in \partial \mathbf{T}_{n+1}$. The generalized Poisson kernel $K_{l,n+1}(M,N)$ $(M \in \mathbf{T}_{n+1}, N \in \partial \mathbf{T}_{n+1})$ is defined by

$$K_{l,n+1}(M,N) = K_{0,n+1}(M,N) - V_{l,n+1}(M,N) \quad (l \ge 0),$$

where

$$K_{0,n+1}(M,N) = \frac{2y}{s_{n+1}}|M-N|^{-n-1}$$

(Siegel [9, p.7] and Armitage [2, p.56]).

Let l be a non-negative integer. By $G_{l,n+1}$ we denote the set of locally integrable functions f on $\partial \mathbf{T}_{n+1} = \mathbf{R}^n$, if there exists $r_0 \geq 1$ satisfying

(2.2)
$$\int_{\mathbf{R}^n \setminus B_{r_0}^n} \frac{|f(N)|}{|N|^{n+l+1}} dN < \infty.$$

Let l be a non-negative integer and $f \in G_{l,n+1}$. Then we shall see that the generalized Poisson integral $H_{l,n+1}f(M)$ with f;

$$H_{l,n+1}f(M) = \int_{\partial \mathbf{T}_{n+1}} K_{l,n+1}(M,N)f(N)dN$$

is a harmonic function on \mathbf{T}_{n+1} ([10, Lemma 2]).

Theorem 2.1. Let $l\ (l \ge 1)$ be an integer and $f_0 \in G_{l,n+1}$, $f_1 \in G_{l-1,n+1}$. Then

$$W_{l,n+1}(f_0, f_1)(M) = H_{l,n+1}f_0(M) - y\frac{\partial}{\partial y}H_{l,n+1}f_0(M) + yH_{l-1,n+1}f_1(M)$$

 $(M = (X, y) \in \mathbf{T}_{n+1})$ is biharmonic on \mathbf{T}_{n+1} satisfying

(2.3)
$$\mathcal{M}(y|W_{l,n+1}(f_0,f_1)|;r) = O(r^{l+2}) \quad (r \to \infty),$$

(2.4)
$$\mathcal{M}(y^2|\frac{\partial}{\partial y}W_{l,n+1}(f_0,f_1)|;r) = O(r^{l+2}) \quad (r \to \infty),$$

(2.5)
$$\mathcal{M}(y^3|\Delta W_{l,n+1}(f_0, f_1)|; r) = O(r^{l+2}) \quad (r \to \infty).$$

Furthermore, if $f_0 \in G_{l,n+1} \cap C^2(\partial \mathbf{T}_{n+1})$ and $f_1 \in G_{l-1,n+1} \cap C(\partial \mathbf{T}_{n+1})$, then $W_{l,n+1}(f_0,f_1)(M)$ is a solution of the first boundary value problem of the biharmonic equation for \mathbf{T}_{n+1} with respect to f_0 and f_1 .

Remark 2.1. Applying Theorem 2.1 to $f_0 \in G_{1,n+1} \cap C^2(\partial \mathbf{T}_{n+1})$ and $-f_1 \in G_{0,n+1} \cap C(\partial \mathbf{T}_{n+1})$, we obtain following particular solution $W_{1,n+1}(f_0,-f_1)(M)$;

$$W_{1,n+1}(f_0, -f_1)(M) = H_{1,n+1}f_0(M) - y\frac{\partial}{\partial y}H_{1,n+1}f_0(M) - yH_{0,n+1}f_1(M)$$

$$= H_{0,n+1}f_0(M) - y\frac{\partial}{\partial y}H_{0,n+1}f_0(M) - yH_{0,n+1}f_1(M)$$

$$= \frac{2y^2}{s_{n+1}} \int_{\mathbf{R}^n} \left\{ \frac{(n+1)y}{|M-N|^{n+3}} f_0(N) - \frac{1}{|M-N|^{n+1}} f_1(N) \right\} dN.$$

This particular solution is similar to (1.2), and these boundary functions are not necessary bounded. So we generalize the result of Schot.

The next result concerns a type of uniqueness of solution of the first boundary value problem of the biharmonic equation for \mathbf{T}_{n+1} .

Theorem 2.2. Let l ($l \ge 3$) be an integer and let $f_0 \in G_{l,n+1} \cap C^2(\partial \mathbf{T}_{n+1})$ and $f_1 \in G_{l-1,n+1} \cap C(\partial \mathbf{T}_{n+1})$. If w is a solution of the first boundary value problem of the biharmonic equation for \mathbf{T}_{n+1} with respect to f_0 and f_1 satisfying

(2.6)
$$\mathcal{M}(yw^+;r) = O(r^{l+2}) \quad (r \to \infty),$$

(2.7)
$$\mathcal{M}(y^2 \left(\frac{\partial w}{\partial y}\right)^-; r) = O(r^{l+2}) \quad (r \to \infty),$$

(2.8)
$$\mathcal{M}(y^3(\Delta w)^+; r) = O(r^{l+2}) \quad (r \to \infty),$$

then

$$w(X,y) = W_{l,n+1}(f_0, f_1)(X,y) + y^2 \sum_{j=0}^{\left[\frac{l}{2}\right]} \alpha_j y^{2j} \Delta^j P_{l-1}(X) + y^3 \sum_{j=0}^{\left[\frac{l}{2}\right]-1} \beta_j y^{2j} \Delta^j P_{l-2}(X)$$

for every $(X, y) \in \mathbf{T}_{n+1}$, where $P_k(X)$ is a polynomial of X of degree less than k+1 $(k \in \{l-1, l-2\})$ and

$$\alpha_{j} = \begin{cases} (-1)^{j} \frac{2!(j+1)}{(2j+2)!} & (j=0,1,2,\cdots, \lfloor \frac{l}{2} \rfloor), \\ 0 & (j=\lfloor \frac{l}{2} \rfloor, \ l \ is \ even), \end{cases}$$
$$\beta_{j} = (-1)^{j} \frac{3!(j+1)}{(2j+3)!} \quad (j=0,1,2,\cdots, \lfloor \frac{l}{2} \rfloor - 1).$$

§ 3. Preliminaries

We require some preliminary results.

Let $k \ (k \ge 1)$ and $m \ (\ge 0)$ be two integers. We know that

(3.1)
$$\frac{d}{dt}L_{k,m}(t) = \alpha_{k,m}L_{k-1,m+2}(t),$$

where

$$\alpha_{k,m} = \frac{k(k+m-2)}{m-1}$$

(Müller [7, Lemma 13]). We also know that

$$(3.2) |L_{k,m}(\rho)| \le 1$$

for any ρ in (2.1), any non-negative integer k and any positive integer $m \geq 2$ (see Armitage [2, Theorems C and D]).

Lemma 3.1. Let k be a positive integer. Let $M \in \mathbf{R}^{n+1}$ and ρ in (2.1). Then

(3.3)
$$\left| \frac{\partial}{\partial y} L_{k,n+3}(\rho) \right| \le \alpha_{k,n+3} |M|^{-1} \ (k \ge 1),$$

(3.4)
$$\left| \frac{\partial^2}{\partial y^2} L_{k,n+3}(\rho) \right| \le \alpha_{k,n+3} (4 + \alpha_{k-1,n+5}) |M|^{-2} \ (k \ge 2).$$

Proof. From (3.1) we have

$$\frac{\partial}{\partial y} L_{k,n+3}(\rho) = -\alpha_{k,n+3} y |M|^{-2} \rho L_{k-1,n+5}(\rho) \quad (k \ge 1),$$

$$\frac{\partial^2}{\partial y^2} L_{k,n+3}(\rho) = -\alpha_{k,n+3} |M|^{-2} \rho L_{k-1,n+5}(\rho)$$

$$+3\alpha_{k,n+3} y^2 |M|^{-4} \rho L_{k-1,n+5}(\rho)$$

$$+\alpha_{k,n+3} \alpha_{k-1,n+5} y^2 |M|^{-4} \rho^2 L_{k-2,n+7}(\rho) \quad (k \ge 2).$$

Hence from (3.2) we obtain (3.3) and (3.4).

Lemma 3.2. Let l be a non-negative integer. For any $M \in \mathbf{T}_{n+1}$ and any $N \in \partial \mathbf{T}_{n+1}$ satisfying $2|M| \ge |N|$ and $|N| \ge 1$, we have

(3.5)
$$y|V_{l,n+1}(M,N)| \le a_0|N|^{-l-n}|M|^{l+1},$$

(3.6)
$$y^{2} \left| \frac{\partial}{\partial y} V_{l,n+1}(M,N) \right| \leq a_{1} |N|^{-l-n} |M|^{l+1},$$

(3.7)
$$y^{3} \left| \frac{\partial^{2}}{\partial y^{2}} V_{l,n+1}(M,N) \right| \leq a_{2} |N|^{-l-n} |M|^{l+1},$$

where a_j (j = 0, 1, 2) are constants depending only on l and n + 1.

Proof. Here we shall prove (3.6) only. Take any $M \in \mathbf{T}_{n+1}$ and any $N \in \partial \mathbf{T}_{n+1}$ satisfying $2|M| \geq |N|$ and $|N| \geq 1$. Then from (3.2) and (3.3) we have

$$\begin{split} \left| \frac{\partial}{\partial y} V_{l,n+1}(M,N) \right| &\leq \frac{2}{s_{n+1}} \sum_{k=0}^{l-1} c_{k,n+3} |N|^{-k-n-1} |M|^k |L_{k,n+3}(\rho)| \\ &+ \frac{2y^2}{s_{n+1}} \sum_{k=0}^{l-1} c_{k,n+3} k |N|^{-k-n-1} |M|^{k-2} |L_{k,n+3}(\rho)| \\ &+ \frac{2y}{s_{n+1}} \sum_{k=0}^{l-1} c_{k,n+3} |N|^{-k-n-1} |M|^k \left| \frac{\partial}{\partial y} L_{k,n+3}(\rho) \right| \\ &\leq \frac{2}{s_{n+1}} |N|^{-n-1} \sum_{k=0}^{l-1} c_{k,n+3} 2^{-k} \left(\frac{2|M|}{|N|} \right)^k \\ &+ \frac{2y^2}{s_{n+1}} |N|^{-n-1} |M|^{-2} \sum_{k=0}^{l-1} c_{k,n+3} k 2^{-k} \left(\frac{2|M|}{|N|} \right)^k \\ &+ \frac{2y}{s_{n+1}} |N|^{-n-1} |M|^{-1} \sum_{k=0}^{l-1} c_{k,n+3} \alpha_{k,n+3} 2^{-k} \left(\frac{2|M|}{|N|} \right)^k \\ &\leq |N|^{-l-n} |M|^{l-1} \frac{2^l}{s_{n+1}} \sum_{k=0}^{l-1} c_{k,n+3} (1+k+\alpha_{k,n+3}) 2^{-k}. \end{split}$$

If we put

$$a_1 = \frac{2^l}{s_{n+1}} \sum_{k=0}^{l-1} c_{k,n+3} (1+k+\alpha_{k,n+3}) 2^{-k},$$

then we obtain (3.6).

Similarly we can prove (3.5) from (3.2), and (3.7) is proved from (3.2), (3.3) and (3.4).

Lemma 3.3. Let l be a non-negative integer. For any $M \in \mathbf{T}_{n+1}$ and any $N \in \partial \mathbf{T}_{n+1}$ satisfying 2|M| < |N| and $|N| \ge 1$, we have

(3.8)
$$y|K_{l,n+1}(M,N)| \le b_0|N|^{-l-n-1}|M|^{l+2},$$

(3.9)
$$y^2 \left| \frac{\partial}{\partial u} K_{l,n+1}(M,N) \right| \le b_1 |N|^{-l-n-1} |M|^{l+2},$$

(3.10)
$$y^{3} \left| \frac{\partial^{2}}{\partial y^{2}} K_{l,n+1}(M,N) \right| \leq b_{2} |N|^{-l-n-1} |M|^{l+2},$$

where b_j (j = 0, 1, 2) are constants depending only on l and n + 1.

Proof. Take any $M \in \mathbf{T}_{n+1}$ and any $N \in \partial \mathbf{T}_{n+1}$ satisfying 2|M| < |N| and

 $|N| \ge 1$. Then we note that

$$K_{l,n+1}(M,N) = \frac{2y}{s_{n+1}} \sum_{k=l}^{\infty} c_{k,n+3} |N|^{-k-n-1} |M|^k L_{k,n+3}(\rho).$$

By a similar argument of the proof of Lemma 3.2, put

$$b_1 = \frac{2^{l+1}}{s_{n+1}} \sum_{k=l}^{\infty} c_{k,n+3} (1+k+\alpha_{k,n+3}) 2^{-k}.$$

Then we easily see that b_1 is finite and so we obtain (3.9). Similarly we obtain (3.8) and (3.10).

§ 4. Proof of Theorem 2.1

Let l be a non-negative integer. For a function $f \in G_{l,n+1}$ we define

$$\psi(r) = \int_{B_{2r}^n \setminus B_1^n} \frac{|f(N)|}{|N|^{l+n}} dN \qquad (r > 0).$$

We know that

(4.1)
$$\psi(r) = o(r) \qquad (r \to \infty)$$

(see Yoshida [10, p.606]).

Lemma 4.1. Let l be a non-negative integer and $f \in G_{l,n+1}$. Then

(4.2)
$$\mathcal{M}(y|H_{l,n+1}f|;r) = O(r^{l+2}) \quad (r \to \infty),$$

(4.3)
$$\mathcal{M}(y^2|\frac{\partial}{\partial y}H_{l,n+1}f|;r) = O(r^{l+2}) \quad (r \to \infty),$$

(4.4)
$$\mathcal{M}(y^3|\frac{\partial^2}{\partial y^2}H_{l,n+1}f|;r) = O(r^{l+2}) \quad (r \to \infty).$$

Proof. Here we shall prove (4.3) only. Suppose that 2r > 1. We see first that

$$\mathcal{M}(y^2|\frac{\partial}{\partial y}H_{l,n+1}f|;r) \le I_1 + I_2 + I_3,$$

where

$$I_{1} = \frac{2}{s_{n+1}r^{n}} \int_{\sigma_{n+1}(r)} \left\{ \int_{\mathbf{R}^{n} \setminus B_{2r}^{n}} |f(N)| y^{2} \left| \frac{\partial}{\partial y} K_{l,n+1}(M,N) \right| dN \right\} d\sigma_{M},$$

$$I_{2} = \frac{2}{s_{n+1}r^{n}} \int_{\sigma_{n+1}(r)} \left\{ \int_{B_{2r}^{n}} |f(N)| y^{2} \left| \frac{\partial}{\partial y} K_{0,n+1}(M,N) \right| dN \right\} d\sigma_{M},$$

$$I_3 = \frac{2}{s_{n+1}r^n} \int_{\sigma_{n+1}(r)} \left\{ \int_{B_{2r}^n \setminus B_1^n} |f(N)| y^2 \left| \frac{\partial}{\partial y} V_{l,n+1}(M,N) \right| dN \right\} d\sigma_M.$$

From Lemma 3.3 we have

$$I_1 \le b_1 r^{l+2} \int_{\mathbf{R}^n \setminus B_{2n}^n} \frac{|f(N)|}{|N|^{l+n+1}} dN.$$

Since $f \in G_{l,n+1}$, there exist A > 0 and r_0 such that

$$\int_{\mathbf{R}^n \setminus B_{2r}^n} \frac{|f(N)|}{|N|^{l+n+1}} dN < A \qquad (r > r_0).$$

Hence we obtain

$$I_1 = O(r^{l+2}) \qquad (r \to \infty).$$

We remark that

$$\mathcal{M}(yK_{0,n+1}(\cdot,N);r) \le \frac{2}{(n+1)s_{n+1}}r^{-n+1}$$

for any $N \in \mathbf{R}^n$ and any r > 0 (see Kuran [6, Lemma 2] and Helms [5, p.109; Example 2]). Let

$$I_2' = \frac{2}{s_{n+1}r^n} \int_{\sigma_{n+1}(r)} \left\{ \int_{B_{2r}^n} |f(N)| y K_{0,n+1}(M,N) dN \right\} d\sigma_M.$$

Since

$$\left| y \frac{\partial}{\partial y} K_{0,n+1}(M,N) \right| \le (n+2) K_{0,n+1}(M,N)$$

for any $M \in \mathbf{T}_{n+1}$ and any $N \in \mathbf{R}^n$, it follows that $I_2 \leq (n+2)I_2'$. We have

$$\begin{split} I_2' &= \int_{B_{2r}^n} |f(N)| \mathcal{M}(yK_{0,n+1}(\cdot,N);r) dN \\ &\leq \frac{2r^{-n+1}}{(n+1)s_{n+1}} \int_{B_{2r}^n} |f(N)| dN \\ &= \frac{2r^{-n+1}}{(n+1)s_{n+1}} \int_{B_{2r}^n \backslash B_1^n} |f(N)| dN + \frac{2r^{-n+1}}{(n+1)s_{n+1}} \int_{B_1^n} |f(N)| dN \\ &= \frac{2^{l+n+1}r^{l+1}}{(n+1)s_{n+1}} \int_{B_{2r}^n \backslash B_1^n} \frac{|f(N)|}{(2r)^{l+n}} dN + \frac{2r^{-n+1}}{(n+1)s_{n+1}} \int_{B_1^n} |f(N)| dN \\ &\leq \frac{2^{l+n+1}}{(n+1)s_{n+1}} r^{l+1} \psi(r) + \frac{2r^{-n+1}}{(n+1)s_{n+1}} \int_{B_1^n} |f(N)| dN. \end{split}$$

And so (4.1) gives $I_2' = o(r^{l+2})$ $(r \to \infty)$. Hence $I_2 = o(r^{l+2})$ $(r \to \infty)$. We see from Lemma 3.2 that

$$I_3 \le a_1 r^{l+1} \psi(r)$$

and hence we have from (4.1) $I_3 = o(r^{l+2})$ $(r \to \infty)$. Thus we obtain (4.3). Similarly we can prove (4.2) and (4.4).

Lemma 4.2 (Gilbarg and Trudinger [4, Theorem4.8]). Let Ω be an open subset of \mathbb{R}^{n+1} . If u(M) is a harmonic function on Ω , then

$$\sup_{M \in \Omega} y^k \left| \frac{\partial^k u}{\partial y^k} \right| \le C_{n+1} \sup_{M \in \Omega} |u(M)|, \quad (k = 0, 1, 2),$$

where C_{n+1} is a constant depending only on n+1.

For any point N in $\partial \mathbf{T}_{n+1}$ and a positive number δ , we set

$$U_{N,\delta} = B_{\delta}^{n+1}(N) \cap \mathbf{T}_{n+1}, \quad W_{N,\delta} = B_{\delta}^{n+1}(N) \cap \partial \mathbf{T}_{n+1}.$$

Lemma 4.3 (Gilbarg and Trudinger [4, Lemma 6.18]). Let N be any point in $\partial \mathbf{T}_{n+1}$ and let δ be a positive number. If $\varphi \in C^2(\overline{U_{N,\delta}})$ and $v \in C(\overline{U_{N,\delta}}) \cap C^2(U_{N,\delta})$ is a function satisfying $\Delta v = 0$ in $U_{N,\delta}$, $v = \varphi$ on $W_{N,\delta}$, then $v \in C^2(U_{N,\delta} \cup W_{N,\delta})$.

Proof of Theorem 2.1. We see from Yoshida [10, Lemma 2] that $H_{l,n+1}f_0(M)$ and $H_{l-1,n+1}f_1(M)$ are harmonic on \mathbf{T}_{n+1} . And so $H_{l,n+1}f_0(M)$, $y\frac{\partial}{\partial y}H_{l,n+1}f_0(M)$ and $yH_{l-1,n+1}f_1(M)$ are biharmonic on \mathbf{T}_{n+1} . Hence $W_{l,n+1}(f_0,f_1)(M)$ is biharmonic on \mathbf{T}_{n+1} .

Since we have

$$\mathcal{M}(y|W_{l,n+1}(f_0, f_1)|; r) \leq \mathcal{M}(y|H_{l,n+1}f_0|; r)$$

$$+\mathcal{M}(y^2|\frac{\partial}{\partial y}H_{l,n+1}f_0|; r)$$

$$+r\mathcal{M}(y|H_{l-1,n+1}f_1|; r),$$

$$\mathcal{M}(y^{2}|\frac{\partial}{\partial y}W_{l,n+1}(f_{0},f_{1})|;r) \leq \mathcal{M}(y^{3}|\frac{\partial^{2}}{\partial y^{2}}H_{l,n+1}f_{0}|;r)$$
$$+r\mathcal{M}(y|H_{l-1,n+1}f_{1}|;r)$$
$$+r\mathcal{M}(y^{2}|\frac{\partial}{\partial y}H_{l-1,n+1}f_{1}|;r),$$

$$\mathcal{M}(y^3|\Delta W_{l,n+1}(f_0,f_1)|;r) \leq 2\mathcal{M}(y^3|\frac{\partial^2}{\partial y^2}H_{l,n+1}f_0|;r) + 2r\mathcal{M}(y^2|\frac{\partial}{\partial y}H_{l-1,n+1}f_1|;r),$$

(2.3), (2.4) and (2.5) hold in view of Lemma 4.1.

To prove (1.1), it is enough to show that

(4.5)
$$\lim_{M \to N, M \in \mathbf{T}_{n+1}} y \frac{\partial}{\partial y} H_{l,n+1} f_0(M) = 0,$$

(4.6)
$$\lim_{M \to N, M \in \mathbf{T}_{n+1}} y \frac{\partial}{\partial y} H_{l-1, n+1} f_1(M) = 0,$$

(4.7)
$$\lim_{M \to N, M \in \mathbf{T}_{n+1}} y \frac{\partial^2}{\partial y^2} H_{l,n+1} f_0(M) = 0,$$

for every point $N \in \partial \mathbf{T}_{n+1}$.

Let N be any fixed point on $\partial \mathbf{T}_{n+1}$. We put

$$u(M) = H_{l,n+1} f_0(M) - f_0(N) \quad (M \in \mathbf{T}_{n+1}).$$

Let ε be any positive number. Since $H_{l,n+1}f_0(M)$ is a solution of the Dirichlet problem for \mathbf{T}_{n+1} with f_0 ([10, Theorem 1]), we take a positive number δ such that

$$|u(M)| < \varepsilon \quad (M \in B^{n+1}_{\delta}(N) \cap \mathbf{T}_{n+1}).$$

By Lemma 4.2, we have

$$\sup_{M \in U_{N,\delta}} y \left| \frac{\partial}{\partial y} H_{l,n+1} f_0(M) \right| \le C_{n+1} \varepsilon.$$

Hence we obtain (4.5). In the similar way to (4.5) we also obtain (4.6).

To prove (4.7), we set

$$\varphi(X,y) = f_0(X) \quad ((X,y) \in \mathbf{T}_{n+1} \cup \partial \mathbf{T}_{n+1}),$$

$$v(X,y) = \begin{cases} H_{l,n+1} f_0(X,y) & ((X,y) \in \mathbf{T}_{n+1}), \\ f_0(X) & ((X,0) \in \partial \mathbf{T}_{n+1}). \end{cases}$$

By Lemma 4.3, we have (4.7).

§ 5. Proof of Theorem 2.2

If $N \in \partial \mathbf{T}_{n+1}$ and a and r are positive numbers, we put

$$D(N; a, r) = \{M = (X, y) \in \mathbf{T}_{n+1} : y = a, |(X, 0) - N| < r\}.$$

A function $g: \mathbf{T}_{n+1} \to \mathbf{R}$ will be said to be locally convergent in mean to 0 on $\partial \mathbf{T}_{n+1}$ if for each point N of $\partial \mathbf{T}_{n+1}$ there is a positive number r such that

$$\int_{D(N; a, r)} |g(X, a)| dX \to 0 \quad (a \to 0+).$$

Remark 5.1. From Lebesgue's bounded convergence theorem, if u is continuous in \mathbf{T}_{n+1} and has the properties

- (i) for each point $(X,0) \in \partial \mathbf{T}_{n+1}$, there exists a positive number r = r(X) such that u is bounded in $\mathbf{T}_{n+1} \cap B_r^{n+1}(X,0)$,
- (ii) for each point (X,0) of $\partial \mathbf{T}_{n+1}$,

$$\lim_{y \to 0+} u(X, y) = 0,$$

then u is locally convergent in mean to 0 on $\partial \mathbf{T}_{n+1}$ (Armitage [1, p.44]).

Let p be a positive integer. For a subset Ω of \mathbf{T}_{n+1} , we say that a function $w \in C^{2p}(\Omega)$ is p-harmonic in Ω if $\Delta^p w \equiv 0$ in Ω .

Lemma 5.1 (Armitage [1, Theorem 5]). Let w be p-harmonic in \mathbf{T}_{n+1} . If each function

$$w, \frac{\partial w}{\partial y}, \cdots, \frac{\partial^{p-1}w}{\partial y^{p-1}}$$

is locally convergent in mean to 0 on $\partial \mathbf{T}_{n+1}$, then w has the p-harmonic continuation w^*

$$w^*(X,y) = \begin{cases} w(X,y) & (y > 0), \\ 0 & (y = 0), \\ v(X,-y) & (y < 0), \end{cases}$$

where

$$v(X,y) = \sum_{k=0}^{p-1} \frac{1}{(k!)^2} (-y)^{k+p} \Delta^k \{ y^{k-p} w(X,y) \}.$$

When g is a function on S_r^{n+1} , we define

$$\tilde{\mathcal{M}}(g;r) = (s_{n+1}r^n)^{-1} \int_{S_r^{n+1}} g(M) d\sigma_M.$$

Proof of Theorem 2.2. We put

$$u = w - W_{l,n+1}(f_0, f_1).$$

For each point $N \in \partial \mathbf{T}_{n+1}$, we have

(5.1)
$$\lim_{M \in \mathbf{T}_{n+1}, M \to N} u(M) = 0, \quad \lim_{M \in \mathbf{T}_{n+1}, M \to N} \frac{\partial u}{\partial y}(M) = 0.$$

Since u and $\frac{\partial u}{\partial y}$ are both locally convergent in mean to 0 on $\partial \mathbf{T}_{n+1}$ from Remark 5.1, Lemma 5.1 shows that u has a biharmonic continuation. So we have

$$\lim_{M \in \mathbf{T}_{n+1}} y \frac{\partial^2 u}{\partial y^2}(M) = 0 \quad (N \in \partial \mathbf{T}_{n+1}).$$

From

$$\frac{\partial (yu)}{\partial y} = u + y \frac{\partial u}{\partial y}, \quad \frac{\partial^2 (yu)}{\partial y^2} = 2 \frac{\partial u}{\partial y} + y \frac{\partial^2 u}{\partial y^2},$$

we see that each function yu, $\frac{\partial(yu)}{\partial y}$, $\frac{\partial^2(yu)}{\partial y^2}$ is locally convergent in mean to 0 on $\partial \mathbf{T}_{n+1}$. Since u is biharmonic on \mathbf{T}_{n+1} , yu is 3-harmonic on \mathbf{T}_{n+1} . So Lemma 5.1 shows that yu has a 3-harmonic continuation g to \mathbf{R}^{n+1} such that

$$g(X,y) = \begin{cases} yu(X,y) & (y > 0), \\ 0 & (y = 0), \\ v(X,-y) & (y < 0), \end{cases}$$

where

$$v(X,y) = yu(X,y) - 2y^{2} \frac{\partial u}{\partial y}(X,y) + y^{3} \Delta u(X,y).$$

Since

$$\begin{split} \tilde{\mathcal{M}}(g^+;r) &= \mathcal{M}(yu^+;r) + \mathcal{M}(v^+;r) \\ &\leq 2\mathcal{M}(yu^+;r) + 2\mathcal{M}(y^2 \left(\frac{\partial u}{\partial y}\right)^-;r) + \mathcal{M}(y^3(\Delta u)^+;r), \end{split}$$

it follows from (2.3), (2.4) and (2.5) that

$$\liminf_{r\to\infty}\frac{\tilde{\mathcal{M}}(g^+;r)}{r^{l+2}}<\infty.$$

Hence by [3] g(M) is a polynomial of $M = (x_1, x_2, \dots, x_n, y)$ of degree at most l + 2, and so u is a polynomial of degree at most l + 1. We put

$$u(X,y) = \sum_{j=0}^{l+1} P_{l-j+1} y^j,$$

where $P_{l-j+1} = P_{l-j+1}(X)$ is a polynomial of $X = (x_1, x_2, \dots, x_n)$ of degree at most l-j+1. And we write $\Delta_X = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$. From

$$\Delta^{2}u = \sum_{j=0}^{l+1} y^{j} \Delta_{X}^{2} P_{l-j+1} + 2 \sum_{j=2}^{l+1} j(j-1) y^{j-2} \Delta_{X} P_{l-j+1}$$

$$+ \sum_{j=4}^{l+1} j(j-1)(j-2)(j-3) y^{j-4} P_{l-j+1}$$

$$= y^{l-1} \Delta_{X}^{2} P_{2} + y^{l-2} \Delta_{X}^{2} P_{3}$$

$$+ \sum_{j=0}^{l-3} y^{j} \left\{ \Delta_{X}^{2} P_{l-j+1} + 2 \frac{(j+2)!}{j!} \Delta_{X} P_{l-j-1} + \frac{(j+4)!}{j!} P_{l-j-3} \right\}$$

and the biharmonicity of u on \mathbf{T}_{n+1} , we see that

(5.2)
$$\Delta_X^2 P_{l-j+1} + 2 \frac{(j+2)!}{j!} \Delta_X P_{l-j-1} + \frac{(j+4)!}{j!} P_{l-j-3} \equiv 0$$

for each $j = 0, 1, \dots, l - 3$.

It follows from (5.1) that $P_{l+1} \equiv 0$ and $P_l \equiv 0$, and so we have

(5.3)
$$\Delta_X^2 P_{l+1}(X) \equiv 0 \quad \text{and} \quad \Delta_X^2 P_l(X) \equiv 0.$$

Thus from (5.2) and (5.3) we see that

$$P_{l-(2k+1)} = (-1)^k \frac{2!(k+1)}{(2k+2)!} \Delta_X^k P_{l-1}, \quad P_{l-(2k+2)} = (-1)^k \frac{3!(k+1)}{(2k+3)!} \Delta_X^k P_{l-2}$$

 $(k = 0, 1, 2, \cdots)$. If we put

$$\alpha_{j} = \begin{cases} (-1)^{j} \frac{2!(j+1)}{(2j+2)!} & (j=0,1,2,\cdots, \lfloor \frac{l}{2} \rfloor), \\ 0 & (j=\lfloor \frac{l}{2} \rfloor, \ l \text{ is even}), \end{cases}$$
$$\beta_{j} = (-1)^{j} \frac{3!(j+1)}{(2j+3)!} \quad (j=0,1,2,\cdots, \lfloor \frac{l}{2} \rfloor - 1),$$

then we obtain

$$u = y^{2} \sum_{j=0}^{\left[\frac{l}{2}\right]} \alpha_{j} y^{2j} \Delta^{j} P_{l-1}(X) + y^{3} \sum_{j=0}^{\left[\frac{l}{2}\right]-1} \beta_{j} y^{2j} \Delta^{j} P_{l-2}(X).$$

Thus we have the conclusion.

References

- [1] D. H. Armitage, Reflection principles for harmonic and polyharmonic functions, J. Math. Anal. Appl. 65 (1978), 44–55.
- [2] _____, Representations of harmonic functions in half-spaces, Proc. London Math. Soc. (3) **38** (1979), 53–71.
- [3] T. Futamura, K. Kishi and Y. Mizuta, A generalization of the Liouville theorem to polyharmonic functions, J. Math. Soc. Japan **53** (2001), no. 1, 113–118.
- [4] D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, Springer Verlag, 1977.
- [5] L. L. Helms, Interoduntion to Potential Theory, Wiley-Interscience, 1969.
- [6] Ü. Kuran, Study of superharmonic functions in $\mathbf{R}^n \times (0, +\infty)$ by a passage to \mathbf{R}^{n+3} , Proc. London Math. Soc. **20** (1970), 276–302.
- [7] C. Müller, Spherical harmonics, Springer-Verlag, 1966.

- [8] S. H. Schot, A simple solution method for the first boundary problem of the polyharmonic equation, Appl. Anal. 41 (1991), 145–153.
- [9] D. Siegel, The Dirichlet problem in a half-space and a new Phragmén-Lindelöf principle, Maximum Principles and Eigenvalue Problems in Partial Differntial Equations, e.d. P.W. Schaefer, Pitman, 1988.
- [10] H. Yoshida, A type of uniqueness for the Dirichlet problem on a half-space with continuous data, Pacific J. Math. 172 (1996), 591–609.