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A characterization of real entire functions by
polynomial approximation for exponential weights

By

Ryozi SAKAT* and Noriaki SUZUKI**

Abstract

R. S. Varga proved a characterization of entire functions of finite order in terms of poly-
nomial approximation degree on [—1,1]. We will show an L? version of Verga’s result. Using
this version, we discuss weighted polynomial approximation on R for entire functions of finite
order.

§1. Introduction

Let n € N and let C(I) be the set of all real valued continuous functions on I,
where I = [—1,1]. We define the degree of approximation for f € C(I) by

E.(f) = Pié% If = Pllze (1)

where P,, denotes the class of all real polynomials of degree not more than n. In [1],
S. Bernstein proved that f has an analytic extension to an entire function if and only
if limy, 00 En(f )1/ ™ = (. Note that the entire function discussed in this paper is a real
one, that is, it is an analytic function on whole complex plane C whose value is real on
R := (—00,00). R. S. Varga ([9]) considered the rate at which E,(f)*/™ tends to zero,
and showed that f € C(I) satisfies

lim su nlogn
nvse 108(1/En(F))
Received January 31, 2013. Revised July 4, 2013.
2000 Mathematics Subject Classification(s): 41A25, 41A10, 30E10
Key Words: exponential weight, entire function, finite order, polynomial approximation
This work was supported in part by Grant-in-Aid for Scientific Research (C) No0.22540209, Japan
Society for the Promotion of Science
*Department of Mathematics, Meijo Universty, Nagoya 468-8502, Japan.
e-mail: ryozi@crest.ocn.ne.jp
**Department of Mathematics, Meijo Universty, Nagoya 468-8502, Japan.
e-mail: suzuki@meijo-u.ac.jp

=A

(© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



142 Ryo0ZzI SAKAI AND NORIAKI SUZUKI

if and only if f has an analytic extension to an entire function of order A. Recall that
an entire function f is of order A = A(f) if

loglog M(r, f)

lim sup = A,
r—00 log r
where M(?‘, f) = IMaXzeg,|z|=r |f(z)|
Let 0 < p < co. For a constant a > 0, put I, := [—a,a]. We write f € LP(I,) if

a 1/p
1 ey = ( / f(t)lpdt> “

for 0 < p < oo and || f||ze(r,) := ess sup,¢z, | f(2)] < 0o. For f € LP(I,) and n € N, we
set

E,.(f;1,) = inf — Pllze(r.y.
pon ([ 1a) A If = Plie )
Then the following LP version of Varga’s result is established. The proof is based on a

reduction to Varga’s one.

Theorem 1.1. Let0 < p < oo anda > 0. For a real valued function f € LP(I,),
we put

|
(1.1) Ppa(f) = lim sup 1og(1/727§ i?f L))

If py o(f) < oo, then f is equal to an entire function of order pj ,(f) on I, almost
everywhere. Conversely, if f is an entire function of order \(f) < oo, then its restriction

to 1, satisfies (1.1) for py . (f) = A(f)-

We remark that Varga’s result is the case p = oco.

We next discuss the above result for approximations on the whole real line R. Let
w(z) = exp(—Q(z)) be an exponential weight on R which belongs to a relevant class
F(C?+). For w € F(C?*+), set T(x) := 2Q'(x)/Q(z). If T is bounded, then the
weight w is called a Freud-type weight, and if T is unbounded, then w is called an
Erdos-type weight. Since we assume that T' is quasi-increasing, if w is Erdos-type, then
lim, o T'(x) = oo holds (for details see Section 3).

Let 0 < p < 0o again. We write f € LP (R) if

00 1/p
sl = ([ lut@s@pras) <o

—00
for 0 < p < oo and ||wfl[peer) = ess sup,eg|w(z)f(7)| < co. For f € LF(R) and
n € N, we set

(12) Epn(fiw) = ot [0+ (f = Pl o).

The following theorem is a main result of this paper.
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Theorem 1.2.  Let w = exp(—Q) € F(C?*+) and 0 < p < oo. For a real valued
function f € LP (R), we define

1
(1.3) pp(f) := lim sup 1og(17Ezi?f Jw))

Then f is equal to an entire function with finite order X on R almost everywhere if and
only if pp(f) is finite. Furthermore p,(f) = 0 if and only if A = 0, and if pp(f) # 0
then we have

1 1 1 1 1
(L0 AR ST
where T'(x) := Q' (x)/Q(z) and
(1.5) A= ]|11|n inf T'(z), B :=limsupT(x).

FEspecially, if w is Erdds-type then A = p,(f) holds true.

H. N. Mhaskar discussed the above result for a special Frued-type weight w,(z) :=
exp(—|z|*) (> 2) in [5]. In his case, T'= « so that 1/A —1/a = 1/p,(f) holds. Note
also that, when w is Erdos-type, then lim|, o T'(z) = A = B = 00, so that (1.4) shows
A= pp(f)-

This paper is organized as follows. We give a proof of Theorem 1.1 in Section 2.
The definition of a class F(C?+) is given in Section 3. We prepare some lemmas in
Section 4. The proof of Theorem 1.2 is given in Section 5. We point out that basic
and essential facts of the weighted polynomial approximation on R are proved by using
logarithmic potential theory (cf. [7], see also [4] and [6]).

Throughout this paper, C' will denote a positive constant whose value is not nec-
essary the same at each occurrences; it may vary even within a line.

The authors thank the referee for his/her careful reading and for valuable sugges-
tions which are very useful for improving the manuscript.

§2. Proof of Theorem 1.1

We use the following lemmas. Recall that [ = I; = [—1,1].
Lemma 2.1. Let P € P,,. When 0 < p < q < oo, we have
(2.1) 1Pl oy < 297~V Pl oy,
and when 0 < ¢ < p < 0o, we have

(2.2) Pl oy < 2279729100 Py gy,
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Proof. The inequality (2.1) is shown by Hélder’s inequality. The second inequality
(2.2) follows by use of the method of [6, Proof of Theorem 4.2.4]. O

We also use Stirling’s approximation.

Proposition 2.2.  We have

m+1/2 ,—m
(2.3) i Y2 e

m—oo m!

Now we give a proof of Theorem 1.1. We first assume a = 1. We will show that
the quantity p;, ; is independent of p, that is, pj, ; = p5, ; holds for every 0 < p < oo.
Let 0 < p < oo and 0 < g < co. Suppose p;, ; < oo and take r > py ; arbitrarily. Since

o limsup (2 Dozt + 1
Pl n—00 log(l/Ep,n(f; I)) ’

there exists a large number N; such that for n > Ny, E, . (f;I) < (n+1)~+1/" holds.
We first consider the case p > 1 and ¢ > 1. Take R, € P,, which satisfies || f —
Rullrry < 2Epn(f;I), and set Py = Ry and P, := R, — R,_; for n > 1. Since
| f = Rollee(y + I1.f = Ro—allzery < 2Bpn(fi 1) +2Epn—1(f;1) < 4Ep n—1(f; 1), we have
(24) N Pallzey = I1f = Bo = (f = Ru-t)llpo(r) < ABpn_1(f;1) < dn /7.
Take Ny > Nj such that NJ > 2. Then n~"" < 27" for n > Ny and hence (2.4) shows
Do APlleey €4 > Bpna(f;1) <4 ) 27" < o0
'I’L:N2 n:N2 'I’L:NQ
that is, f = ZZO:O P, converges in LP-norm. From (2.4) and Lemma 2.1, we have

(2.5) 1Pl pacry < Myl Pollpe(ry < 4Mun ™"

where M,, := 2n2/1/a=1/Pl_ Take N3 > N, such that (NQ/N3)2|1/‘1_1/1’|N3_1/T < 1/2.
Then

Ns—1
[fllzary < Z||Pk||Lq(1) < Z 1 Prell a1y + Z 1 Prll )
k=N3

N3—1
< Z ||Pk||Lq(I)+ Z 8k2|1/q 1/p|k k/r

k=0 k=N3

Ns—1 .

Z ||Pk||Lq(])+8 Z (knl/k 2|1/q— 1/P|(k—1/r))

k=N3
N3—1

< Z | Prllza(ry +C Z 27% < oo,

k=0 k=N;
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and hence f € LI(I). Especially, by the case ¢ = oo, we may assume f € C(I).
Similarly, using (2.5) and Proposition 2.2, we see that for n > N,

n o0
Egn(f; 1) <If =D Pillacy < > IPllzacn
k=0 k=n-+1
o0

nn 1/r oo n'e”/\/ﬁ 1/r
<n /T Z {211 /a=1/p| (7) <Con~"" Z E211/a=1/pl <—>
k Ml klek /i

k=n-+1
fo%) - 1/r
E2r11/q—1/pl
SO ) (kk 1 1>
= \EE-D -+ 1)

Now we take K such that K > 2r|1/q — 1/p|. Then

> (e )

k=n-+1
K4+n+1 kK 1/r 0o k’K 1/r
< n ( )
kzznﬂ (k(k—l)---(n—l—l)) kz};m KE—1)--(n+1)
< K(K+TL + 1)K/r + 2K/r Z 2—(k—K—n—l)/r < CTLK/T,
k=K+n+2
and hence
(2.6) Eyn(f;1) < Cnnt B/,

When p > 1 and 0 < g < 1, we repeat the above estimates for ||f||%q(1) and Eg,,(f;1)?
instead of || f||«(r) and By »(f; I), then we also have (2.6). Therefore, from the definition

(1.1),

* . =limsu nlogn < limsu nlogn
Pat = 10g (1 By (J: 1)~ indd Tog(1/CnE=—m177)
1

= 1. =
el (rlogC)/nlogn — K/n

T
Since r > pj, | is arbitrary, we see p; 1 < p ;.

When 0 < p < 1, considering the estimates of ||f||l£p(1) instead of || f||zs (1), we also
have p; 1 < pp ;. Since 0 < p < oo and 0 < g < oo are arbitrary, p; ; = p,, ; follows.

Especially, pj, ; = p%; for all 0 < p < co. Hence the result of Varga gives us

feLl(I), p,; <ooc<s= feL>™(), psi1=pp1 <X

<= [ is an entire function of order p3 ; = p,; < 0.

Next, we show the case of a > 0. Set f,(x) := f(azx). By a change of variable,
we have E, . (f;1.) = a*/PE, . (fa; I), which implies Pp.a(f) = pp1(fa). On the other
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hand, since M (ar, f) = M(r, f,), we see A(f) = A(f,). Hence the assertion for the case
a > 0 follows from the case a = 1. This completes the proof of Theorem 1.1.

§3. Definition of class F(C?+)

We say that f: (0,00) — (0,00) is quasi-increasing if there exists C' > 0 such that
flx) < Cf(y) forany 0 < z < y.

Definition 3.1.  Following [4], we write w € F(C?+) if a weight w is the form
w(z) = exp(—Q(z)), where @ is a real, nonnegative, continuous and even function on
R, and satisfies the following conditions:

(a) @Q'(z) is continuous in R, with Q(0) = 0.
(b) Q" (x) exists and is positive in R\ {0}.
(¢) limy—0o Q(z) = 0.

(d) The function

zQ' ()
Q(z)
is quasi-increasing in (0,00) and T'(z) > A for x € R\ {0} with some constant A > 1.
(e) There exists C' > 0 such that

Q"(z) _ Q)|
Q'(x)] — Q)
and there also exist a compact subinterval J containing 0 of R, and C' > 0 such that
Q) JQw)
Q' (x)] —  Qx)’
We recall some examples (cf. [3], [4]). The weight wq(x) := exp(—|z|*) (o > 1)
is Freud-type. For / € N, @ > 0 and f > 0 with aa + 5 > 1, we set Q. (x) =
|z|? {exp,(|z]|*) — exp,(0)}, where exp,(z) := exp(exp(... (expx)...))) (¢ times). Then
w := exp(—Qr.a.g) belongs to F(C?+) and it is an Erdos-type weight. Also Q. (x) =
(1+ |z))*I" —1, a > 1 defines an Erdos-type weight.
We need the Mhaskar-Rakhmanov-Saff numbers {a,} for w = exp(—Q) € F(C?*+).
For each n € N, a,, is a positive root of the equation

2 1 /
_/ anu@’ (anu) o
R

T
Since @’ is a positive increasing function on (0, 00), we see easily lim,, oo a, = 00. The

(3.1) T(z):= , ©#0

a.e. z € R.

reR\ J

following estimates are shown in [8, Proposition 3]: There exists C' > 0 such that for all
n € N,

(3.2) an, < Cn'/t,
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where A > 1 is the constant in Defintion 3.1 (d). Furthermore, if w is Erdos-type, then
for any fixed n > 0, there exists C' > 0 such that for every n € N,

(3.3) an < Cn'.

§4. Lemmas

We prepare some lemmas which are used in the proof of Theorem 1.2. Fix w =
exp(—Q) € F(C?+) and let {a,} be the Mhaskar-Rakhmanov-Saff numbers for w.

Lemma 4.1 ([4, Theorem 1.9]).  Let 0 < p < co. Then there exists a constant
C > 0 such that for every n € N and every P € P,,, we have

(4.1) (WP 1r@) < CllwP|| Lo (ja|<an)-

Lemma 4.2 ([2, p.11]).  Let f be an entire function and ZZO:O diz* be its power
series expansion. Then the order of f is given by

1
(4.2) Af) = liTILIl_>SOL$p %.

Lemma 4.3 ([4, Theorem 10.3]).  There exists a constant C > 0 such that for
everyn € N and P € Py, when 0 < p < q < 0o, we have

(4.3) [wP| Loy < Car/P || wP| o),
and when 0 < q < p < 0o, we have

1/q—-1/p
ny/T(ay)
(4.4) |wP| ey < C (a—> WP La(r)-

n

Lemma 4.4 ([4, Theorem 1.15, Corollary 1.16]).  Let 0 < p < oo. Then, there
exists a constant C' > 0 such that for everyn € N and P € P,

nv/ 1T (a,
(45) 0P ey < O )

n

[wP] e (®)-

Lemma 4.5 ([4, Lemma 3.4 (3.18),(3.17)]).  There exists a constant C > 1 such
that for every n € N,
1 n Cn
= < Qap) £ —F/——.
C\/T(an) ~ Qlan) T(an)

Lemma 4.6 ([4, Lemma 3.7 (3.38)]).  There ezxist 0 < ¢ < 2 and C > 0 such
that for every n € N, T(a,) < Cn?~¢.

(4.6)
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In the following Lemmas, we further assume that w € F(C?+) is Freud-type. The
constants A and B are those that are defined in (1.5). Note that 1 < A < B.

Lemma 4.7.  Let w be Freud-type. For any € > 0, there exists C' > 1 such that
for every n € N,

(4.7) % nt/(Bte) < o < opt/(A=e),

Proof. Let € > 0. By the definition of A and B, there exists a constant N such
that for > N, we have (A —¢)/z < Q'(z)/Q(z) < (B + ¢)/z, so integrating this
against dz on [N, x|, (z/N)A~¢ < Q(z)/Q(N) < (x/N)B*e. Hence if a,, > N, then we
see C1a ¢ < Q(an) < Coalte, where O = Q(N)Ne~4 and Cy = Q(N)N 5~ 5. Since
T(x) > 1 is bounded, Lemma 4.5 implies a/2~¢/C < n < CaBZ7¢. These inequalities
also hold for n with a,, < N if we take C' larger. Hence (4.7) follows. a

Lemma 4.8 (cf. [5, Lemma 2]).  Let w be Freud-type and let {py}3>, be the se-
quence of orthonormal polynomials for the weight w?. For f € L2 (R), we define Fourier-

type coefficients {by} by
(4.8) by := /00 f®pr®w(t)?dt, ke NU{0}.

If B> pa(f), then for any e > 0, there exists C > 0 such that for n large enough,
[e.9]

(4.9) S orlllwp{ || oy < ™ (nt) Y (Br=1/8
k=n

Proof. Lete > 0,and let B* :=1—-1/(B+¢)—1/8. We recall (1.3) for p = 2.
By Proposition 2.2,

o (n+1)log(n+1) . log(n +1)!
pa2(f) = hg:sgp log(1/ Ban(f;0)) hﬂsogp Tog(1/ Fon (@)’

so that if po(f) < B3, there exists N > 1 such that for n > N, Ey . (f;w) < ((n+1)1)~/8,
Since f = ZZOZO bipy, for every P € P,,_1, we see

lw - (f = P72y = lw- O bapr — P72y = D bk + |wPl[72 gy
k=0 k=n
where P = P — ZZ;S bipr € Pp—1. This implies Ey,,_1(f;w) = infpep, , |w- (f —

P)||%2(R) = (302, b2)/2, and hence for every n > N, we have

(4.10) |bn| < Bon1(f;w) < (n1)~Y/7.
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1
Let n > N. By Lemma 4.4 for p(n ) e P,
[wp{V || oo (ry < C—

[wp V| Lo > (R) < Cllwp{~ 1)||L°°(]R)-

Since pk " e Py_p for k>n+1, by (4.4) with ¢ = 2, p = oo and the boundedness of T’
we have for n > N,

00
Zlbklllwpk Iz gy < oallwpl Dl ey + > [olllwpy” |2 ey
k=n k=n-+1

oo E—n 1/2 (n)
<0 (nllury e + 3 ol (S2) 7 fup e

k=n+1 k—n
) Jupl” >||L2<R)>

(Ib lwpl 2@y + Z || (
because (k — n)/akx—n, > C holds (use (3.2)). By repeating application of Lemma 4.4,

k=n+1

the above is dominated by

(lb | ( > ||wp(n 2)||L2(R) + Z |bk| ((k — n)(k+ 1-— n)) ”wpk )||L2(R)>

Aj—na _
k=n-+1 k—nWk+1—m

o e <|b |< )+c 3 |bk|< = )1 (fkjn”)»

k=n-+1

Here we use the fact that ||wpg||z2®) = 1 for every k& > 0, because {py} are orthnormal
polynomials for w?. It follows from Lemma 4.7 and (4.10) that the last term in the
above is dominated by

(4.11) cn(n))B 4 ot i (kDB ((k —n))~B 178,
k=n-+1

When B* <0, (4.11) is estimated as

oo B*
()B4 Cn Z ( k! ) (k= n)))~1/8

k=n-+1 (k - n)'
<Cmm)P e @m)P YT (B —n)) P < e ()P
k=n-+1

and hence (4.9) follows. Let B* > 0. We rewrite (4.11) as follows:

* * * s k! 1 B* * 1
n B n+1 B*9nB S — =) B
Cr ()P + ()P 2m BT Y ((k )l 2k> : ((k —mn)hi/e”
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By Hélder’s inequality for p = 1/B*, ¢ =1/(1 — B*),

> Booo1\? s 1
2. ((k—n)!mz_k) 2t ((k —n))1/B

k=n-+1

B* 1-B*
= o1 > . . 1
S (k—m)B*/(1-B™)
= ( Z (k —n)In! 2k> ( Z 2 ((k_n)g)l/ﬁ(l—B*)> .

k=n-+1 k=n+1

Since Yoo ((n + £)!/(n!0)))z"* = 2" /(1 — )" by the binomial theorem, we see

N k! 1 &40 1
2 (k—n)!n!2_’f§2 Mt 2t 2

and we also see

= . . 1 .5 . 1
Z o(k—n)B*/(1-B") _ 22133 ja-By___ L _
_ 1/8(1—B~ 1/8(1-B~
W5 ((k —n)H1/8( ) ~ (01)1/B( )
Hence (4.11) is bounded by
Cn(n|)B* + Cm—l—l(n!)B* 2nB*C < Cn—i—l(n!)B*,
so that (4.9) follows. O

§5. Proof of Theorem 1.2

The process of the proof of Theorem 1.2 is as follows: Let w € F(C?+), 0 < p < oo
and let f € LP (R).
(I) If pp(f) < oo, then f has an analytic extension to an entire function of order

AS) < po(f)-
(IT) Let {a,} be the Mhaskar-Rakhmanov-Saff numbers for w. If there exist v > 1

and C' > 0 such that for every n € N,
(5.1) an < Cntl”

holds, then for every entire function f with A(f) < v, we have

Ay
v—=A(f)

(III) If w is a Freud-type weight and p,(f) < oo, then

(5.2) pp(f) <

1 1 1
A 2

Af) B~ pp(f)

(5.3)
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If (I)-(III) hold, then we have Theorem 1.2. In fact, by (I) and (II), p,(f) = 0 if
and only if A(f) = 0, so that we may assume that p,(f) # 0 and A(f) # 0. If w is
a Freud-type weight, then for any fixed ¢ > 0, Lemma 4.7 shows that (5.1) holds for
v =A—e. Hence by (5.2), 1/p,(f) > 1/A(f) —1/(A—¢) holds. Since ¢ > 0 is arbitrary,
this inequality and (5.3) give us (1.4). For an Erdés-type weight w, by (3.3), we can
take v large enough as we desire, so we have p,(f) < A(f) by (5.2), and with (I) we

have p,(f) = A(f).

Proof of (I). Let a > 0 and suppose p,(f) < co. Let P € P,. Since w(z) > w(a)
for z € I, := [—a,a], we see

1f = Pllze,) < wla)  w- (f = P)lze,) < w(a) ™ lw - (f = Pl Loy

so that

holds. Hence
p;,a(f) S pp(f) < 00.

Then, by Theorem 1.1, f is the restriction to I, of an entire function of order A(f) =
Pp.a(f). Since we can take a > 0 arbitrarily, we conclude that f is the restriction to R
of an entire function of order A(f) < p,(f).

Proof of (II). Suppose that f(z) := > o, dk2" is an entire function with order
A(f) < o0, and (5.1) holds. By Lemma 4.2, we see

. nlogn
5.4 A(f) = limsup ———————.
(54) ) = s o 1)
When A(f) < v, we will show (5.2). We suppose p > 1. Then

(5.5) Epn(fiw) < fw-(f = dpa®) @ < D ldillwa®|| o).
k=0 k=n-+1

For exactness, we denote by C; and C5 the constants in Lemma 4.1 and (5.1), respec-
tively. Then by Lemma 4.1,

Jwz|| o) < Cullwz®|| o (uj<ap) < Crarl|wz® || Lo (zi<ar)
< CRallwz® | o (o1 <an_r) < CTanar—1|wz* 2| Lo (o) <ap_s)
< Cagap—1]|wz™ 2| 1o (ui<ap_o) < -+ < Cranag—1- - a1||wl 1o (js|<ar)s

which implies

[e.9]

(5.6) Bypu(f;w) < |wllze@ D ldelClagar—1---as.
k=n+1
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Take p with A(f) < p < v. Then by (5.4) and Proposition 2.2, there exist a positive
constant C3 and a large number N; such that for every n > Ny,

1 1/p n1/2 1/p 1 1/p
" < (1/]da))?,  that is, |dn|s(ﬁ) §03< ) scg(—) |

nlen

Since a; < Coj'/¥ for every j € N by (5.1), (5.6) implies

Ep,n(f§ 'I,U) < 04 Z Cf(k!)_l/pakak_l eay < 04 Z (ClCQ)k(k!)l/V_l/p
k=n+1 k=n+1
1/v—1/ > ) 1 1/p—1/v
= | v—=1/p n —n
Ciln) HUCIC)" D (1) (k(k By S e 1)> |

k=n-+1

where Cy = Cs||w||zr®). Let Cs = (C1C2)?*/*=P) and take a number N, such that
N3 /Cs > 2. Then for every n > N3, we have

oo . 1 1/p—1/v
2. (G (k(k—l)---(n—i—l))

k=n-+1
> 1 1/p—1/v
- kzznﬂ ((k/Cs)((k -1)/C5)---((n+ 1)/Cs)>
< N (1/2)m(1/p—1/V) < 0.

Hence the above estimates, together with Proposition 2.2, imply
Epn(f;w) < Cn—l—l(n!)l/v—l/p < Cn—l—l(nn)l/v—l/pe—n(l/u—l/p) < Cn—l—l(nn)l/v—l/p.

This gives us
log Epn(fiw) < (n+1)logC + (1/v — 1/p)nlogn,

and hence

(f) = limsu nlogn
PP T R 108 (1 By (5 0)
nlogn pv

<l = .
- I,Iln_ilip —(n+1)logC — (1/v —1/p)nlogn v —p

Letting p to A(f), we have (5.2).
When 0 < p < 1, in stead of (5.5), we obtain

o0

Epn(fiw) < Y |dilPllwz® |7, g,
k=n-+1
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and hence, we see
Epn(f;w)P < CPHD (rypL/v=1/p)

so that as in the above argument, we have (5.2).

Proof of (III). We first show that if p,(f) < oo, then p,(f) = pq(f) holds for every
0<p<ooand 0 < g < oo. We may repeat the method in the proof of Theorem 1.1.

In fact, let
—\ |1/p—1/4q|
M* := max ag/p_l/q|, (M)
an,

n -

Since T'(a,) < Cn?~¢ by Lemma 4.6 and since a, < Cn'/? by (3.2), we see M* <
n211/p=1/4l for n large enough. Hence (4.3) and (4.4) show

|wP|| pagr) < CR2MP=Y | wP| oy

for every P € P,. If we exchange || f||za(r) and || P||za(r) for [|wf| pe@w) and [[wP| La(r)
in the proof of Theorem 1.1, respectively, we obtain the desired result.

We assume that p = 2 and f € L2 (R). Let {px}3°, be the sequence of orthonormal
polynomials for the weight w? and {by}32, be the Fourier-type coefficients for f defined
n (4.8). Take 8 > pa(f) and let € > 0 arbitrarily. By Lemma 4.8, the series

Z Z| billp” (O)|2]" < Cw™1(0) Y O™ (nl) "/ BH /B

n=0

converges uniformly on compact subsets of the complex plane. Interchanging the order
of summation, we get

k (n)

Z%waé Zbkzpk Zbkpk
n=0  k=n n=

This shows that the above entire function is the analytic extension of f, because f =
> oo bkpr in L2 (R). We describe this entire function as f again, then

f(2) Z( pr(n) )zn::idnz”.

n=0

Hence, from Lemma 4.8,
Idn| < — Z b, ||p(n) 0)| < C" L (nl)~ 1/(B+e)=1/8

so that

(5.7) log(1/]dn|) > (1/(B+¢)+1/8)logn! — (n+1)log C.
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By Lemma 4.2 and Proposition 2.2, the order A(f) of f is given by

|
A(f) = lim sup nlogn = lim sup log n!

n—oo l0g 1/|dy| n—soo 10g 1/|dy |
So, (5.7) gives us

(U S
MNf) " B+e B’

Since 8 > pa(f) and € > 0 are arbitrary, we have

1 1 1

NG ATG)

and (5.3) follows.
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