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Examples of harmonic Hardy‐Orlicz spaces

on the plane with finitely many punctures

By

Tero KilpelÄINEN *

,
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Abstract

In [11] we showed that, given a \mathcal{P}‐Brelot harmonic space various vector spaces of harmonic

functions coincide if and only if they are finite dimensional. We give two examples which satisfy
the above property by setting up appropriate differential elliptic operator on the plane with

finitely many punctures.

§1. Introduction

Let ( $\Omega$, \mathcal{H}) be a \mathcal{P}‐Brelot harmonic space. Suppose that there exists a countable

base for the open sets of  $\Omega$ and that constant functions are harmonic on  $\Omega$ . For an

open set  $\omega$
,

denote by  H( $\omega$) the set of harmonic functions on  $\omega$ . Set  HP_{+}()=\{h\in
 H( $\Omega$)|h\geq 0 on  $\Omega$\}, HP( $\Omega$)=\{h_{1}-h_{2}|h_{j}\in HP_{+}( $\Omega$), j=1, 2\} and  HB( $\Omega$)=\{h\in
 H( $\Omega$)|h is bounded on  $\Omega$ }. Set

\mathcal{N}=\{ $\Phi$ : [0, +\infty)\rightarrow[0, +\infty)| $\Phi$ is convex and strictly increasing,  $\Phi$(0)=0,

and \displaystyle \lim_{t\rightarrow+\infty}\frac{ $\Phi$(t)}{t}=+\infty\}.
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For  $\Phi$\in \mathcal{N} , set

H_{ $\Phi$}()=\{h\in H( $\Omega$)| there exists  $\alpha$>0 such that

 $\Phi$( $\alpha$|h|) has a harmonic majorant on  $\Omega$ }.

The space  H_{ $\Phi$}() is called the harmonic Hardy‐Orlicz space associated to  $\Phi$.

In [11] we established the following two results:

Theorem 1.1. Let  $\Phi$ and  $\Psi$ be elements  of\mathcal{N} . Suppose that

\displaystyle \lim_{t\rightarrow+}\sup_{\infty}\frac{ $\Phi$( $\alpha$ t)}{ $\Psi$(t)}=+\infty
for all positive  $\alpha$ . Then the following four conditions are equivalent:

(i)  H_{ $\Phi$}() and H_{ $\Psi$}() coincide;

(ii) \dim H_{ $\Psi$}( $\Omega$)<+\infty ;

(iii) \dim H_{ $\Phi$}() <+\infty ;

(iv) \dim HB() <+\infty.

Theorem 1.2. Let  $\Phi$\in \mathcal{N} . Then the following two conditions are equivalent.

(i) H_{ $\Phi$}() and HP( $\Omega$) coincide;

(ii) \dim H_{ $\Phi$}() =\dim HP() <+\infty.

In this paper we give two concrete examples of harmonic spaces that clarify the

difference between the above theorems. In the first example the conditions of Theorems

1.1 and 1.2 hold. In the second example we slightly modify the first example so that

the claim of Theorem 1.1 holds, but that of Theorem 1.2 fails. These examples are

constructed via appropriate elliptic differential operators on the plane with finitely many

punctures.

§2. Preliminaries

Let  $\Omega$ be a locally compact, non‐compact, connected and locally connected Haus‐

dorff space. Let \mathcal{H} be a class of real‐valued continuous functions, called harmonic

functions, on open subsets of  $\Omega$ satisfying the following three axioms:

Axiom 1. \mathcal{H} forms a linear sheaf.

Axiom 2. There is a base for the topology of  $\Omega$ such that each set in the base is a

regular domain for \mathcal{H}.



Harmonic HARDY‐Orlicz spaces 49

Axiom 3. For any domain U in  $\Omega$
, any ordered increasing directed family of harmonic

functions defined on  U has an upper envelope which is either +\infty everywhere in  U

or harmonic in U.

A pair ( $\Omega$, \mathcal{H}) satisfying the above properties is called a Brelot harmonic space (cf.
[1], [2]). Furthermore, we assume that there exists a positive potential on  $\Omega$ . Such a

Brelot harmonic space is called a \mathcal{P}‐Brelot harmonic space (cf. [2]). For an open set

 U\subset $\Omega$ ,
set  H(U)= { u\in \mathcal{H} : u is harmonic in U}. Throughout this paper we further

assume that there exists a countable base for the open sets of  $\Omega$ and that the constant

function  h(x)\equiv 1 belongs to H( $\Omega$) .

For a \mathcal{P}‐Brelot harmonic space ( $\Omega$, \mathcal{H}) ,
we define the various classes of harmonic

functions described in the introduction analogously, replacing harmonic functions by
elements of \mathcal{H}.

Let S^{+} be the set of non‐negative superharmonic functions on  $\Omega$
, defined, as usual,

via a comparison principle. Denote by \triangle_{1}^{M}=\triangle_{1}^{ $\Omega$,M} the set of extreme harmonic

functions (or minimal harmonic functions after Martin) of a compact and metrizable

base  $\Lambda$ of the cone  S^{+} . As usual, we call it the minimal Martin boundary of  $\Omega$ . We refer

to [2], [3], [5], [6] and [7] for a detailed discussion on the minimal Martin boundary and

on the Martin boundary. The intuitive picture to have in mind is to consider points in

the boundary of the unit disk both as points and Poisson kernels (associated to these

points).
The following Martin representation theorem (cf. [2],[3],[7]) is the fundamental

result regarding Martin boundaries. It also explains why we concentrate on the minimal

Martin boundary \triangle_{1}^{M}.

Theorem 2.1 (Martin representation theorem). For each u\in HP_{+}( $\Omega$) ,
there

is a unique positive measure $\mu$_{u} on the Martin boundary \triangle^{M} so that $\mu$_{u}(\triangle^{M}\backslash \triangle_{1}^{M})=0
and

u(z)=\displaystyle \int_{\triangle_{1}^{M}}h(z)d$\mu$_{u}(h) .

Let us introduce some further concepts that will be needed in what follows. Let

 $\omega$ be a subdomain of  $\Omega$ such that every boundary point of  $\omega$ is regular. Denote by

 HP_{+}( $\omega$) the set of non‐negative harmonic functions on  $\omega$ . Set

 HP_{+}(,  $\omega$)=\{u\in HP_{+}()|\hat{R}_{u}^{ $\Omega$\backslash  $\omega$} is a potential,

where \hat{R}_{h}^{ $\Omega$\backslash  $\omega$} is the balayage of h relative to  $\Omega$\backslash  $\omega$ ,
and

 HP_{+}^{0}( $\omega$,  $\Omega$)=\{U\in HP_{+}( $\omega$)| there is h\in HP_{+}() with U\leq h on  $\omega$

and \displaystyle \lim_{x\rightarrow\partial $\omega$}U(x)=0\}.
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Let h be an element of HP_{+}( $\Omega$,  $\omega$) . Set S(h)=S_{ $\omega$}(h)=(h-\hat{R}_{h}^{ $\Omega$\backslash  $\omega$})|_{ $\omega$} . Clearly

S(h)\in HP_{+}^{0}( $\omega$,  $\Omega$) . Let H be an element of HP_{+}^{0}( $\omega$,  $\Omega$) . Set

 R(H)(x)=R_{ $\omega$}(H)(x)=\displaystyle \inf {  s(x)|s\in S^{+} with H\leq s on  $\omega$ }.

Clearly  R(H)\in HP_{+}() .

Proposition 2.2. Let  $\omega$ be a subdomain of  $\Omega$ such that every boundary point of
 $\omega$ is regular.  S_{ $\omega$} : HP_{+}(,  $\omega$)\rightarrow HP_{+}^{0}( $\omega$,  $\Omega$) is a bijection and its inverse map is R_{ $\omega$}.

Proof. In this proof, we abbreviate R=R_{ $\omega$} and S=S_{ $\omega$} . We may suppose

that HP_{+}( $\Omega$,  $\omega$)\neq\{0\} . For, suppose that HP_{+}^{0}( $\omega$,  $\Omega$)\neq\{0\} . From the discussion of

next paragraph it follows that HP_{+}(,  $\omega$)\neq\{0\} . Hence, if HP_{+}(,  $\omega$)=\{0\} ,
then

HP_{+}^{0}( $\omega$,  $\Omega$)=\{0\} . Hence, the statement of proposition holds.

We show first that R(F)\in HP_{+}( $\Omega$,  $\omega$) if F\in HP_{+}^{0}( $\omega$,  $\Omega$) . To this end, take a

u\in HP_{+}() with u\leq\hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$} on  $\Omega$ . Set

\tilde{F}(x)=\left\{\begin{array}{ll}
F(x) & \mathrm{i}\mathrm{f} x\in $\omega$,\\
0 & \mathrm{i}\mathrm{f} x\in $\Omega$\backslash  $\omega$.
\end{array}\right.
Then it is easily seen that \tilde{F} is subharmonic on  $\Omega$ . Hence  R(F)-\tilde{F} is non‐negative and

superharmonic on  $\Omega$ . By definition  R(F)-\tilde{F}=R(F) on  $\Omega$\backslash  $\omega$ . Hence

 R(F)-\tilde{F}\geq\hat{R}^{ $\Omega$\backslash  $\omega$}>u on  $\Omega$
 R(F)-

and R(F)-u\geq\tilde{F}=F on  $\omega$ . Since  R(F)-u\in HP_{+}( $\Omega$) , R(F)-u\geq R(F) on  $\Omega$.

Therefore, u\leq 0 ,
so that u=0 on  $\Omega$ . Consequently, \hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$} is a potential on  $\Omega$ . Hence

 R(F)\in HP_{+}( $\Omega$,  $\omega$) .

To prove the statement of the proposition it suffices to show that R\circ S=id|_{HP_{+}( $\Omega,\ \omega$)}
and S\circ R=id|_{HP_{+}^{0}( $\omega,\ \Omega$)}.

First we prove that R\circ S=id|_{HP_{+}( $\Omega,\ \omega$)} . Take an element f\in HP_{+}( $\Omega$,  $\omega$) . Then

\hat{R}_{f}^{ $\Omega$\backslash  $\omega$} is a potential on  $\Omega$ . Now  R(S(f))\geq S(f)=f-\hat{R}_{f}^{ $\Omega$\backslash  $\omega$} on  $\omega$ . Since \partial $\omega$ consists of

only regular boundary points, \hat{R}_{f}^{ $\Omega$\backslash  $\omega$}=f on  $\Omega$\backslash  $\omega$ . Hence  R(S(f))+\hat{R}_{f}^{ $\Omega$\backslash  $\omega$}\geq f on  $\Omega$.

Since R(S(f)) and f are harmonic on  $\Omega$
,

and \hat{R}_{f}^{ $\Omega$\backslash  $\omega$} is a potential on  $\Omega$
, by the Riesz

decomposition theorem, we find that  R(S(f))\geq f on  $\Omega$ . The converse inequality holds

in general. Hence  R(S(f))=f on  $\Omega$.

Next we prove that S\circ R=id|_{HP_{+}^{0}( $\omega,\ \Omega$)} . By the discussion in the first paragraph

of this proof we infer that R(F)-\tilde{F}\geq\hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$} on  $\Omega$ whenever  F\in HP_{+}^{0}( $\omega$,  $\Omega$) . For

the reverse inequality we only need to check that \tilde{F}+\hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$} is non‐negative and super‐

harmonic on  $\Omega$ because \tilde{F}+\hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$}\geq F on  $\omega$ . We easily find that \tilde{F}+\hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$} is lower
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semi‐continuous on  $\Omega$ and that it is harmonic on  $\Omega$\backslash \partial $\omega$ . Take any point  x_{0}\in\partial $\omega$ and

regular domain  U with x_{0}\in U . Then, we have

(\displaystyle \tilde{F}+\hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$})(x_{0})=R(F)(x_{0})=\int_{\partial U}R(F)(x)d$\omega$_{x_{0}}^{U}\geq\int_{\partial U}(\tilde{F}+\hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$})(x)d$\omega$_{x_{0}}^{U},
where $\omega$_{x_{0}}^{U} is the harmonic measure relative to U and x_{0}.

This implies that \tilde{F}+\hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$} is non‐negative and superharmonic on  $\Omega$ . Hence we

find that  R(F)-\tilde{F}=\hat{R}_{R(F)}^{ $\Omega$\backslash  $\omega$} on  $\Omega$ . Thus  S\circ R=id|_{HP_{+}^{0}( $\omega,\ \Omega$)}. \square 

Denition 2.3. Let  $\omega$ be subdomain of  $\Omega$ such that every boundary point of  $\omega$

is regular, and let  H\in HP_{+}^{0}( $\omega$,  $\Omega$) . Then, if any non‐negative harmonic minorant of H

on  $\omega$ is proportional to  H, H is called a minimal element of HP_{+}^{0}( $\omega$,  $\Omega$) .

Proposition 2.4. Let  $\omega$ be a subdomain of  $\Omega$ such that every boundary point

of  $\omega$ is regular. Suppose that  HP_{+}(,  $\omega$)\neq\{0\} and let h\in HP_{+}( $\Omega$,  $\omega$) . Then h is a

minimal element of Hp() if and only if S(h) is a minimal element of HP_{+}^{0}( $\omega$,  $\Omega$) .

Proof. Write R=R_{ $\omega$} and S=S_{ $\omega$} . Suppose first that h is a minimal element of

HP_{+}() . Let F be a non‐negative harmonic minorant of S(h) on  $\omega$ . Then  0\leq R(F)\leq h
on  $\Omega$ and, by minimality, there exists a constant  $\alpha$\geq 0 such that R(F)= $\alpha$ h on  $\Omega$ . By

Proposition 2.2

 F=S(R(F))=S( $\alpha$ h)= $\alpha$ S(h) .

Hence S(h) is a minimal element of HP_{+}^{0}( $\omega$,  $\Omega$) .

To prove the converse, suppose that S(h) is a minimal element of HP_{+}^{0}( $\omega$,  $\Omega$) . Let f
be a non‐negative harmonic minorant of h on  $\Omega$ . Since  S(f)\leq S(h) on  $\omega$

, by minimality,
there exists a non‐negative constant  $\alpha$ such that  S(f)= $\alpha$ S(h) on  $\omega$ . By Proposition

2.2,

 f=R(S(f))=R( $\alpha$ S(h))= $\alpha$ R(S(h))= $\alpha$ h.

Hence h is a minimal element of HP_{+}() . \square 

Proposition 2.5. Let $\omega$_{j}, j=1 , 2, be subdomains of  $\Omega$ such that all boundary

points of  $\omega$_{j} are regular and that HP_{+}(, $\omega$_{j})\neq\{0\} . If $\omega$_{1}\cap$\omega$_{2}=\emptyset , then

 HP_{+}( $\Omega,\ \omega$_{1})\cap HP_{+}( $\Omega,\ \omega$_{2})=\{0\}.

Proof. Suppose that HP_{+}(, $\omega$_{1})HP(, $\omega$_{2})\neq\{0\} . Take any minimal element

v of HP_{+}(, $\omega$_{1})\cap HP_{+}(, $\omega$_{2}) . Then, \hat{R}_{l $\nu$}^{ $\Omega$\backslash $\omega$_{j}}(j=1,2) is a potential on  $\Omega$ . Hence, by

[3, Hilfssatz 11.2] (cf. [14]),
\hat{R}_{l $\nu$}^{ $\Omega$\backslash $\omega$_{j}}\neq v (j=1,2) .
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Since $\omega$_{1}\cap$\omega$_{2}=\emptyset and all boundary points of $\omega$_{1} are regular, \hat{R}_{l $\nu$}^{ $\Omega$\backslash $\omega$_{1}}=v\geq S_{$\omega$_{2}}(v) on

$\omega$_{2} . By the definition of R_{$\omega$_{2}},

\hat{R}_{l $\nu$}^{ $\Omega$\backslash $\omega$_{1}}\geq R_{$\omega$_{2}}(S_{$\omega$_{2}}(v))=v

on  $\Omega$ . Hence \hat{R}_{l $\nu$}^{ $\Omega$\backslash $\omega$_{1}}=v on  $\Omega$ . This contradicts our assumption. \square 

§3. Examples

Example 3.1. Given an integer q\geq 2 ,
let

$\Omega$_{q}=\displaystyle \mathbb{R}^{2}\backslash \bigcup_{j=1}^{q-1}\{(3j, 0
We construct such a harmonic space on $\Omega$_{q} that the minimal Martin boundary consists

of exactly q elements and that the conditions (i) -(\mathrm{i}\mathrm{v}) of Theorem 1.1 and (\mathrm{i})-(\mathrm{i}\mathrm{i}) of

Theorem 1.2 hold. Towards this end, denote by B(x) the disk with center x and radius

r . Set D_{0}=\mathbb{R}^{2}\backslash \overline{B}_{3q+2}(0) and

D_{j}=B_{1}((3j, 0))\backslash \{(3j, 0)\}=\{(x, y)\in \mathbb{R}^{2}|0<(x-3j)^{2}+y^{2}<1\}

for each 1\leq j\leq q-1 . We endow $\Omega$_{q} with the usual Euclidean topology.
Fix  $\epsilon$>0 and set

(3.1) d $\mu$(x)=\left\{\begin{array}{ll}
(2/(1+3q+2))^{ $\epsilon$}(1+|x)dx & \mathrm{i}\mathrm{f} x\in D_{0},\\
(1+|x-(3j, 0)|^{-1})dx & \mathrm{i}\mathrm{f} x\in D_{j}, j=1, \cdots, q-1,\\
2^{ $\epsilon$}dx & \mathrm{i}\mathrm{f} x\not\in\bigcup_{j=0}^{q-1}D_{j}.
\end{array}\right.
For z\in$\Omega$_{q} ,

we define

(3.2) L_{ $\mu$}=\left\{\begin{array}{ll}
(2/(1+3q+2))^{ $\epsilon$}div((1+|x)) & \mathrm{i}\mathrm{f} x\in D_{0},\\
div((1+|x-(3j, 0)|^{-1})^{ $\epsilon$}\nabla) & \mathrm{i}\mathrm{f} x\in D_{j}, j=1, \cdots, q-1,\\
2^{ $\epsilon$}\triangle & \mathrm{i}\mathrm{f} x\not\in\bigcup_{j=0}^{q-1}D_{j}.
\end{array}\right.
Then L_{ $\mu$} is a second order elliptic differential operator of divergence form on $\Omega$_{q}.

We choose \mathcal{H} to consist of (weak) solutions to L_{ $\mu$}u=0 on open subsets of $\Omega$_{q} ,
and

claim that ($\Omega$_{q}, \mathcal{H}) is a \mathcal{P}‐Brelot harmonic space with a countable base, and that the

minimal Martin boundary \triangle_{1, $\mu$}^{M} consists of exactly q points.

First we check that ($\Omega$_{q}, \mathcal{H}) is a \mathcal{P}‐Brelot harmonic space.
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Axiom 1 is clear. Then we check Axiom 2. Clearly, L_{ $\mu$} is a second order differential

operator of divergence form and locally uniformly elliptic on $\Omega$_{q} . Take any z\in$\Omega$_{q} and

B(z) with \overline{B_{r}(z)}\subset$\Omega$_{q}.
By [12] (see also [4], [7], [10]), for any Lipschitz continuous function f\in\partial B_{r}(z) ,

there exists a weak solution u\in W^{1,2}(B(z)) to L_{ $\mu$}u=0 on B_{r}(z) ,
so that u|_{\partial B_{r}(z)}=f.

Moreover, if f\geq 0 on \partial B_{r}(z) ,
then u\geq 0 on B_{r}(z) . The discussion in [10, pp. 56] gives

us the existence of a harmonic measure $\omega$_{x}^{B_{r}(z)}(x\in B(z)) such that, for f\in C(\partial B_{r}(z)) ,

v(x) :=\displaystyle \int_{\partial B_{r}(z)}fd$\omega$_{x}^{B_{r}(z)} is a weak solution on B(z) to L_{ $\mu$}u=0 ,
continuous up to

boundary of B_{r}(z) ,
and v|_{\partial B_{r}(z)}=f on \partial B_{r}(z) . We conclude that Axiom 2 is satisfied.

By Moser�s theorem ([13], [4], [7]), for any relatively compact subdomain G\subset$\Omega$_{q},
the Harnack inequality holds on G with respect to L_{ $\mu$} . Axiom 3 follows from this fact

when combined with Axiom 1.

Next we prove that there exists a potential f on $\Omega$_{q} . For this, we employ (weighted)
nonlinear potential theory [7]. Set w(x)=(1+|x|)^{ $\epsilon$} and  $\mu$(E)=\displaystyle \int_{E}w(x)dx . Fix

1<p<2 ,
and set

(3.3) f(x)=\left\{\begin{array}{ll}
x & \mathrm{f}\mathrm{o}\mathrm{r} |x|\leq 1,\\
x|x|^{ $\gamma$} & \mathrm{f}\mathrm{o}\mathrm{r} |x|>1,
\end{array}\right.
where  $\gamma$= $\epsilon$/(2-p) .

Then, f : \mathbb{R}^{2}\rightarrow \mathbb{R}^{2} is a quasiconformal mapping and the Jacobian determinant

J_{f}(x) of f at x(\in \mathbb{R}^{2}) satisfies

(3.4) J_{f}^{1-p/2}(x)\approx\left\{\begin{array}{l}
1 \mathrm{f}\mathrm{o}\mathrm{r} |x|\leq 1\\
=\max\{1, |x|^{ $\epsilon$}\}.\\
|x|^{ $\epsilon$} \mathrm{f}\mathrm{o}\mathrm{r} |x|>1
\end{array}\right.
By [7], J_{f}^{1-p/2} generates a doubling measure that supports a p‐Poincaré inequality

and, in particular a 2‐Poincaré inequality. Since w is comparable to J_{f}^{1-p/2} ,
it easily

follows that the doubling property and the 2‐Poincaré inequality hold for w as well. In

the terminology of [7], this means that w is 2‐admissible and hence the full theory of

[7] is at our disposal.
Let B(r)=B(0) be the disk with center 0 and radius r>0 . In order to prove

the existence of a nonconstant positive potential, we first prove that there exists a non‐

negative harmonic function f_{0} on \mathbb{R}^{2}\backslash \overline{B(3q+2)} with respect to L_{ $\mu$} such that f_{0}=1
on \partial B(3q+2) and \displaystyle \lim_{x\rightarrow\infty}f_{0}(x)=0 . To see this, by the statement and proof of [7,
Theorem 9.22] (see also [9]), it suffices to prove that \mathrm{c}\mathrm{a}\mathrm{p}_{2, $\mu$}(\overline{B(3q+2)}, \mathbb{R}^{2})>0 . Here,

given an open set G and a compact set E\subset G,

(3.5) \displaystyle \mathrm{c}\mathrm{a}\mathrm{p}_{2, $\mu$}(E, G)=\inf_{v\in W(E,G)}\int_{G}|\nabla v|^{2}d $\mu$,
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where W(E, G) ) = { v\in C_{0}^{\infty}(G) : v\geq 1 on E}.
Set A(r, R)=B(R)\backslash \overline{B(r)} . By [7, Theorem 2.18], for 3q+2<R,

\displaystyle \mathrm{c}\mathrm{a}\mathrm{p}_{2, $\mu$}(\overline{B(3q+2)}, B(R))\geq(2 $\pi$)^{2}(\int_{A(3q+2,R)}|x|^{-2}(1+|x|)^{- $\epsilon$}dx)^{-1}
=2 $\pi$(\displaystyle \int_{3q+2}^{R}r^{-2}(1+r)^{- $\epsilon$}rdr)^{-1}
>2 $\pi$(\displaystyle \int_{3q+2}^{\infty}r^{-1- $\epsilon$}dr)^{-1}
=2 $\pi \epsilon$(3q+2)^{ $\epsilon$}

Since the lower bound is independent of R ,
we conclude that

(3.6) \mathrm{c}\mathrm{a}\mathrm{p}_{2, $\mu$}(B(3q+2), \mathbb{R}^{2})\geq 2 $\pi \epsilon$(3q+2)^{ $\epsilon$}>0,

and the existence of f_{0} is shown.

By the reflection and a discussion similar to that above we obtain, for each  1\leq j\leq

 q-1 ,
a non‐negative harmonic function f_{j} on D_{j} with respect to L_{ $\mu$} so that f_{j}=1 on

\partial D_{j} and \displaystyle \lim_{x\rightarrow(3j,0)}f_{j}(x)=0.
Set

(3.7)  $\varphi$(x)=\left\{\begin{array}{ll}
1 & \mathrm{i}\mathrm{f} x\in\overline{B(3q+2)}\backslash \bigcup_{j=1}^{q-1}D_{j},\\
f_{j}(x) & \mathrm{i}\mathrm{f} x\in D_{j}, 0\leq j\leq q-1.
\end{array}\right.
Then  $\varphi$ is positive superharmonic function on  $\Omega$_{q} with respect to L_{ $\mu$} . Moreover,  $\varphi$ is

a potential on  $\Omega$_{q} . Indeed, let u be a non‐negative L_{ $\mu$} ‐harmonic function on $\Omega$_{q} with

 u\leq $\varphi$ on  $\Omega$_{q} . Since

\displaystyle \lim_{x\rightarrow\infty} $\varphi$(x)=0
and

\displaystyle \lim  $\varphi$(x)=0
x\rightarrow(3j,0)

for all j ,
the maximum principle yields that u=0.

Consequently, ($\Omega$_{q}, \mathcal{H}) is a \mathcal{P}‐Brelot harmonic space with a countable base.

Next we prove that \triangle_{1, $\mu$}^{$\Omega$_{q},M} consists of exactly q points. Set

HP_{+}^{0}(D_{0})=\displaystyle \{u\in HP_{+}(D_{0})|\lim_{x\rightarrow\partial D_{0}}u(x)=0\}.
First we prove that HP_{+}^{0}(D_{0}, $\Omega$_{q})=HP_{+}^{0}(D) and that HP_{+}^{0}(D_{0}, $\Omega$_{q}) has only one

minimal element up to proportionality. To show that HP_{+}^{0}(D_{0}, $\Omega$_{q})=HP_{+}^{0}(D) it

suffices to prove that each element of HP_{+}^{0}(D) is bounded.
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Take an element u of HP_{+}^{0}(D_{0}) . For r>0 ,
write C_{r} for the circle of radius r

centered at the origin 0 . By the Harnack inequality we find that there exists a positive

 $\gamma$ independent of  u and r>3q+6 so that

(3.8) \displaystyle \frac{1}{ $\gamma$}u(x)\leq u(y)\leq $\gamma$ u(x) for all x, y\in C_{r}.

Set

A_{r}=A(r, 3q+2)=B(r)\backslash \overline{B(3q+2)}

and x_{0}=(3q+4,0) . Let $\omega$_{x_{0}}^{A_{r}} be the L_{ $\mu$} ‐harmonic measure relative to A_{r} and x_{0} . Then

(3.9) u(x_{0})=\displaystyle \int_{C_{r}}ud$\omega$_{x_{0}}^{A_{r}}.
Recall that there exists a non‐negative harmonic function f_{0} on \mathbb{R}^{2}\backslash \overline{B(3q+2)} with

respect to L_{ $\mu$} such that f_{0}=1 on \partial B(3q+2) and \displaystyle \lim_{x\rightarrow\infty}f_{0}(x)=0 . Set g_{0}=1-f_{0}.

By the maximum principle and symmetry of L_{ $\mu$} ,
we find that g_{0}(x)=g_{0}(y) ,

for every

x, y\in C_{r} . Replacing u by g_{0} in (3.9) we obtain

(3.10) g_{0}(x_{0})=\displaystyle \int_{C_{r}}g_{0}d$\omega$_{x_{0}}^{A_{r}}=g_{0}((r, 0))$\omega$_{x_{0}}^{A_{r}} (Cr).

By (3.8), (3.9) and (3.10) we have, for any x\in C_{r},

(3.11) \displaystyle \frac{g_{0}(x_{0})}{ $\gamma$ g_{0}((r,0))}u(x)\leq u(x_{0})=\int_{\partial A_{r}}ud$\omega$_{x_{0}}^{A_{r}}\leq\frac{ $\gamma$ g_{0}(x_{0})}{g_{0}((r,0))}u(x) .

Since \displaystyle \lim_{x\rightarrow\infty}g_{0}(x)=1 ,
there exists positive number r_{0}>3q+6 with

1/2<g_{0}((r, 0))\leq 1 for r\geq r_{0}.

Hence we have

\displaystyle \frac{u(x_{0})}{2 $\gamma$ g_{0}(x_{0})}\leq u(x)\leq\frac{ $\gamma$ u(x_{0})}{g_{0}(x_{0})},
for any x\in \mathbb{R}^{2}\backslash \overline{B(r_{0})} . Thus, by the maximum principle, u is bounded on D_{0} and hence

HP_{+}^{0}(D_{0})\subset HP_{+}^{0}(D_{0}, $\Omega$_{q}) .

Since the converse inclusion holds in general, we have that HP_{+}^{0}(D_{0}, $\Omega$_{q})=HP_{+}^{0} (D0).
Next, let h be a minimal element of HP_{+}^{0}(D_{0}, $\Omega$_{q}) . Take any element u of

HP_{+}^{0}(D_{0}, $\Omega$_{q}) . By the above discussion, we have, for each x\in \mathbb{R}^{2}\backslash \overline{B(r_{0})} , that

(3.12) \displaystyle \frac{u(x_{0})}{2 $\gamma$ g_{0}(x_{0})}\leq u(x)\leq\frac{ $\gamma$ u(x_{0})}{g_{0}(x_{0})},
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and

(3.13) \displaystyle \frac{h(x_{0})}{2 $\gamma$ g_{0}(x_{0})}\leq h(x)\leq\frac{ $\gamma$ h(x_{0})}{g_{0}(x_{0})}.
Hence, for all x\in \mathbb{R}^{2}\backslash \overline{B(r_{0})}

(3.14) u(x)\displaystyle \leq\frac{2$\gamma$^{2}u(x_{0})}{h(x_{0})}h(x) .

By maximum principle we have, for every x\in D_{0},

(3.15) u(x)\displaystyle \leq\frac{2$\gamma$^{2}u(x_{0})}{h(x_{0})}h(x) .

By minimality, there exists a positive c with u=ch on D_{0} . Hence, every element of

HP_{+}^{0}(D_{0}, $\Omega$_{q}) is proportional to h . This means that HP_{+}^{0}(D_{0}, $\Omega$_{q}) has only one minimal

element up to proportionality.

Similarly, we arrive at the conclusion that each HP_{+}^{0}(D_{i}, $\Omega$_{q}) has only one minimal

point up to proportionality.
Next we prove that \#\triangle_{1, $\mu$}^{$\Omega$_{q},M}\leq q . To prove this it suffices to show that, for each

minimal element v of HP_{+}($\Omega$_{q}) ,
there exists a unique integer 0\leq j\leq q-1 such

that v\in HP_{+}($\Omega$_{q}, D_{j}) . For, if another minimal element v' of HP() satisfies

v'\in HP_{+}($\Omega$_{q}, D_{j}) ,
both S_{D_{j}}(v) and S_{D_{j}}(v') are minimal elements of HP_{+}($\Omega$_{q}, D_{j})

by Proposition 2.4. Since HP_{+}($\Omega$_{q}, D_{j}) has only one minimal element up to propor‐

tionality, there exists a positive constant  $\alpha$ with  S_{D_{j}}(v')= $\alpha$ S_{D_{j}}(v) ,
and hence, by

Proposition 2.2, v'= $\alpha$ v and we arrive at the desired inequality \#\triangle_{1, $\mu$}^{$\Omega$_{q},M}\leq q.
It remains to prove the claim from the preceding paragraph. To this end, we only

have to prove that, for any minimal element v of HP_{+}() ,
there exists a unique j such

that

\hat{R}_{l $\nu$}^{$\Omega$_{q}\backslash D_{j}}\neq v,

since \hat{R}_{l $\nu$}^{$\Omega$_{q}\backslash D_{j}} is a potential if and only if \hat{R}_{l $\nu$}^{$\Omega$_{q}\backslash D_{j}}\neq v (cf. [3, Hilfssatz 11.2], [14]). For

this, take any minimal element v of HP_{+}($\Omega$_{q}) . Set K=\displaystyle \overline{B(3q+2)}\backslash \bigcup_{i=1}^{q-1}D_{i} . Since K is

compact, \hat{R}_{l $\nu$}^{K} is a potential on $\Omega$_{q} (cf. [2, Proposition 5.3.5]), and hence \hat{R}_{l $\nu$}^{K}\neq v . Thus,
there exists a j with \hat{R}_{l $\nu$}^{K}\neq v on D_{j} ,

that is, \hat{R}_{l $\nu$}^{$\Omega$_{q}\backslash D_{j}}\neq v on D_{j} (cf. [2, Proposition

5.3.3]). Suppose that there exists another j' with \hat{R}_{l $\nu$}^{K}\neq v on D_{j'} . We remark that

every boundary point of D_{i} is regular. Then, on D_{j}(\subset$\Omega$_{q}\backslash D_{j'}) , \hat{R}_{l $\nu$}^{$\Omega$_{q}\backslash D_{j'}}=v\geq S_{D_{j}}(v) .

By the definition,

\hat{R}_{l $\nu$}^{$\Omega$_{q}\backslash D_{j'}}\geq R_{D_{j}}(S_{D_{j}}(v))=v
on $\Omega$_{q} ,

and hence, \hat{R}_{l $\nu$}^{$\Omega$_{q}\backslash D_{j'}}=v on $\Omega$_{q} . Since \hat{R}_{l $\nu$}^{K}=\hat{R}_{l $\nu$}^{$\Omega$_{q}\backslash D_{j'}} on D_{j'} ,
this contradicts

our assumption.
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Finally we prove that \#\triangle_{1, $\mu$}^{$\Omega$_{q},M}\geq q . Take a minimal element h_{j} of HP_{+}^{0}(D_{j}, $\Omega$_{q}) .

By Proposition 2.4 there exists a minimal element R_{D_{j}}(h) of HP_{+}($\Omega$_{q}, D_{j}) . Since

D_{i}\cap D_{j}=\emptyset(i\neq j) , by Proposition 2.5

HP_{+}($\Omega$_{q}, D_{i})\cap HP_{+}($\Omega$_{q}, D_{j})=\{0\},

that is, R_{D_{i}}(h) and R_{D_{j}}(h) are minimal elements of HP_{+}($\Omega$_{q}) ,
but they are not

proportional each other. Hence \#\triangle_{1, $\mu$}^{$\Omega$_{q},M}\geq q.
In conclusion, \#\triangle_{1, $\mu$}^{$\Omega$_{q},M}=q.
By the above discussion in the proof of that \#\triangle_{1, $\mu$}^{$\Omega$_{q},M}=q ,

we find that HP_{+}() has

exactly q minimal elements h_{0}, \cdots, h_{q-1} such that each S_{D_{j}}(h) is a minimal element

of HP_{+}^{0}(D_{j}, $\Omega$_{q}) . By the Martin representation theorem, we find that, if u\in HP_{+}
there exist non‐negative constants $\alpha$_{j} with

u=\displaystyle \sum_{j=0}^{q-1}$\alpha$_{j}h_{j}.
Since each h_{j} is bounded on $\Omega$_{q}, u\in HB() whence HP($\Omega$_{q})\subset HB($\Omega$_{q}) . It is well‐

known that HB($\Omega$_{q})\subset H_{ $\Phi$}()\subset HP($\Omega$_{q}) . Thus

HB($\Omega$_{q})=H_{ $\Phi$}($\Omega$_{q})=HP($\Omega$_{q}) .

Therefore this \mathcal{P}‐Brelot harmonic space ($\Omega$_{q}, \mathcal{H}) gives us an example of a setting where

the conditions both of Theorems 1.1 and 1.2 hold.

Example 3.2. Let $\Omega$_{q}, q\geq 2 ,
be as in Example 3.1. Pick y_{0}=(3q, 0) and write

 $\Omega$=$\Omega$_{q}\backslash \{y_{0}\} . In this example we consider harmonic space ( $\Omega$, \mathcal{H}) ,
where the harmonic

sheaf \mathcal{H} is that inherited from ($\Omega$_{q}, \mathcal{H}) in Example 3.1. We show that in this setup the

conditions of Theorem 1.1 hold, but those of Theorem 1.2 fail.

Let D_{j}, 0\leq j\leq q-1 ,
be as in Example 3.1 and let

D_{q}=B_{1}(y_{0})\backslash \{y_{0}\}.

It is well‐known that

H_{q}(x)=\log|x-y_{0}|^{-1}
is the unique minimal element of HP_{+}^{0}(D) up to proportionality. Set

D_{0,n}=A(n+3q+2,3q+2) ,

D_{j,n}=B_{1/n}((3j, 0))\backslash \{(3j, 0)\}

and

F_{n}=B_{n+3q+2}(0)\displaystyle \backslash (D_{q}\cup(\bigcup_{j=1}^{q-1}\overline{D_{j,n}})) .
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Set

k_{n}(x)=\left\{\begin{array}{ll}
1 & \mathrm{i}\mathrm{f} x\in\partial D_{q}\cap\partial F_{n},\\
0 & \mathrm{i}\mathrm{f} x\in\partial D_{j,n}\cap\partial F_{n},
\end{array}\right.
and let $\chi$_{n} be the Dirichlet solution for k_{n} on F_{n} . For any integer l

,
a sequence \{$\chi$_{n}\}_{n=l}^{\infty}

is increasing and uniformly bounded on F_{l} ,
and hence there exists a harmonic function

 $\chi$ on  $\Omega$\backslash \overline{D_{q}} such that \{$\chi$_{n}\}_{n=1}^{\infty} converges to  $\chi$ locally uniformly on  $\Omega$\backslash \overline{D_{q}} . For a positive
number  $\beta$ ,

set

 v_{ $\beta$}(x)=\left\{\begin{array}{ll}
 $\chi$(x) & \mathrm{i}\mathrm{f} x\in $\Omega$\backslash \overline{D_{q}},\\
 $\beta$ H_{q}+1 & \mathrm{i}\mathrm{f} x\in\overline{D_{q}}.
\end{array}\right.
Then, by the symmetry principle and the minimum principle we can find an appropriate
constant $\beta$_{0} such that v_{$\beta$_{0}} is superharmonic on  $\Omega$ . Hence  HP_{+}^{0}(D_{q},  $\Omega$)=HP_{+}^{0}(D_{q}) . By

Proposition 2.4 we get a minimal harmonic function R(H) on  $\Omega$ . Thus there exists

positive constant  c_{1} with c_{1}R(H_{q})\in\triangle_{1, $\mu$}^{ $\Omega$,M} . Set h_{q}=c_{1}R_{H_{q}}.
By the same argument as that in Example 3.1, we find that \#\triangle_{1, $\mu$}^{ $\Omega$,M}=q+1 . Let h_{j},

0\leq j\leq q-1 be as in Example 3.1. Then, each h_{j} is identified with a minimal element

of HP_{+}() . For this, suppose that u is a non‐negative minimal harmonic function on

$\Omega$_{q} . Then u is a positive harmonic function on  $\Omega$ . Suppose that  v is a positive harmonic

function on  $\Omega$ and  v\leq u on  $\Omega$ . Since \{y_{0}\} is a polar set of $\Omega$_{q} and v is bounded on a

punctured neighborhood of y_{0}, v has an unique extension v' on y_{0} such that v'\in H($\Omega$_{q})
by the removability theorem. Thus v'\leq u on $\Omega$_{q} . By minimality of u we can find a

positive constant  $\alpha$ with  v'= $\alpha$ u on $\Omega$_{q} ,
that is, v= $\alpha$ u on  $\Omega$ . This means that  u is

a minimal element of HP_{+}() ,
whence each h_{j} is identified with a minimal element of

HP_{+}($\Omega$_{q}) . Consequently,

\triangle_{1, $\mu$}^{M}( $\Omega$)=\triangle_{1, $\mu$}^{M}($\Omega$_{q})\cup\{h_{q}\}=\{h_{0}, h_{1}, . . . , h_{q}\}.

By a similar argument as in the preceding paragraph we find that each h\in HB()
can be identified with an element from HB($\Omega$_{q}) . Therefore \dim HB( $\Omega$)=q<\infty by

Example 3.1; and consequently for every  $\Phi$\in \mathcal{N},

HB( $\Omega$)=H()

by Theorem 1.1. However the conditions of Theorem 1.2 do not hold, since

h_{q}\in HP( $\Omega$)\backslash HB() .
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