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An isoperimetric inequality
for extremal Sobolev functions

By

Tom CARROLL* and Jesse RATZKIN**

Abstract

Let D C R" be a bounded domain with a Lipschitz boundary, let 1 < p < 22, and let ¢

n—27
minimize the ratio ||Vul||z2(p)/||u|lz»(p)y over all functions u vanishing on the boundary of D.

After presenting a short survey of some results on the value of this minimum, the Sobolev
constant, we present a proof of a reverse Holder inequality for the eigenfunction ¢, finding a
lower bound for ||¢||;»—1 in terms of ||¢||». This result generalizes an inequality due to Payne
and Rayner [16, 17] regarding eigenfunctions of the Laplacian.

§1. Introduction and statement of results

The eigenvalue problem for the Dirichlet Laplacian —A plays a fundamental role in the
study of solutions of both the wave equation and the heat equation in a bounded region
D in R™. In the case of the wave equation, the smallest eigenvalue A(D) determines the
fundamental frequency of the domain when the boundary is clamped. In the case of the
heat equation, it determines the slowest heat dissipation rate for an initial temperature
distribution in a body of shape D when the boundary is held at temperature zero. The
principal eigenvalue A(D) is positive and the corresponding eigenfunctions ¢ have con-
stant sign. It is the smallest A for which there is a non-trivial solution of the eigenvalue
problem Au + Au = 0 in D with zero Dirichlet boundary conditions, and can also be
viewed in terms of the energy minimization problem

Vul?d
AD) = inf{% cu € C§P(D), u# 0} .
D
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2 ToM CARROLL AND JESSE RATZKIN

Here dy refers to Lebesgue measure on R”.

Minimization of the energy integral [, |Vu|? dy normalized by the L'(D) norm of
the test function u leads to another important quantity in mathematical physics, namely
the torsional rigidity. It may be defined by

(fDUd“)2 ,
fD |VU|2dH '

The torsional rigidity P(D) of a bounded, simply connected region D in the plane is

P(D):4sup{ uECSO(D),ugéO}.

a measure of the strength under torsion of a beam which has D as its cross section.
The corresponding extremal function ¢ is known as the torsion function and satisfies
A¢ + 2 = 0 with zero Dirichlet data. The partial derivatives of ¢ give the stresses in
the beam under torsion. The solution of this boundary value problem also returns the
expected exit time of standard Brownian motion from D.

One may work with a more general Rayleigh quotient. Let 1 < p < % (or any
p > 1if n = 2). For this range of exponents, the Sobolev embedding W, *(D) < LP(D)
is compact, and so the infimum

fD |Vul?du '
(f,, ulpdu)®?

is finite and achieved by a nontrivial function ¢ = ¢,,. Here the Sobolev space I/VO1 ’Q(D) is

(1.1) Cp(D) = inf{ e W, (D), u # o}

the closure of C§°(D) under the norm |[ul|%1.. = |ul|3:4|Vul|7.. From this perspective,
Cp(D) gives the sharp constant S,(D) in the Sobolev embedding. In fact, for the above
mentioned range of p,

Wy (D) C LP(D) with |ullo(p) < Spl|Vullz2p), Yue Wy?(D),

so that
1
Cp(D)

This sharp Sobolev constant S,(D) and its associated extremal function ¢, are both

Sp(D) =

the subject of a vast literature, and incorporate much information relating the function
theory and the geometry of D (see, for example, [3] or a recent paper by Franzina and
Lamberti [9] and the references therein). In particular, a long list of results encompass
isoperimetric-type inequalities of various sorts, (see, for example, [16, 6, 1, 5]). Note
that Ca(D) coincides with the principal frequency A(D), while the torsional rigidity is
P(D)=4/Cy(D).

In general, an extremal function ¢ for (1.1) is a solution of the boundary value
problem

(1.2) AG+AF =0, ¢lyp =0,
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Without loss of generality we can take ¢ > 0 inside D. General regularity results imply
that ¢ € C3°(D), and a short integration by parts argument [3, Lemma 2] shows that

2-p

(13) A=) ([ o)’

For 1 < p < 2, there is a unique positive solution (see, for example, Dai, He, and Hu
[8], Colesanti [7], or Pohozaev [18]).

While principal frequency is certainly a special case of the sharp Sobolev constant
Cp(D), it is also the special case p = 2 of the eigenvalue of the p-Laplacian. This is the
first eigenvalue for

div(|VulP?Vu) + A fulP?u = 0,

and is also given by

Jp IVul? du
WI ’U/EWOLP(D),U;:_éO s
D

see, for example, Lindqvist [12] and Fusco, Maggi, and Pratelli [10]. The most general

Ap(D) = inf {

Dirichlet eigenvalue in this context is probably

Jp [VulP du .
(f,, [ule du)™

defined for 1 < ¢ < Tf;_"p if 1 < p < n,orforanyq>1if p>n. This eigenvalue appears,

Ap.q(D) = inf{ Wy (D), u # 0} ,

for example, in recent work of Brasco [2] in which a rearrangement technique of Kohler-
Jobin is used to show that the ball minimizes an appropriate scale invariant quotient
of the eigenvalues A\, ; and A, 1. If one thinks of 1/), 1 as a ‘p-torsional rigidity’ then
this is a generalisation of Kohler-Jobin’s famous result [14, 15], in answer to a question
of Pélga and Szegd, that balls mimimize principal frequency among all sets of given
torsional rigidity. From this general point of view, the eigenvalue for the p-Laplacian is
Ap(D) = Ap p(D) while the Sobolev constant is C,,(D) = A2 p(D).

A guiding motivation of the work in this area is to discover what results for principal
frequency or for torsional rigidity hold for these more general eigenvalues. Note that
Cp(D) depends monotonically on the domain D, and obeys the scaling law

Vol(rD)*?C,(rD) = r"~2Vol(D)?/PC,(D).
It can be shown (see [3]) that if 1 < p < ¢ then
Vol(D)?/?C, (D) > Vol(D)¥C,(D).

This extends the inequality A(D) P(D) < 4 Area (D), which relates fundamental fre-
quency and torsional rigidity and appears in Pdlya and Szegd’s book [19].
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Various counterparts of the classical isoperimetric inequality play a prominent role.
St. Venant’s Principle, proved by Pdlya in the 1950’s, states that among all regions of
given volume a ball has the largest torsional rigidity. The ball also has the smallest
fundamental frequency among all regions of given volume, which is the famous Faber-
Krahn Theorem from the 1920’s. These results are subsumed by the following more
general isoperimetric inequality: let D* be a ball with the same volume as D and p > 1,
then

C,(D) = C,(D*)

with equality if and only if D itself is a ball (see [3], for example, for a proof).

As is often the case, upper bounds are possible in the case of convex regions.
Rather than specifying the volume of the region, however, it is more natural to fix its
inradius R(D), this being the supremum radius of all balls contained in D. Let ¢ be
a positive solution of A¢ + A@¢?~! = 0 on a convex region D, with ¢ = 0 on dD. Let
oy = max{¢p(x) : x € D}. Then

2\

¢ P < WR(D)Q where
P

/1 dt

Ay = —_—

0o V1—1tP

Equality holds in the case of a strip / slab. The proof of this inequality in [3] makes
use of Payne’s P-function as described in Section 6.2.2 of the book [20] by Sperb. This
inequality is a generalisation of both Hersch’s result [11] for fundamental frequency to

the effect that

7.‘_2

A(D) > W

and of Sperb’s result [20] that the maximum value of the torsion function ¢ obeys
ou < R(D).

The main focus of the present work begins with a reverse Holder inequality due to
Payne and Rayner [16] for the first Dirichlet eigenfuntion ¢ of the Laplacian in a region
D in two dimensions. Payne and Rayner proved that

(1.4) (/D¢du>2 > %/Dcfdu-

In [4], we extended this inequality to general p recovering, in the case p = 1, Saint
Venant’s Principle that among all planar regions of prescribed area a disk has the
largest torsional rigidity. The original inequality (1.4) of Payne and Rayner, and its
extension to a range of values of p in [4], are very much two-dimensional results. In [17],
Payne and Rayner extended their inequality to higher dimensions, though they describe
these extensions as ‘not entirely satisfactory’. A more satisfactory extension of (1.4) to
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higher dimensions was given first by Kohler-Jobin [13] and subsequently strengthened
by Chiti [6], using rearrangement techniques of Talenti [21], to more general elliptic
operators. Chiti also dealt completely with the case of equality.

In the present work, we return to the original Payne and Rayner inequality (1.4)
and prove a version for the Sobolev constant Cp(D) which is valid in all dimensions
and which directly extends the work of Payne and Rayner in [17]. Even if our reverse
Holder inequality for the eigenfunction(s) corresponding to the Sobolev constant C, (D)
suffers from the same drawbacks as the original higher dimension inequality of Payne
and Rayner in [17], it may still be of some interest.

We need to set notation before stating this result. We denote the induced area
element on a hypersurface > C R" by do. We write the appropriate dimensional volume
of a set Q as ||, that is if @ C R™ is an open set then |Q] = p(Q2) and if ¥ C R" is a
hypersurface then |X| = o(X). If By C R™ is the unit ball, we denote |B;| = wy, so that

Theorem 1.1. Let p > 1 and let D C R" be a bounded domain with Lipschitz
boundary. Let C,(D) be the sharp Sobolev constant defined by (1.1), and let ¢ be its
associated extremal function. Let D* be a ball with the same volume as D. Then

09 () 2t oty 5 ] (] )

Equality holds if and only if D is a ball.

2(p—1)

The Holder inequality implies that for any u € Wy"*(D) we have

[t e ([ ulran)
D D

For this reason, upper bounds of the form (1.5) are called reverse-Holder inequalities.
The drawback with (1.5) is that the inequality becomes trivial if the right hand side
is negative, which will be the case if C,(D) is large compared with C,(D*). In general,

T

it is not possible to bound C,(D) from above in terms of C,(D*) or, in other words, it
is not possible to bound C,(D) from above in terms of the volume of D. Nevertheless,
observe that the inequality (1.5) is isoperimetric and that we recover the main inequality
of [17] in the case p = 2, and that we recover the reverse-Holder inequality of [4] in the
case n = 2.

§2. Proof of the main theorem

We begin by briefly outlining our strategy for proving (1.5), which we adapted from
Payne and Rayner’s proof in [17]. Let M = sup,cp ¢(z) and, for 0 <t < M, we define

Di={zeD:¢(x)>t), S ={xeD:¢()=t.
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By Sard’s theorem, we have ¥; = 9D, for almost every value of t. To prove (1.5) we
define the auxilliary function

H(t) = /bepld“ /Tpl/ W' t e 0, M].

In Section 2.1 we derive lower bounds for the second derivative of H, and in Section 2.2
we integrate these to obtain several integral inequalites for H and for powers of ¢. In
Section 2.3 we examine a one-dimensional eigenvalue problem which arises in the course
of the proof and identify its solution in terms of C,(D*). The proof of (1.5) is completed
in Section 2.4.

§2.1. Differential inequalities
We let V(t) = |D,|. Then, by the co-area formula,

iy~ [ 4o
Vi(t) = /Et|v¢|<0.

Thus V' is a monotone function of ¢, and we can invert it to obtain ¢ = t(V'), with

dt 1 1

av V(1) __fztld;jm'

This, in turn, implies that

dH  dH dt do 1
(2.1) W aaav <_tp_1/ _> ' ( ) =
dv — dt dV s |Vl s, o TVl

an identity which will prove useful at several points in our computations. Taking one
more derivative shows that

d?’H d (- 1) (p—l)tp_2
avez — dav fzt|$—7¢|

Lemma 2.1.  The function H satisfies

d*H

> -1 )Y

2 2(n—_1) ?
ann/nV ™

with the boundary conditions H(0) = 0 and H'(|D|) = 0. Moreover, equality in (2.2)
forces D to be a ball, and forces the function ¢ to be radially symmetric.

(2.2)

€ [0,[D].

Proof. By the Cauchy-Schwarz inequality,

= ([ o) ([ )
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which we can rearrange to read

do |Et|2
(23) /2 Vol © To Voldo

Since ¥ is a level-set of ¢, we may use the divergence theorem and (1.2) to obtain

09
Vo|do = —
. Ve o o

_ p=1 g, —
)\/thﬁ i = NH(1).

do = —/ A¢du
D,

Combining this with (2.3) we obtain

do |Et|2
. . wa 2 s

By the classical isoperimetric inequality,

(2.5) [S0[2 > 0202/ Dy | = 2w/
Together with (2.4), this shows that
d*H tp—2 S AH(V
WZ—(P >—(p—1)tr? 2(2)
fzt Vol 2]
_ ANH(V)
>_(p—1)tP2 .
- (p 1) t n2w%/nv 2(nn—1)

Notice that the boundary conditions for this differential inequality are

(2.6) H(0) =0, H'(|D|) = t""|,_,=0

Moreover, we only have equality in (2.2) for each V in [0, |D[] if we have equality in

(2.5) for almost every ¢, which in turn implies that ¥, is a round sphere for almost
every t € [0, M]. This is possible only if D is itself a ball. Also, equality in (2.2) forces
equality in (2.3), which implies |V¢| must be constant on each sphere ¥, and so ¢ must

be radial.

We change variables by letting p = (V/w,)'/™ be the volume radius of D,, so that
= |Dy| = wpp™. We also define pps = (|D|/wn)™. As a function of p, the function

H satisfies the boundary conditions

(2.7) H0)=H0)=---=H"Y0)=0, H'(py)=0.
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Lemma 2.2.

d L dH N\ 2p 4,
(2.8) & [(pl d—p) ] > =\ (nwn) =1 pt " H(p), 0<p<pu

Proof. Taking derivatives, we see that

dH p'™™dH d2H p'™ d (pl_" dH)

2.9 — = - - = _
(29) AV nw, dp’ dV?  nw, dp

nw, dp

Substituting these expressions in (2.2) gives

d [, . dH .
(2.10) (o) = var2 )
However,
pos _AH g aH
v nw, dp’

so that (2.10) becomes

d o dH
dp e dp

This we can rewrite as

LGt - dH\ 7 a
- L= — [(pl‘”—> ] > A (nwn) >t p' 7" H(p).

\/
<
’—l
SN—
>/
VS
3
&
S
SN—
=
i
VN
e
)
Q.
S
N——
1]
)
-
3
=
s
SN—

p—l(l_nd_H>§—i? dp dp
P dp

|
Remark 1.  Since (2.8) is really the same as (2.2) rewritten in different variables,

equality holds in (2.8) for 0 < p < pas if and only if D is a ball and ¢ is radial.

§2.2. Integral inequalities

In this section we integrate (2.2) and (2.8) to obtain inequalities for the integral of
H and the integral of powers of ¢. As each of these inequalities is an integrated form
of (2.2) and (2.8), equality holds if and only if D is a ball and ¢ is radial.

Lemma 2.3.

(o) 22 ([

D] i
o [ e ar
0

2(p—1)
P

n
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Proof.  'We multiply the inequality (2.2) by LV (_5)1/(;)—1) and integrate from
0 to |D|. Upon integration, the left hand side becomes

/|D| P v dH 1/(p—1) d2 . /|D|V d dH p/(p—1)
. p—1 \av av? . av |[\av

(N P pt g\ /D) v
(w) |, L @)

dVv
D
0

:_/OlDl tp(V)dV:—/Dqﬁpdu.

The boundary terms in the integration by parts vanished since H'(|D|) = 0, while (2.1)

was used at the third step. On the other hand, using (2.1) again, the right hand side
becomes

|D| 1/(p—1) o
__PA / V(@> =2 {1 VR v
0

n2w,2/n dV
pr [P AH\ 7% 2w dH
_ / tp—?(—> vEEEV) S gy
0

av

n2w2/m dv dv
|D]
—n 2ty i i g
o ?/"/o 2 )V (V) S v
|D]
pPA 2-n dH
=——F n HV)—d
anZ/n/o v V) dv v
We combine these last two equations and replace A by C, ( ) ([ p PPdu ) ~p)/p to obtain
O pC (D) D] dH
P d <= P SEH(V) ——d
pC (D) /lDlvz = 4y av
2n2w2/n av
o LICINTIES K Ld +n_2 |D|H2(V)VMCZV
2n2 2/” H n 0 ’
which we can rearrange to give (2.11). O

Lemma 2.4.

Py AdH D\ PoT _ rpum
ey [ (fl—p) dp < M) [ g 1) dp.
0 0

Equality holds if and only if D is a ball.
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Proof. We mutliply (2.8) by H and integrate from 0 to pps. The boundary con-

ditions (2.7) imply that p!=" dd—lj is bounded at 0. Hence the boundary terms vanish in

the integration parts below, and we obtain that

[ () [ ),
o dp S R L dp

D pPM
< A (nwy) =T / p' " H?(p) dp.
0

Lemma 2.5. With ¢, H, and p defined as above,
My (dH\ T 1
(2.13) / pr1 (—) dp = (nwy) 7T / ¢ dp.
0 dp D

Proof. We use (2.1) and (2.9) to conclude that

PM . (dH\ 7T oMo, (dHN\TT
prP—1 (—) dp:/ pr )T (—) Pt dp
/0 dp 0 ( ) dp

dH\ 7T dV
p —_—

( nWwn,
A CE A L
Jo "dv nwn,

o [Pl raE 75T
z(nwn)p— /0 (W) dv

Corollary 2.6.

(2.14) e, ( /D o du>

Moreover, we have equality if and only if D is a ball and ¢ is radial.

2(p—1)
p

PM
<Gl [ ) dp
0

Proof. Combine (2.12), (2.13), and (1.3). O
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Lemma 2.7.
n2 2/n D
o ([ 0) 22 ([
pcp( ) D
~n= 2w DI [ ) dp
0

Equality holds if and only if D is a ball.

2(p—1)

Proof. Since p(V) = (V/wy) l/n, we have

dp
1/n — _
dVV L
so that
|D| . |D| 20-n)
/ V2(1n 1) HQ(V) dV: H2( ) p2(1 n) nw]_/n (wnp ) nl dp dv
0 0 dV
I =0 20\ d
= nwn P (p) dp.
0
Using this identity in (2.11) gives (2.15). O

§2.3. An auxiliary one dimensional eigenvalue problem

Motivated by (2.12) and (2.7), we define A, by

PM 1—n
(2.16) A, = inf (/ prt f/(p)7T dp Pt f2(p)
0

where the infimum is over all functions on [0, pas] for which

(2.17) FO)=F ()= =f"D0)=0=f(pm), [f#O.

Remark 2. Notice that we have rescaled the numerator to make the quotient
scale-invariant. This does not, however, affect the Euler-Lagrange equation involved.

Lemma 2.8.  The Euler-Lagrange equation for the variational problem (2.16),
with the boundary conditions (2.17), is

n—1

(2.18) £(0) = L2 F (o) + A ()] P () =

Proof. Since the ratio defining A, is scale-invariant, we may restrict our attention
to either of the constrained critical point problems:

PM n PM
minimize / p;Tl f/(p)% dp subject to / p' 7" f*(p)dp = constant
0 0
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or

1—n §2

Py Py
maximize / p " f2(p)dp subject to / p»—t f'(p)P dp = constant.
0 0

Regardless, the method of Lagrange multipliers implies that a constrained critical point
f satisfies

R A d
p—1 —_— —_ d :A—
ezo/o g (dp“dp) PR

for any admissible g. On evaluating these derivatives, using the boundary conditions

d

de

par 5
/O P [f(p) +eg(p)] dp,

e=0

(2.17) to see that p1=™ f/(p) is bounded at 0 and that consequently the boundary terms
arising from integration by parts vanish, we obtain

24 [ 5 1) o) do

PM o d ﬁd
I g (_f> dg 4

2-p 2 _1
N Ry L SR A e AT
Tp—t1)y T p—tf dp d? T p—1” dp P

This must hold for all choices of g, hence (absorbing a factor of 2(p — 1)?/p into the
Lagrange multiplier A) we must have

0=p7= /()2 1"(p) = (n = 1) p 7T f'())TT + A p* " f(p)
=0 P )5 |0~ (0= Do P o)+ A [ (0] ()|

as claimed. O
Lemma 2.9.  Let D* be the ball B,,, of radius par. Then,

(2.19) A, < (nwn) 7 Cy(D7).
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Proof. We use the function H(p) for the ball B,,,, as a test function for the quotient
defining A, and use (2.12), (1.3), and (2.13) in the case of a ball:

P M
A*§</ T ( p1dp / lnH2 dp
0

<o) ([T o) ldp>

2—p p—2

=B @) ([ wan) " oo [ ol

2(17 1)

O

In order to obtain a lower bound for A, in terms of C,(D*), we first need to relate
the particular A occurring in the Euler-Lagrage equation (2.18) to the eigenvalue A,
just as (1.3) relates the number A occurring in the Euler-Lagrange equation (1.2) to the
eigenvalue C, (D).

Lemma 2.10.  Let f be a minimizer for A, given by (2.16) with the boundary
conditions (2.17) and satisfy the Euler-Lagrange equation (2.18), written as

d

(2.20) o7 ()T 4 At (o) =

Then

2—p

pM » P
(2.21) A=A, (/0 pr—1 f/(p)ﬁ dp) .

Proof. Multiply the Euler-Lagrange equation (2.20) across by f(p) and integrate
from 0 to pps to obtain

PM d

1o 5 [ @R do s [0 pdo =0,

0
Integrating by parts in the first term and using the boundary conditions (2.17) gives

PM 1

1o 5 [ 0] do = [ o 0

0

from which it follows that

M » PM
A= =1 f/(p)p-T 1-n 2 dp.
/O p?=1 f'(p) dp/ /O p " f(p)”dp
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We can use (2.16) to write Pt f2(p) dp in terms of A, since f is a minimizer for
this Rayleigh quotient, leadlng to

o, o N\
A=A, (/ pﬁf’(p)ﬁdf)) ,
0

which is (2.21). O
Lemma 2.11.

p—2

(2.22) Cp(D*) < (nwn) "7 A,

Proof. Let f be a minimizer for the generalized Rayleigh quotient (2.16) defining
A.. Set

PM
Y(p) =/ r " f(r) dr, 0<p<pm,
P

so that ¥ (par) = 0. Then ¢(p) (where p = |z| for x € D*) is an admissible test function
for the quotient defining C,(D*), from which it follows that

22) D)< )T [ 2 dp / ( [ ooty dp)%.

Now

M M M
)[R = [ )] do= [ )R

Next, using the Euler-Lagrange equation (2.20),

w<p>=/pM " f(r)dr

where we used f’(pas) = 0. From this we obtain that

oM 1 PM 1 1 p(1—n)
/ p" ¢(p)pdp=/ Pt = p T fl(p)F T dp
0 0 AP

1 M

- =T f/(p) 7T
(2.25) a7 J'(p)»=T dp.
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With the help of the identities (2.24) and (2.25), we can write the numerator and the
denominator of the right hand side of (2.23) in terms of the minimizer f for A,. We
find, using that f minimizes the quotient for A, at the second step and using (2.21) at
the last step, that

o 2% M . P
220 607 <) T [ o2 [ (55 [0 07 o)

p_—2A2 OM 1on ., N 2(p;1)_%
(2.27) = (nwn) 7 5= (/ pr=t [(p)7=T dp)
+ \Jo
=2 1 PM 4 /NP = ’
(2.:28) = (nwn) 7 = A (/ pr=t f(p)7=T dp>
* 0
pP—2 A2 p—2
(2.29) = (nwy) 7 A—* = (nwy) 7 A

§2.4. Completion of the proof of Theorem 1.1

We are now finally in a position to complete the proof of Theorem 1.1. Indeed,
since H(p) is an admissible function for A* as defined by (2.16), we have

2(p—1)

pau 1 ([P amw (dH\ 7T ’
1—n 2
p"H(p)dp < — / pr1 <—> dp

2(p—1)

& (o )

2(p—1)
1 2/p (/ P > g
= —(nwn oPd
A*( ) Rl

2(p—1)
__nwy pd> P
C,(D") ([

where we used the identity A, = (nwn)z_gch(D*) resulting from (2.19) and (2.22).
Moreover, equality holds if and only if D is a ball and ¢ is radial. The identity (2.13)
was used at the second step above. Substituting this last inequality into (2.15), we have

2 2 2/n
1 2n“wn n-2
(o) = Sgimer (o)

2-n n—2 nw.
—(n—2 wn " D| ™ - / ¢Pd
(n =2 DI G ( [ an

=

2(p—1)
P
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The main inequality (1.5) follows with equality if and only if D is a ball. O
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