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An isoperimetric inequality
for extremal Sobolev functions

By

Tom CARROLL * and Jesse RATZKIN**

Abstract

Let D\subset \mathbb{R}^{n} be a bounded domain with a Lipschitz boundary, let 1<p<\displaystyle \frac{2n}{n-2} ,
and let  $\phi$

minimize the ratio \Vert\nabla u\Vert_{L^{2}(D)}/\Vert u\Vert_{L(D)}p over all functions u vanishing on the boundary of D.

After presenting a short survey of some results on the value of this minimum, the Sobolev

constant, we present a proof of a reverse Hölder inequality for the eigenfunction  $\phi$ , finding a

lower bound for \Vert $\phi$\Vert_{L^{p-1}} in terms of \Vert $\phi$\Vert_{Lp} . This result generalizes an inequality due to Payne
and Rayner [16, 17] regarding eigenfunctions of the Laplacian.

§1. Introduction and statement of results

The eigenvalue problem for the Dirichlet Laplacian -\triangle plays a fundamental role in the

study of solutions of both the wave equation and the heat equation in a bounded region
 D in \mathbb{R}^{n} . In the case of the wave equation, the smallest eigenvalue  $\lambda$(D) determines the

fundamental frequency of the domain when the boundary is clamped. In the case of the

heat equation, it determines the slowest heat dissipation rate for an initial temperature

distribution in a body of shape D when the boundary is held at temperature zero. The

principal eigenvalue  $\lambda$(D) is positive and the corresponding eigenfunctions  $\phi$ have con‐

stant sign. It is the smallest  $\lambda$ for which there is a non‐trivial solution of the eigenvalue

problem \triangle u+ $\lambda$ u=0 in D with zero Dirichlet boundary conditions, and can also be

viewed in terms of the energy minimization problem

 $\lambda$(D)=\displaystyle \inf\{\frac{\int_{D}|\nabla u|^{2}d $\mu$}{\int_{D}u^{2}d $\mu$} : u\in C_{0}^{\infty}(D) , u\not\equiv 0\}
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Here  d $\mu$ refers to Lebesgue measure on \mathbb{R}^{n}.

Minimization of the energy integral \displaystyle \int_{D}|\nabla u|^{2}d $\mu$ normalized by the  L^{1}(D) norm of

the test function u leads to another important quantity in mathematical physics, namely
the torsional rigidity. It may be defined by

P(D)=4\displaystyle \sup\{\frac{(\int_{D}ud $\mu$)^{2}}{\int_{D}|\nabla u|^{2}d $\mu$} : u\in C_{0}^{\infty}(D) , u\not\equiv 0\}
The torsional rigidity P(D) of a bounded, simply connected region D in the plane is

a measure of the strength under torsion of a beam which has D as its cross section.

The corresponding extremal function  $\phi$ is known as the torsion function and satisfies

\triangle $\phi$+2=0 with zero Dirichlet data. The partial derivatives of  $\phi$ give the stresses in

the beam under torsion. The solution of this boundary value problem also returns the

expected exit time of standard Brownian motion from  D.

One may work with amore general Rayleigh quotient. Let 1\displaystyle \leq p<\frac{2n}{n-2} (or any

p\geq 1 if n=2) . For this range of exponents, the Sobolev embedding W_{0}^{1,2}(D)\mapsto L^{p}(D)
is compact, and so the infimum

(1.1) C_{p}(D)=\displaystyle \inf\{\frac{\int_{D}|\nabla u|^{2}d $\mu$}{(\int_{D}|u|^{p}d $\mu$)^{2/p}} : u\in W_{0}^{1,2}(D) , u\not\equiv 0\}
is finite and achieved by a nontrivial function  $\phi$=$\phi$_{p} . Here the Sobolev space W_{0}^{1,2}(D) is

the closure of C_{0}^{\infty}(D) under the norm \Vert u\Vert_{W^{1,2}}^{2}=\Vert u\Vert_{L^{2}}^{2}+\Vert\nabla u\Vert_{L^{2}}^{2} . From this perspective,

C_{p}(D) gives the sharp constant S_{p}(D) in the Sobolev embedding. In fact, for the above

mentioned range of p,

W_{0}^{1,2}(D)\subset L^{p}(D) with \Vert u\Vert_{L^{p}(D)}\leq S_{p}\Vert\nabla u\Vert_{L^{2}(D)}, \forall u\in W_{0}^{1,2}(D) ,

so that

S_{p}(D)=\displaystyle \frac{1}{\sqrt{C_{p}(D)}}.
This sharp Sobolev constant S_{p}(D) and its associated extremal function $\phi$_{p} are both

the subject of a vast literature, and incorporate much information relating the function

theory and the geometry of D (see, for example, [3] or a recent paper by Franzina and

Lamberti [9] and the references therein). In particular, a long list of results encompass

isoperimetric‐type inequalities of various sorts, (see, for example, [16, 6, 1, 5]). Note

that C_{2}(D) coincides with the principal frequency  $\lambda$(D) ,
while the torsional rigidity is

P(D)=4/C_{1}(D) .

In general, an extremal function  $\phi$ for (1.1) is a solution of the boundary value

problem

(1.2) \triangle $\phi$+ $\lambda \phi$^{p-1}=0,  $\phi$|_{\partial D}=0.
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Without loss of generality we can take  $\phi$>0 inside D . General regularity results imply
that  $\phi$\in C_{0}^{\infty}(D) ,

and a short integration by parts argument [3, Lemma 2] shows that

(1.3)  $\lambda$=C_{p}(D)(\displaystyle \int_{D}$\phi$^{p}d $\mu$)^{\frac{2-p}{p}}
For 1\leq p\leq 2 ,

there is a unique positive solution (see, for example, Dai, He, and Hu

[8], Colesanti [7], or Pohožaev [18]).
While principal frequency is certainly a special case of the sharp Sobolev constant

C_{p}(D) ,
it is also the special case p=2 of the eigenvalue of the p‐Laplacian. This is the

first eigenvalue for

\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|^{p-2}\nabla u)+ $\lambda$|u|^{p-2}u=0,
and is also given by

$\lambda$_{p}(D)=\displaystyle \inf\{\frac{\int_{D}|\nabla u|^{p}d $\mu$}{\int_{D}|u|^{p}d $\mu$} : u\in W_{0}^{1,p}(D) , u\not\equiv 0\},
see, for example, Lindqvist [12] and Fusco, Maggi, and Pratelli [10]. The most general
Dirichlet eigenvalue in this context is probably

$\lambda$_{p,q}(D)=\displaystyle \inf\{\frac{\int_{D}|\nabla u|^{p}d $\mu$}{(\int_{D}|u|^{q}d $\mu$)^{p/q}}:u\in W_{0}^{1,p}(D) , u\not\equiv 0\},
defined for 1<q<\displaystyle \frac{pn}{n-p} if 1<p<n ,

or for any q>1 if p\geq n . This eigenvalue appears,

for example, in recent work of Brasco [2] in which a rearrangement technique of Kohler‐

Jobin is used to show that the ball minimizes an appropriate scale invariant quotient
of the eigenvalues $\lambda$_{p,q} and $\lambda$_{p,1} . If one thinks of 1/$\lambda$_{p,1} as \mathrm{a}^{(}p‐torsional rigidity� then

this is a generalisation of Kohler‐Jobin�s famous result [14, 15], in answer to a question
of Pólga and Szegó, that balls mimimize principal frequency among all sets of given
torsional rigidity. From this general point of view, the eigenvalue for the p‐Laplacian is

$\lambda$_{p}(D)=$\lambda$_{p,p}(D) while the Sobolev constant is C_{p}(D)=$\lambda$_{2,p}(D) .

A guiding motivation of the work in this area is to discover what results for principal

frequency or for torsional rigidity hold for these more general eigenvalues. Note that

C_{p}(D) depends monotonically on the domain D
,

and obeys the scaling law

\mathrm{V}\mathrm{o}\mathrm{l}(rD)^{2/p}C_{p}(rD)=r^{n-2}\mathrm{V}\mathrm{o}\mathrm{l}(D)^{2/p}C_{p}(D) .

It can be shown (see [3]) that if 1\leq p<q then

\mathrm{V}\mathrm{o}\mathrm{l}(D)^{2/p}C_{p}(D)>\mathrm{V}\mathrm{o}\mathrm{l}(D)^{2/q}C_{q}(D) .

This extends the inequality  $\lambda$(D)P(D)<4 Area (D) ,
which relates fundamental fre‐

quency and torsional rigidity and appears in Pólya and Szegó�s book [19].
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Various counterparts of the classical isoperimetric inequality play a prominent role.

St. Venant�s Principle, proved by Pólya in the 1950' \mathrm{s} ,
states that among all regions of

given volume a ball has the largest torsional rigidity. The ball also has the smallest

fundamental frequency among all regions of given volume, which is the famous Faber‐

Krahn Theorem from the 1920' \mathrm{s} . These results are subsumed by the following more

general isoperimetric inequality: let D^{*} be a ball with the same volume as D and p\geq 1,
then

C_{p}(D)\geq C_{p}(D^{*})

with equality if and only if D itself is a ball (see [3], for example, for a proof).
As is often the case, upper bounds are possible in the case of convex regions.

Rather than specifying the volume of the region, however, it is more natural to fix its

inradius R(D) ,
this being the supremum radius of all balls contained in D . Let  $\phi$ be

a positive solution of \triangle $\phi$+ $\lambda \phi$^{p-1}=0 on a convex region D
,

with  $\phi$=0 on \partial D . Let

$\phi$_{M}=\displaystyle \max\{ $\phi$(\mathrm{x}) : x\in D\} . Then

$\phi$_{M}^{2-p}\displaystyle \leq\frac{2 $\lambda$}{pA_{p}^{2}}R(D)^{2} where A_{p}=\displaystyle \int_{0}^{1}\frac{dt}{\sqrt{1-t^{p}}}.
Equality holds in the case of a strip / slab. The proof of this inequality in [3] makes

use of Payne�s P‐function as described in Section 6.2.2 of the book [20] by Sperb. This

inequality is a generalisation of both Hersch�s result [11] for fundamental frequency to

the effect that

 $\lambda$(D)\displaystyle \geq\frac{$\pi$^{2}}{4R(D)^{2}}
and of Sperb�s result [20] that the maximum value of the torsion function  $\phi$ obeys

 $\phi$_{M}\leq R(D)^{2}

The main focus of the present work begins with a reverse Hölder inequality due to

Payne and Rayner [16] for the first Dirichlet eigenfuntion  $\phi$ of the Laplacian in a region
 D in two dimensions. Payne and Rayner proved that

(1.4) (\displaystyle \int_{D} $\phi$ d $\mu$)^{2}\geq\frac{4 $\pi$}{ $\lambda$(D)}\int_{D}$\phi$^{2}d $\mu$.
In [4], we extended this inequality to general p recovering, in the case p=1 , Saint

Venant�s Principle that among all planar regions of prescribed area a disk has the

largest torsional rigidity. The original inequality (1.4) of Payne and Rayner, and its

extension to a range of values of p in [4], are very much two‐dimensional results. In [17],
Payne and Rayner extended their inequality to higher dimensions, though they describe

these extensions as �not entirely satisfactory�. A more satisfactory extension of (1.4) to
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higher dimensions was given first by Kohler‐Jobin [13] and subsequently strengthened

by Chiti [6], using rearrangement techniques of Talenti [21], to more general elliptic

operators. Chiti also dealt completely with the case of equality.
In the present work, we return to the original Payne and Rayner inequality (1.4)

and prove a version for the Sobolev constant C_{p}(D) which is valid in all dimensions

and which directly extends the work of Payne and Rayner in [17]. Even if our reverse

Hölder inequality for the eigenfunction(s) corresponding to the Sobolev constant C_{p}(D)
suffers from the same drawbacks as the original higher dimension inequality of Payne
and Rayner in [17], it may still be of some interest.

We need to set notation before stating this result. We denote the induced area

element on a hypersurface  $\Sigma$\subset \mathbb{R}^{n} by  d $\sigma$ . We write the appropriate dimensional volume

of a set  $\Omega$ as | $\Omega$| ,
that is if  $\Omega$\subset \mathbb{R}^{n} is an open set then | $\Omega$|= $\mu$( $\Omega$) and if  $\Sigma$\subset \mathbb{R}^{n} is a

hypersurface then | $\Sigma$|= $\sigma$( $\Sigma$) . If \mathrm{B}_{1}\subset \mathbb{R}^{n} is the unit ball, we denote |\mathrm{B}_{1}|=$\omega$_{n} ,
so that

|\mathrm{B}_{r}|=$\omega$_{n}r^{n} and |\partial \mathrm{B}_{r}|=n$\omega$_{n}r^{n-1}.

Theorem 1.1. Let p>1 and let D\subset \mathbb{R}^{n} be a bounded domain with Lipschitz

boundary. Let C_{p}(D) be the sharp Sobolev constant dened by (1.1), and let  $\phi$ be its

associated extremal function. Let  D^{*} be a ball with the same volume as D. Then

(1.5) (\displaystyle \int_{D}$\phi$^{p-1}d $\mu$)^{2}\geq n^{2}$\omega$_{n}^{2/n}|D|^{\frac{n-2}{n}}[\frac{2}{p}\frac{1}{C_{p}(D)}-\frac{n-2}{n}\frac{1}{C_{p}(D^{*})}](\int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}
Equality holds if and only if D is a ball.

The Hölder inequality implies that for any u\in W_{0}^{1,2}(D) we have

\displaystyle \int_{D}|u|^{p-1}d $\mu$\leq|D|^{1/p}(\int_{D}|u|^{p}d $\mu$)^{\frac{p-1}{p}} .

For this reason, upper bounds of the form (1.5) are called reverse‐Hölder inequalities.
The drawback with (1.5) is that the inequality becomes trivial if the right hand side

is negative, which will be the case if C_{p}(D) is large compared with C_{p}(D^{*}) . In general,
it is not possible to bound C_{p}(D) from above in terms of C_{p}(D^{*}) or, in other words, it

is not possible to bound C_{p}(D) from above in terms of the volume of D . Nevertheless,
observe that the inequality (1.5) is isoperimetric and that we recover the main inequality
of [17] in the case p=2 ,

and that we recover the reverse‐Hölder inequality of [4] in the

case n=2.

§2. Proof of the main theorem

We begin by briefly outlining our strategy for proving (1.5), which we adapted from

Payne and Rayner�s proof in [17]. Let M=\displaystyle \sup_{x\in D} $\phi$(x) and, for 0\leq t\leq M ,
we define

D_{t}=\{x\in D: $\phi$(x)>t\}, $\Sigma$_{t}=\{x\in D: $\phi$(x)=t\}.
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By Sard�s theorem, we have $\Sigma$_{t}=\partial D_{t} for almost every value of t . To prove (1.5) we

define the auxilliary function

H(t)=\displaystyle \int_{D_{t}}$\phi$^{p-1}d $\mu$=\int_{t}^{M}$\tau$^{p-1}\int_{$\Sigma$_{ $\tau$}}\frac{d $\sigma$}{|\nabla $\phi$|}d $\tau$, t\in[0, M].
In Section 2.1 we derive lower bounds for the second derivative of H

,
and in Section 2.2

we integrate these to obtain several integral inequalites for H and for powers of  $\phi$ . In

Section 2.3 we examine a one‐dimensional eigenvalue problem which arises in the course

of the proof and identify its solution in terms of  C_{p}(D^{*}) . The proof of (1.5) is completed
in Section 2.4.

§2.1. Differential inequalities

We let V(t)=|D_{t}| . Then, by the co‐area formula,

V'(t)=-\displaystyle \int_{$\Sigma$_{t}}\frac{d $\sigma$}{|\nabla $\phi$|}<0.
Thus V is a monotone function of t

,
and we can invert it to obtain t=t(V) ,

with

\displaystyle \frac{dt}{dV}=\frac{1}{V'(t)}=-\frac{1}{\int_{$\Sigma$_{t}}\frac{d $\sigma$}{|\nabla $\phi$|}}.
This, in turn, implies that

(2.1) \displaystyle \frac{dH}{dV}=\frac{dH}{dt}\frac{dt}{dV}=(-t^{p-1}\int_{$\Sigma$_{t}}\frac{d $\sigma$}{|\nabla $\phi$|}) (-\frac{1}{\int_{$\Sigma$_{t}}\frac{d $\sigma$}{|\nabla $\phi$|}})=t^{p-1},
an identity which will prove useful at several points in our computations. Taking one

more derivative shows that

\displaystyle \frac{d^{2}H}{dV^{2}}=\frac{d}{dV}(t^{p-1})=-\frac{(p-1)t^{p-2}}{\int_{$\Sigma$_{t}}\frac{d $\sigma$}{|\nabla $\phi$|}}.
Lemma 2.1. The function H satises

(2.2) \displaystyle \frac{d^{2}H}{dV^{2}}\geq-(p-1)(t(V))^{p-2}\frac{ $\lambda$ H(V)}{n^{2}$\omega$_{n}^{2/n}V\frac{2(n-1)}{n}}, V\in[0, |D|].
with the boundary conditions H(0)=0 and H'(|D|)=0 . Moreover, equality in (2.2)
forces D to be a ball, and forces the function  $\phi$ to be radially symmetric.

Proof. By the Cauchy‐Schwarz inequality,

|$\Sigma$_{t}|^{2}\displaystyle \leq(\int_{$\Sigma$_{t}}|\nabla $\phi$|d $\sigma$)(\int_{$\Sigma$_{t}}\frac{d $\sigma$}{|\nabla $\phi$|}) ,
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which we can rearrange to read

(2.3) \displaystyle \int_{$\Sigma$_{t}}\frac{d $\sigma$}{|\nabla $\phi$|}\geq\frac{|$\Sigma$_{t}|^{2}}{\int_{$\Sigma$_{t}}|\nabla $\phi$|d $\sigma$}.
Since $\Sigma$_{t} is a level‐set of  $\phi$ ,

we may use the divergence theorem and (1.2) to obtain

\displaystyle \int_{$\Sigma$_{t}}|\nabla $\phi$|d $\sigma$=-\int_{$\Sigma$_{t}}\frac{\partial $\phi$}{\partial $\eta$}d $\sigma$=-\int_{D_{t}}\triangle $\phi$ d $\mu$
= $\lambda$\displaystyle \int_{D_{t}}$\phi$^{p-1}d $\mu$= $\lambda$ H(t) .

Combining this with (2.3) we obtain

(2.4) \displaystyle \int_{$\Sigma$_{t}}\frac{d $\sigma$}{|\nabla $\phi$|}\geq\frac{|$\Sigma$_{t}|^{2}}{ $\lambda$ H(t)}.
By the classical isoperimetric inequality,

(2.5) |$\Sigma$_{t}|^{2}\displaystyle \geq n^{2}$\omega$_{n}^{2/n}|D_{t}|^{\frac{2(n-1)}{n}}=n^{2}$\omega$_{n}^{2/n}V\frac{2(n-1)}{n}

Together with (2.4), this shows that

\displaystyle \frac{d^{2}H}{dV^{2}}=-(p-1)\frac{t^{p-2}}{\int_{$\Sigma$_{t}}\frac{d $\sigma$}{|\nabla $\phi$|}}\geq-(p-1)t^{p-2}\frac{ $\lambda$ H(V)}{|$\Sigma$_{t}|^{2}}
\displaystyle \geq-(p-1)t^{p-2}\frac{ $\lambda$ H(V)}{n^{2}$\omega$_{n}^{2/n}V\frac{2(n-1)}{n}}.

Notice that the boundary conditions for this differential inequality are

(2.6) H(0)=0, H'(|D|)=t^{p-1}|_{t=0}=0.

Moreover, we only have equality in (2.2) for each V in [0, |D|] if we have equality in

(2.5) for almost every t
,

which in turn implies that $\Sigma$_{t} is a round sphere for almost

every t\in[0, M] . This is possible only if D is itself a ball. Also, equality in (2.2) forces

equality in (2.3), which implies |\nabla $\phi$| must be constant on each sphere $\Sigma$_{t} ,
and so  $\phi$ must

be radial. \square 

We change variables by letting  $\rho$=(V/$\omega$_{n})^{1/n} be the volume radius of D_{t} ,
so that

V=|D_{t}|=$\omega$_{n}$\rho$^{n} . We also define $\rho$_{M}=(|D|/$\omega$_{n})^{1/n} . As a function of  $\rho$ ,
the function

 H satisfies the boundary conditions

(2.7) H(0)=H'(0)=\cdots=H^{(n-1)}(0)=0, H'($\rho$_{M})=0.
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Lemma 2.2.

(2.8) \displaystyle \frac{d}{d $\rho$}[($\rho$^{1-n}\frac{dH}{d $\rho$})^{\frac{1}{p-1}}]\geq- $\lambda$(n$\omega$_{n})^{\frac{2-p}{p-1}}$\rho$^{1-n}H( $\rho$) , 0< $\rho$<$\rho$_{M}.
Proof. Taking derivatives, we see that

(2.9) \displaystyle \frac{dH}{dV}=\frac{$\rho$^{1-n}}{n$\omega$_{n}}\frac{dH}{d $\rho$}, \frac{d^{2}H}{dV^{2}}=\frac{$\rho$^{1-n}}{n$\omega$_{n}}\frac{d}{d $\rho$}(\frac{$\rho$^{1-n}}{n$\omega$_{n}}\frac{dH}{d $\rho$})
Substituting these expressions in (2.2) gives

(2.10) \displaystyle \frac{d}{d $\rho$}($\rho$^{1-n}\frac{dH}{d $\rho$})\geq-(p-1) $\lambda$ t^{p-2}$\rho$^{1-n}H( $\rho$) .

However,

t^{p-1}=\displaystyle \frac{dH}{dV}=\frac{$\rho$^{1-n}}{n$\omega$_{n}}\frac{dH}{d $\rho$},
so that (2.10) becomes

\displaystyle \frac{d}{d $\rho$}($\rho$^{1-n}\frac{dH}{d $\rho$})\geq-(p-1) $\lambda$(n$\omega$_{n})^{\frac{2-p}{p-1}}($\rho$^{1-n}\frac{dH}{d $\rho$})^{\frac{p-2}{p-1}}$\rho$^{1-n}H( $\rho$) .

This we can rewrite as

\displaystyle \frac{1}{p-1}\frac{\frac{d}{d $\rho$}($\rho$^{1-n}\frac{dH}{d $\rho$})}{($\rho$^{1-n}\frac{dH}{d $\rho$})^{\frac{p-2}{p-1}}}=\frac{d}{d $\rho$}[($\rho$^{1-n}\frac{dH}{d $\rho$})^{\frac{1}{p-1}}]\geq- $\lambda$(n$\omega$_{n})^{\frac{2-p}{p-1}}$\rho$^{1-n}H( $\rho$) .

\square 

Remark 1. Since (2.8) is really the same as (2.2) rewritten in different variables,

equality holds in (2.8) for 0< $\rho$<$\rho$_{M} if and only if D is a ball and  $\phi$ is radial.

§2.2. Integral inequalities

In this section we integrate (2.2) and (2.8) to obtain inequalities for the integral of

 H and the integral of powers of  $\phi$ . As each of these inequalities is an integrated form

of (2.2) and (2.8), equality holds if and only if  D is a ball and  $\phi$ is radial.

Lemma 2.3.

(2.11) (\displaystyle \int_{D}$\phi$^{p-1}d $\mu$)^{2}\geq\frac{2n^{2}$\omega$_{n}^{2/n}|D|^{\frac{n-2}{n}}}{pC_{p}(D)}(\int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}
‐ \displaystyle \frac{n-2}{n}|D|^{\frac{n-2}{n}}\int_{0}^{|D|}V\frac{2(1-n)}{n}H^{2}(V)dV.
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Proof. We multiply the inequality (2.2) by \displaystyle \frac{p}{p-1}V (\displaystyle \frac{dH}{dV})^{1/(p1)} and integrate from

0 to |D| . Upon integration, the left hand side becomes

\displaystyle \int_{0}^{|D|}\frac{p}{p-1}V(\frac{dH}{dV})^{1/(p-1)}\frac{d^{2}H}{dV^{2}}dV=\int_{0}^{|D|}V\frac{d}{dV}[(\frac{dH}{dV})^{p/(p-1)}]dV
=V(\displaystyle \frac{dH}{dV})^{p/(p-1)}|_{0}^{|D|}-\int_{0}^{|D|}(\frac{dH}{dV})^{p/(p-1)}dV
=-\displaystyle \int_{0}^{|D|}(t^{p-1}(V))^{p/(p-1)}dV
=-\displaystyle \int_{0}^{|D|}t^{p}(V)dV=-\int_{D}$\phi$^{p}d $\mu$.

The boundary terms in the integration by parts vanished since H'(|D|)=0 ,
while (2.1)

was used at the third step. On the other hand, using (2.1) again, the right hand side

becomes

‐ \displaystyle \frac{p $\lambda$}{n^{2}$\omega$_{n}^{2/n}}\int_{0}^{|D|}V(\frac{dH}{dV})^{1/(p-1)}t^{p-2}H(t)V^{\frac{2(1-n)}{n}}dV
=-\displaystyle \frac{p $\lambda$}{n^{2}$\omega$_{n}^{2/n}}\int_{0}^{|D|}t^{p-2}(\frac{dH}{dV})^{\frac{2-p}{p-1}}V\frac{2-n}{n}H(V)\frac{dH}{dV}dV
=-\displaystyle \frac{p $\lambda$}{n^{2}$\omega$_{n}^{2/n}}\int_{0}^{|D|_{t^{p-2}(t^{p-1})^{\frac{2-p}{p-1}V\frac{2-n}{n}H(V)\frac{dH}{dV}dV}}}
=-\displaystyle \frac{p $\lambda$}{n^{2}$\omega$_{n}^{2/n}}\int_{0}^{|D|}V\frac{2-n}{n}H(V)\frac{dH}{dV}dV

We combine these last two equations and replace  $\lambda$ by  C_{p}(D)(\displaystyle \int_{D}$\phi$^{p}d $\mu$)^{(2-p)/p} to obtain

(\displaystyle \int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}\leq\frac{pC_{p}(D)}{n^{2}$\omega$_{n}^{2/n}}\int_{0}^{|D|}V\frac{2-n}{n}H(V)\frac{dH}{dV}dV
=\displaystyle \frac{pC_{p}(D)}{2n^{2}$\omega$_{n}^{2/n}}\int_{0}^{|D|_{V\frac{2-n}{n}}}\frac{d}{dV}(H^{2}(V))dV
=\displaystyle \frac{pC_{p}(D)}{2n^{2}$\omega$_{n}^{2/n}}[|D|^{\frac{2-n}{n}}(\int_{D}$\phi$^{p-1}d $\mu$)^{2}+\frac{n-2}{n}\int_{0}^{|D|}H^{2}(V)V\frac{2(1-n)}{n}dV],

which we can rearrange to give (2.11). \square 

Lemma 2.4.

(2.12) \displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{\frac{1-n}{p-1}}(\frac{dH}{d $\rho$})^{\frac{p}{p-1}}d $\rho$\leq $\lambda$(n$\omega$_{n})^{\frac{2-p}{p-1}}\int_{0}^{$\rho$_{M}}$\rho$^{1-n}H^{2}( $\rho$)d $\rho$.
Equality holds if and only if D is a ball.



10 Tom Carroll and Jesse Ratzkin

Proof. We mutliply (2.8) by H and integrate from 0 to $\rho$_{M} . The boundary con‐

ditions (2.7) imply that $\rho$^{1-n}\displaystyle \frac{dH}{d $\rho$} is bounded at 0 . Hence the boundary terms vanish in

the integration parts below, and we obtain that

\displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{\frac{1-n}{p-1}}(\frac{dH}{d $\rho$})^{\frac{p}{p-1}}d $\rho$=\int_{0}^{$\rho$_{M}}[$\rho$^{1-n}\frac{dH}{d $\rho$}]^{\frac{1}{p-1}}\frac{dH}{d $\rho$}d $\rho$
\displaystyle \leq $\lambda$(n$\omega$_{n})^{\frac{2-p}{p-1}}\int_{0}^{$\rho$_{M}}$\rho$^{1-n}H^{2}( $\rho$)d $\rho$.

\square 

Lemma 2.5. With  $\phi$, H
,

and  $\rho$ dened as above,

(2.13) \displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{\frac{1-n}{p-1}}(\frac{dH}{d $\rho$})^{\frac{p}{p-1}}d $\rho$=(n$\omega$_{n})^{\frac{1}{p-1}}\int_{D}$\phi$^{p}d $\mu$.
Proof. We use (2.1) and (2.9) to conclude that

\displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{\frac{1-n}{p-1}}(\frac{dH}{d $\rho$})^{\frac{p}{p-1}}d $\rho$=\int_{0}^{$\rho$_{M}}($\rho$^{1-n})^{\frac{p}{p-1}}(\frac{dH}{d $\rho$})^{\frac{p}{p-1}}$\rho$^{n-1}d $\rho$
=\displaystyle \int_{0}^{|D|}($\rho$^{1-n}\frac{dH}{d $\rho$})^{\frac{p}{p-1}}\frac{dV}{n$\omega$_{n}}
=\displaystyle \int_{0}^{|D|}(n$\omega$_{n}\frac{dH}{dV})^{\frac{p}{p-1}}\frac{dV}{n$\omega$_{n}}
=(n$\omega$_{n})^{\frac{1}{p-1}}\displaystyle \int_{0}^{|D|}(\frac{dH}{dV})^{\frac{p}{p-1}}dV
=(n$\omega$_{n})^{\frac{1}{p-1}}\displaystyle \int_{0}^{|D|_{(t^{p-1})^{\frac{p}{p-1}}}}dV
=(n$\omega$_{n})^{\frac{1}{p-1}}\displaystyle \int_{0}^{|D|}t^{p}dV=(n$\omega$_{n})^{\frac{1}{p-1}}\int_{D}$\phi$^{p}d $\mu$.

\square 

Corollary 2.6.

(2.14) n$\omega$_{n}(\displaystyle \int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}\leq C_{p}(D)\int_{0}^{$\rho$_{M}}$\rho$^{1-n}H^{2}( $\rho$)d $\rho$.
Moreover, we have equality if and only if D is a ball and  $\phi$ is radial.

Proof. Combine (2.12), (2.13), and (1.3). \square 
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Lemma 2.7.

(2.15) (\displaystyle \int_{D}$\phi$^{p-1}d $\mu$)^{2}\geq\frac{2n^{2}$\omega$_{n}^{2/n}|D|^{\frac{n-2}{n}}}{pC_{p}(D)}(\int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}
-(n-2)$\omega$^{\frac{2-n}{n^{n}}}|D|^{\frac{n-2}{n}}\displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{1-n}H^{2}( $\rho$)d $\rho$.

Equality holds if and only if D is a ball.

Proof. Since  $\rho$(V)=(V/$\omega$_{n})^{1/n} ,
we have

n$\omega$_{n}^{1/n}\displaystyle \frac{d $\rho$}{dV}V^{\frac{n-1}{n}}=1,
so that

\displaystyle \int_{0}^{|D|}V\frac{2(1-n)}{n}H^{2}(V)dV=\int_{0}^{|D|_{H^{2}( $\rho$)$\omega$^{\frac{2(1-n)}{nn}}$\rho$^{2(1-n)}n$\omega$_{n}^{1/n}($\omega$_{n}$\rho$^{n})^{\frac{n-1}{n}}}}\frac{d $\rho$}{dV}dV
=n$\omega$^{\frac{2-n}{n^{n}}}\displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{1-n}H^{2}( $\rho$)d $\rho$.

Using this identity in (2.11) gives (2.15). \square 

§2.3. An auxiliary one dimensional eigenvalue problem

Motivated by (2.12) and (2.7), we define $\Lambda$_{*} by

(2.16) $\Lambda$_{*}=\displaystyle \inf\{(\int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$)^{\frac{2(p-1)}{p}}
where the infimum is over all functions on [0, $\rho$_{M}] for which

(2.17) f(0)=f'(0)=\cdots=f^{(n-1)}(0)=0=f'($\rho$_{M}) , f\not\equiv 0.

Remark 2. Notice that we have rescaled the numerator to make the quotient
scale‐invariant. This does not, however, affect the Euler‐Lagrange equation involved.

Lemma 2.8. The Euler‐Lagrange equation for the variational problem (2.16),
with the boundary conditions (2.17), is

(2.18) f''( $\rho$)-\displaystyle \frac{n-1}{ $\rho$}f'( $\rho$)+ $\Lambda$[$\rho$^{1-n}f'( $\rho$)]^{\frac{p-2}{p-1}}f( $\rho$)=0.
Proof. Since the ratio defining $\Lambda$_{*} is scale‐invariant, we may restrict our attention

to either of the constrained critical point problems:

minimize \displaystyle \int_{0}^{$\rho$_{M}} $\rho$\frac{1-n}{p-1}f'( $\rho$)^{\frac{p}{p-1}}d $\rho$ subject to \displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{1-n}f^{2}( $\rho$)d $\rho$= constant
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or

maximize \displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{1-n}f^{2}( $\rho$)d $\rho$ subject to \displaystyle \int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$= constant.

Regardless, the method of Lagrange multipliers implies that a constrained critical point

f satisfies

\displaystyle \frac{d}{d $\epsilon$}|_{ $\epsilon$=0}\int_{0}^{$\rho$_{M}}$\rho$^{\frac{1-n}{p-1}}(\frac{df}{d $\rho$}+ $\epsilon$\frac{dg}{d $\rho$})^{\frac{p}{p-1}}d $\rho$= $\Lambda$\frac{d}{d $\epsilon$}|_{ $\epsilon$=0}\int_{0}^{$\rho$_{M}}$\rho$^{1-n}[f( $\rho$)+ $\epsilon$ g( $\rho$)]^{2}d $\rho$,
for any admissible g . On evaluating these derivatives, using the boundary conditions

(2.17) to see that $\rho$^{1-n}f'( $\rho$) is bounded at 0 and that consequently the boundary terms

arising from integration by parts vanish, we obtain

 2 $\Lambda$\displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{1-n}f( $\rho$)g( $\rho$)d $\rho$
=\displaystyle \frac{p}{p-1}\int_{0}^{$\rho$_{M}}$\rho$^{\frac{1-n}{p-1}}(\frac{df}{d $\rho$})^{\frac{1}{p-1}}\frac{dg}{d $\rho$}d $\rho$
=-\displaystyle \frac{p}{p-1}\int_{0}^{$\rho$_{M}}g( $\rho$)\frac{d}{d $\rho$}[$\rho$^{\frac{1-n}{p-1}}(\frac{df}{d $\rho$})^{\frac{1}{p-1}}]d $\rho$
=-\displaystyle \frac{p}{p-1}\int_{0}^{$\rho$_{M}}g( $\rho$)[\frac{1}{p-1}$\rho$^{\frac{1-n}{p-1}}(\frac{df}{d $\rho$})^{\frac{2-p}{p-1}}\frac{d^{2}f}{d$\rho$^{2}}+\frac{1-n}{p-1}$\rho$^{\frac{2-p-n}{p-1}}(\frac{df}{d $\rho$})^{\frac{1}{p-1}}]d $\rho$.

This must hold for all choices of g ,
hence (absorbing a factor of 2(p-1)^{2}/p into the

Lagrange multiplier  $\Lambda$ ) we must have

 0=$\rho$^{\frac{1-n}{p-1}f'( $\rho$)^{\frac{2-p}{p-1}f''( $\rho$)-(n-1)$\rho$^{\frac{2-p-n}{p-1}}f'( $\rho$)^{\frac{1}{p-1}}}}+ $\Lambda \rho$^{1-n}f( $\rho$)

= $\rho$\displaystyle \frac{1-n}{p-1}f'( $\rho$)^{\frac{2-p}{p-1}}[f''( $\rho$)-(n-1)$\rho$^{-1}f'( $\rho$)+ $\Lambda$[$\rho$^{1-n}f'( $\rho$)]^{\frac{p-2}{p-1}}f( $\rho$)],
as claimed. \square 

Lemma 2.9. Let D^{*} be the ball \mathrm{B}_{$\rho$_{M}} of radius $\rho$_{M} . Then,

(2.19) $\Lambda$_{*}\leq(n$\omega$_{n})^{\frac{2-p}{p}c_{p}(D^{*})}.
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Proof. We use the function H( $\rho$) for the ball B as a test function for the quotient

defining $\Lambda$_{*} and use (2.12), (1.3), and (2.13) in the case of a ball:

2(\mathrm{p}1)

$\Lambda$_{*}\leq

\displaystyle \leq $\lambda$(n$\omega$_{n})^{\frac{2-p}{p-1}}(\int_{0^{$\rho$^{\frac{1-n}{p-1}}H'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$)^{\frac{p-2}{p}}
=(n$\omega$_{n})^{\frac{2-p}{p-1}c_{p}(D^{*})}(\displaystyle \int_{D^{*}}$\phi$^{p}d $\mu$)^{\frac{2-p}{p}}[(n$\omega$_{n})^{\frac{1}{p-1}\int_{D^{*}}$\phi$^{p}d $\mu$]^{\frac{p-2}{p}}}
=(n$\omega$_{n})^{\frac{2-p}{p}c_{p}(D^{*})}.

\square 

In order to obtain a lower bound for $\Lambda$_{*} in terms of C_{p}(D^{*}) ,
we first need to relate

the particular  $\Lambda$ occurring in the Euler‐Lagrage equation (2.18) to the eigenvalue  $\Lambda$_{*},

just as (1.3) relates the number  $\lambda$ occurring in the Euler‐Lagrange equation (1.2) to the

eigenvalue  C_{p}(D) .

Lemma 2.10. Let f be a minimizer for $\Lambda$_{*} given by (2.16) with the boundary
conditions (2.17) and satisfy the Euler‐Lagrange equation (2.18), written as

(2.20) \displaystyle \frac{d}{d $\rho$}[$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{1}{p-1}}]+ $\Lambda \rho$^{1-n}f( $\rho$)=0.
Then

(2.21)  $\Lambda$=$\Lambda$_{*}(\displaystyle \int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$)^{\frac{2-p}{p}}
Proof. Multiply the Euler‐Lagrange equation (2.20) across by f( $\rho$) and integrate

from 0 to $\rho$_{M} to obtain

\displaystyle \int_{0}^{$\rho$_{M}}f( $\rho$)\frac{d}{d $\rho$}[$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{1}{p-1}}]d $\rho$+ $\Lambda$\int_{0}^{$\rho$_{M}}$\rho$^{1-n}f( $\rho$)^{2}d $\rho$=0.
Integrating by parts in the first term and using the boundary conditions (2.17) gives

\displaystyle \int_{0}^{$\rho$_{M}}f( $\rho$)\frac{d}{d $\rho$}[$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{1}{p-1}}]d $\rho$=-\int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$,
from which it follows that

 $\Lambda$=\displaystyle \int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$/\int_{0}^{$\rho$_{M}}$\rho$^{1-n}f( $\rho$)^{2}d $\rho$.
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We can use (2.16) to write \displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{1-n}f^{2}( $\rho$)d $\rho$ in terms of  $\Lambda$_{*} since f is a minimizer for

this Rayleigh quotient, leading to

 $\Lambda$=$\Lambda$_{*}(\displaystyle \int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$)^{1-\frac{2(p-1)}{p}},
which is (2.21). \square 

Lemma 2.11.

(2.22) C_{p}(D^{*})\leq(n$\omega$_{n})^{\frac{p-2}{p}$\Lambda$_{*}}.

Proof. Let f be a minimizer for the generalized Rayleigh quotient (2.16) defining
$\Lambda$_{*} . Set

 $\psi$( $\rho$)=\displaystyle \int_{ $\rho$}^{$\rho$_{M}}r^{1-n}f(r)dr, 0\leq $\rho$\leq$\rho$_{M},
so that  $\psi$($\rho$_{M})=0 . Then  $\psi$( $\rho$) (where  $\rho$=|x| for x\in D^{*} ) is an admissible test function

for the quotient defining C_{p}(D^{*}) ,
from which it follow that

(2.23) C_{p}(D^{*})\displaystyle \leq(n$\omega$_{n})^{\frac{p-2}{p}}\int_{0}^{$\rho$_{M}}$\rho$^{n-1}$\psi$'( $\rho$)^{2}d $\rho$/(\int_{0}^{$\rho$_{M}}$\rho$^{n-1} $\psi$( $\rho$)^{p}d $\rho$)^{2/p}
Now

(2.24) \displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{n-1}$\psi$'( $\rho$)^{2}d $\rho$=\int_{0}^{$\rho$_{M}}$\rho$^{n-1}[$\rho$^{1-n}f( $\rho$)]^{2}d $\rho$=\int_{0}^{$\rho$_{M}}$\rho$^{1-n}f( $\rho$)^{2}d $\rho$.
Next, using the Euler‐Lagrange equation (2.20),

 $\psi$( $\rho$)=\displaystyle \int_{ $\rho$}^{$\rho$_{M}}r^{1-n}f(r)dr
=-\displaystyle \frac{1}{ $\Lambda$}\int_{ $\rho$}^{$\rho$_{M}}\frac{d}{dr}[r^{\frac{1-n}{p-1}}f'(r)^{\frac{1}{p-1}}]dr
=-\displaystyle \frac{1}{ $\Lambda$}r^{\frac{1-n}{p-1}}f'(r)^{\frac{1}{p-1}}|_{r= $\rho$}^{r=$\rho$_{M}}
=\displaystyle \frac{1}{ $\Lambda$}$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{1}{p-1}},

where we used f'($\rho$_{M})=0 . From this we obtain that

\displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{n-1} $\psi$( $\rho$)^{p}d $\rho$=\int_{0^{$\rho$^{n-1}\frac{1}{$\Lambda$^{p}} $\rho$}}^{$\rho$_{M}}\frac{p(1-n)}{p-1}f'( $\rho$)^{\frac{p}{p-1}}d $\rho$
(2.25) =\displaystyle \frac{1}{ $\Lambda$ p}\int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$.
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With the help of the identities (2.24) and (2.25), we can write the numerator and the

denominator of the right hand side of (2.23) in terms of the minimizer f for $\Lambda$_{*} . We

find, using that f minimizes the quotient for $\Lambda$_{*} at the second step and using (2.21) at

the last step, that

(2.26) C_{p}(D^{*})\displaystyle \leq(n$\omega$_{n})^{\frac{p-2}{p}}\int_{0}^{$\rho$_{M}}$\rho$^{1-n}f( $\rho$)^{2}d $\rho$/(\frac{1}{$\Lambda$^{p}}\int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$)^{\frac{2}{p}}
(2.27) =(n$\omega$_{n})^{\frac{p-2}{p}}\displaystyle \frac{$\Lambda$^{2}}{$\Lambda$_{*}}(\int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$)^{\frac{2(p-1)}{p}-\frac{2}{p}}
(2.28) =(n$\omega$_{n})^{\frac{p-2}{p}}\displaystyle \frac{1}{$\Lambda$_{*}}[ $\Lambda$(\int_{0^{$\rho$^{\frac{1-n}{p-1}}f'( $\rho$)^{\frac{p}{p-1}}}}^{$\rho$_{M}}d $\rho$)^{\frac{p-2}{p}}]^{2}
(2.29) =(n$\omega$_{n})\displaystyle \overline{p}\frac{*}{$\Lambda$_{*}}=(n$\omega$_{n})^{\frac{p-2}{p}}$\Lambda$_{*}.

p-2$\Lambda$^{2}

\square 

§2.4. Completion of the proof of Theorem 1.1

We are now finally in a position to complete the proof of Theorem 1.1. Indeed,
since H( $\rho$) is an admissible function for $\Lambda$^{*} as defined by (2.16), we have

\displaystyle \int_{0}^{$\rho$_{M}}$\rho$^{1-n}H^{2}( $\rho$)d $\rho$\leq\frac{1}{$\Lambda$_{*}}(\int_{0}^{$\rho$_{M}}$\rho$^{\frac{1-n}{p-1}}(\frac{dH}{d $\rho$})^{\frac{p}{p-1}}d $\rho$)^{\frac{2(p-1)}{p}}
=\displaystyle \frac{1}{$\Lambda$_{*}}((n$\omega$_{n})^{\frac{1}{p-1}\int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}}
=\displaystyle \frac{1}{$\Lambda$_{*}}(n$\omega$_{n})^{2/p}(\int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}
=\displaystyle \frac{n$\omega$_{n}}{C_{p}(D^{*})}(\int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}

where we used the identity $\Lambda$_{*}=(n$\omega$_{n})^{\frac{2-p}{p}c_{p}(D^{*})} resulting from (2.19) and (2.22).
Moreover, equality holds if and only if D is a ball and  $\phi$ is radial. The identity (2.13)
was used at the second step above. Substituting this last inequality into (2.15), we have

(\displaystyle \int_{D}$\phi$^{p-1}d $\mu$)^{2}\geq\frac{2n^{2}$\omega$_{n}^{2/n}}{pC_{p}(D)}|D|^{\frac{n-2}{n}}(\int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}
-(n-2)$\omega$^{\frac{2-n}{n^{n}}}|D|^{\frac{n-2}{n}}\displaystyle \frac{n$\omega$_{n}}{C_{p}(D^{*})}(\int_{D}$\phi$^{p}d $\mu$)^{\frac{2(p-1)}{p}}
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The main inequality (1.5) follows with equality if and only if D is a ball. \square 
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