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Explicit formulas for Hasse-Witt invariants
of cyclotomic function fields
with conductor of degree two

By

Daisuke SHIOMI *

§1. Introduction

Let p be a prime. Let F, be the field with ¢ = p" elements. Let kK = F,(T") be the
rational function field over Fy, and let A = F,[T] be the polynomial subring of k. For
a monic polynomial m € A, we denote the m-th cyclotomic function field by K,,. For
definitions and basic properties of cyclotomic function field, see [Go|, [Ha], and [Ro].

Let us denote by J,, the Jacobian of K mIF‘q, where ]Fq is an algebraic closure of IF,.
For a prime [, it is well-known that the I-primary subgroup J,,(l) of J,, satisfies

D2 Q2 it l#p,
Im(l) ~

@j:l Qp/Zp if | =p,

where gy, is the genus of K,,, and \,, is an integer where 0 < \,,, < g;,. The integer
Am is called the Hasse-Witt invariant of K,,.

Kida and Murabayashi gave an explicit formula for g,, for all monic polynomial
m € A as Corollary 1 in the section 2 of [K-M]. Applying their genus formula to the
cases of degm =1 and degm = 2, we have gotten

Theorem 1.1. Let m € A be a monic polynomial.

(1) If degm = 1, then we have g,, = 0.
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(2) If degm = 2, then we have

( % if m is irreducible,

(‘1_2)2& if m = P? where P is a monic polynomial
Im = of degree one,

((1_2)2& if m = PQ where P,Q are distinct monic
L polynomials of degree one.

Next we consider the Hasse-Witt invariant case. The main theorem of this paper
is the following results.

Theorem 1.2. Let m € A be a monic polynomial, and ¢ = p".
(1) If degm =1, then we have A, = 0.

(2) If degm = 2, then we have

( T
(p(pTH)) —q—1 if m is irreducible, (1)
0 if m = P? where P is a monic polynomial (II)
Am = of degree one,
'
(p(pTH)) —3q+3 if m = PQ where P,Q are distinct (111)
monic polynomials of degree one.

Remark.  Noting that A\, < g, we have \,;, = 0 if degm = 1. Hence we obtain
the first assertion of Theorem 1.2.

We call K,,, ordinary if A\, = ¢,,. By comparing Theorem 1.1 and 1.2, we obtain
the following results.

Corollary 1.3. Let m € A be a monic polynomial of degree two.

(1) Assume that ¢ = p. Then K,, is ordinary if and only if one of the following
conditions holds: (a) q = 2, (b) m is irreducible, (¢) m = PQ where P,Q are
distinct polynomials of degree one.

(2) Assume that ¢ = p"(r > 2). Then K,, is not ordinary.
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The second assertion of Corollary 1.3 is generalized as follows:

Theorem 1.4.  Assume that ¢ = p"(r > 2), and m € A is a monic polynomial.
Then K,, is ordinary if and only if degm = 1. In this case, K,, is rational.

§2. Preparations

In this section, we review some basic facts for zeta functions, L-functions, and
power residue symbols.
Let us define the zeta function of K, as follows

o) = T (1= 35)

p:prime

where p runs through all primes of K,,, and Np is the number of elements of the reduce
class field of p. By the standard fact about the zeta function, there is a polynomial
Zm(u) € Z[u] such that

Zm(q™)
(I—q¢ )1 —qg'7%)

Then we have the following relation between A, and Z,,(u).

C(s, Km) =

Theorem 2.1.  (c¢f. Proposition 11.20 in [Ro]).

Am = deg Zm(U),
where Zy,(u) € Fy[u] is the reduction of Zy,(u) modulo p.

Let X,,, be the group of all primitive Dirichlet characters modulo m. Then ((s, K,,)
can be written as follows

C(s, Km) =3 ] Llsx)p(1—q %) o1,
XEXm
where L(s,x) =Y. aca x(a)g %984, (cf. Lemma 2.1 in [Sh1]).
For a characte;:r;(ong X, we call x real if x(a) =1 for all @ € F;. Otherwise, we
call x imaginary.
Let m € A be a monic polynomial of degree d. For x € X,,, we put

six) = Y x(a).

a:monic
deg a=1

Then it is known that
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e s;(x) = 0if x is non-trivial and ¢ > deg f,,

. Zg:_ol si(x) = 0 if x is non-trivial and real,

where f, is the conductor of x (cf. section 3 in [G-R]). Assume that d = 2. Then
L(s,x) can be calculated as follows

(I—g' )7t if f =1,
1 if deg f, = 1,
L(s,x) = s X

1—q~ if fy, =m, and x is real,

1+ s1(x)g*® if f, =m, and x is imaginary.

Hence we obtain

(2.1) Zmw) = ] Q+si(0)w).

fX =m
Xx:imaginary

In the end of this section, we review a power residue symbol. For an integer n > 2,
let W,, be the set of all n-th roots of unity. Let K be a number field containing W,,
and let Ok be the ring of integers of K. Let p be a prime ideal of K not dividing n.
For a € Ok which is prime to p, there exists uniquely (%)n € W, satistying

(%) = oNP=D/" mod p.

We call (F) the power residue symbol mod p of order n.

n

8§3. A proof of Theorem 1.2

The purpose of this section is to prove the second assertion of Theorem 1.2.

§3.1. The case (I)

Assume that m is a monic irreducible polynomial of degree two. Take v € Fy 2 so
that m(y) = 0. Then f(T) — f(v) gives rise to an isomorphism A/mA =5 F,2. Now

let p be a prime ideal of K = Q(e%i/(‘f_l)) dividing p, and let x, = (F) - be the
-

power residue symbol mod p of order ¢ — 1. We see that Xp is real if and only if n is
divisible by ¢ — 1. Therefore, by the equality (2.1), we have

(3.1) Znw) = [ C+s:)w).

0<n<q2-2
nZ0 mod g—1
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Under the identification A/mA = F 2, we have an equality

silxp) = D> (r+a)”

ack,
in qu = (’)K/p.
For 1 <n <¢—2(n#0 modgq— 1), we consider the g-adic expansion n =
a(n) + b(n)q. By the Newton formula, we have gotten

Z (T+a)" =— ( b(n) ) (T4 — T)a(n)+b(n)—(q—1),

1= 1= a(n)

*

as was verified by Gekeler (cf. Corollary 3.14 in [Ge]). Here <*> is a binomial coeffi-

cient. This implies an equality

a&ﬁ%=—<q_i@200>hﬂ—w“MMmFWA)
b(n)

q—1—a(n)
by Theorem 2.1 and the equality (3.1), we obtain

in Fg2. Notice that ( ) =0 mod p for a(n)+ b(n) < g — 1. Therefore,

(32) Ap=731<n<¢—2:a(n)+bn)>q—1, b(n) %20 modp,,
qg—1—a(n)

where # 5 is the number of elements of a set S. Next we will calculate the right side of
the equality (3.2). For 1 <n < ¢? — 2, we put

a(n) = ap(n) +ai(n)p+ -+ +a,—1(n)p" ",
b(n) = bo(n) + bl (n)p + -+ br_l(n)pT_l,

where 0 < a;(n), bj(n) <p—1(i=0,1,...,r —1). Since

qg—1—a(n)
=(p—1—ay(n)+@—1—ar(n)p+-+(p—1—ar_1(n)p" ",

b)  \_Tr( b o
(q—l—a(n)>_g<p—l—ai(n)> dp.

Hence we obtain the following equivalence

we have

o) ) 20 modpe an) +hi(m)=p—1 (0<i<r—1).
q¢—1-a(n)
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We see that

(p(p;1)>r:#{n€[0,q2—1] tai(n)+b(n)>p—1 (0<i<r-1)},
g=%{ne€0,¢°—1] : a(n)+b(n)=q—1},
1=#{nel0,¢*—1] : a(n) +b(n)=2(¢— 1)},

where [0,¢% — 1] = {0,1,2,...,¢* — 1}. Therefore we have

§3.2. The case (II)

Let a € Fy and m(T) = (' — «)?. Let € denote the image of ' — v in A/mA. Then
F(T) — f(a)+ f'(a)e gives rise to an isomorphism A/mA = F[e]. It follows that any
character y : (A/mA)* — C* is given by f(T) — n(f(a))¥(f'(a)/f(a)), where 7 is a
multiplicative character of Fy, and ¢ is an additive character of F,. Furthermore s;(x)
is nothing but the Gauss sum G(n~1,4). It is readily seen that

e Y is trivial & 7 is trivial and ¢ is trivial,

e deg f, = 1 < n is non-trivial and ) is trivial,

e f, =m and x is real < 7 is trivial and ¢ is non-trivial,

e f, =m and x is imaginary < 7 is non-trivial and 1) is non-trivial.

By the equality (2.1), we have

Zn(u) = [J(1+ GO o)),

where 1) runs through all non-trivial multiplicative characters of IFy, and + runs through
all non-trivial additive characters of IF,.

Let p be a prime ideal of Q(e?™/?,¢?™/(¢=1)) dividing p. If 7 is non-trivial and
® is non-trivial, then we have G(n~1,4) € p by the Stickelberger theorem for Gauss
sums (cf. Theorem 11.2.1 in [B-E-W] ). Hence we obtain A,, = 0 by Theorem 2.1. This
completes the proof of the case (II).

Remark. 1 appreciate that the referee taught me the above proof. We can gen-
eralize the case (II) as follows: Apn = 0 (n > 0) if P is a monic polynomial of degree
one (cf. Proposition 3.2 in [Shl]).
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§3.3. The case (III)
Let 0,8 € F, (a # §) and m(T) = (T — a)(T — 8). Then f(T) ~ (f(a), f(8))

gives rise to an isomorphism (A/mA)* = FxX x Fx. It follows that any character
X : (A/mA)* — C* is given by f(T) — x1(f(@))x2(f(B)), where x; and x2 are the
multiplicative characters of IF,. Furthermore we have an equality

(3-3) s1(x) = x2(=1)(xax2) (@ = B)J(x1, x2),

where J(x1, x2) denotes the Jacobi sum associated to x; and x2. It is readily seen that
e Y is trivial & x; and yo are trivial,
e deg fy, =1 < one of x; and X2 is non-trivial and the other is trivial,
e fy =m and x is real < x; and )2 are non-trivial and xx» is trivial ,

e f\ =m and x is imaginary < xi, X2, and Xx1X2 are non-trivial.

p
symbol mod p of order ¢ — 1. Then we have the following one to one corresponding

Let p be a prime ideal of Q(e27%/(a=1) above p. Let Xp = (—) be the power residue
g—1

X is imaginary of | 1. o m 1<ni,ng <qg-—2,
e X, — LXp?) .
{X " " conductor m } {(XP Xp ) ny+mneZ0 modqg—1

By the equalities (2.1) and (3.3), we have

A = deg(Zyn(u) mod p)
= > deg(1+ X2 (—1)xp* ™2 (o — B)J (xp*, xp?)u mod p).

1<ny<q-2
1<ny<q-2
n1+ngog#Z0 mod g—1

Next we will calculate ord,J(xp", xp?), where ord, is the valuation of p. For an
integer n € Z, we define L(n) € Z as follows

0<Ln)<qg—1, L(n)=n modq-—1.
We consider the p-adic expansion
L(n) = ag(n) +ar(n)p+---+ar,_1(n)p"* (0 < a;(n) < p).

Define l(n) as follows
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For 1 <nj,ny <q—2(ny +ng #q—1), it is known as the Stickelberger theorem that
l(nl) + l(ng) — l(?’Ll + 7’L2)

p—1
:r—#{OSigr—l : L(nip®) + L(napt) >q—1}

OrdPJ(Xgl ’ Xg2) =Tr—

(cf. Corollary 11.2.4 and Theorem 11.2.9 in [B-E-W] ). Noting that
TR X)) T M X ™) =,

we obtain

Am

ny +ng Z0 modq—l,}

) {(nlm) €t ordyJ(xp", Xp*) = 0

B

nyi+mneZ0 mod qg—1,
ordpJ(xp", Xp?) =7

{(nl,ng) c[l,q—2*:

nyi+mneZ0 mod qg—1, }

) {(nl’n2) ) ¥ to) = U + o)

by the Stickelberger theorem. We see that

l(?’Ll) + l(’ng) = l(?’Ll + 7’L2)
= Lnp" V) 4+ Lingp™ 1) <q—1(=0,1,2,...,7r — 1)
< ai(n1)+ai(n) <p—-1(=0,1,2,....,7 —1).
Therefore we have

/\m:#{(nl,ng)e[l,q—Q]Q:n1+n2§é0 modg—1, }
ai(ni1) +a;i(n2) <p—10<i<r—1)
Notice that
(lw>rz#{(nl,ng)e[0,(]—1]2 sai(ny) +ai(ng) <p-—1 (Ogigr—l)},
3q—3:#{(n1,n2)6[0,q—1]2 : n1:00rn2=OOrn1+n2=q—1}.

Hence we have

1 T
Am = (@) —3q+3.

8§4. A proof of Theorem 1.4

The purpose of this section is to prove Theorem 1.4.
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Lemma 4.1.  Let my, ma be monic polynomials such that my|ms. If K,,, is
ordinary, then K,,, is also ordinary.

This follows from the following general result.

Lemma 4.2.  Let k be a field of characteristic p, and let w: Y — X be a finite
covering of projective non-singular curves over k. If Y is ordinary, then X is also

ordinary.

Proof. We give a proof for the reader’s convenience. Let A, B be the Jacobians of
X, Y, respectively. Then 7 induces the homomorphism of abelian varieties 7* : A — B,
and the embedding of p-divisible groups 7* : T,A — T,,B. Assume that Y is ordinary.
Then each slope of T}, B is only 0 or 1. Hence each slope of T}, A is only 0 or 1. Therefore
X is also ordinary. O

Now we prove Theorem 1.4.

Proof. Assume that degm = 1. Then we have g,, = A\, = 0. Hence K,, is
ordinary. Conversely, we assume that K, is ordinary. Let m = Q7*Q5*--- Q" be
the irreducible factorization, where @)1, Qs2, ..., )y are distinct monic polynomials. By
Lemma 4.1, K, QT is ordinary for each 7. It follows from Corollary 1.3 and Corollary 3.1
in [Sh2] that deg @; = 1 and n; = 1. Now suppose that ¢ > 2. Again by Lemma 4.1,
Kg,q, is ordinary, which contradicts to the second assertion of Corollary 1.3. O

Acknowledgements

The author wish to thank the referee for many helpful suggestions.

References

[B-E-W] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi sums, Canadian
Mathematical Society Series of Monographs and Advanced Texts, Wiley-Interscience Pub-
lication, New York, 1998.

[Ge] E.-U. Gekeler, On power sums of polynomials over finite fields, J. Number Theory, 30
(1988), 11-26.

[G-R] S. Galovich and M. Rosen, The class number of cyclotomic function fields, J. Number
Theory, 13 (1981), 363-375.

[Go] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1998.

[Ha] D.R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math.
Soc., 189 (1974), 77-91.

[K-M] M. Kida and N. Murabayashi, Cyclotomic function fields with divisor class number one,
Tokyo J. Math., 14 (1991), 45-56.

[Ro] M. Rosen, Number Theory in Function Fields, Springer, Berlin, 2002.



222 DAISUKE SHIOMI

[Sh1l] D. Shiomi, The Hasse-Witt invariant of cyclotomic function fields, Acta Arith., 150
(2011), 227-240.

[Sh2] D. Shiomi, Ordinary cyclotomic function fields, J. Number Theory, 133 (2013), 523~
533.



