Explicit formulas for Hasse-Witt invariants of cyclotomic function fields with conductor of degree two

By

Daisuke Shiomi *

§ 1. Introduction

Let p be a prime. Let \mathbb{F}_q be the field with $q = p^r$ elements. Let $k = \mathbb{F}_q(T)$ be the rational function field over \mathbb{F}_q , and let $A = \mathbb{F}_q[T]$ be the polynomial subring of k. For a monic polynomial $m \in A$, we denote the m-th cyclotomic function field by K_m . For definitions and basic properties of cyclotomic function field, see [Go], [Ha], and [Ro].

Let us denote by J_m the Jacobian of $K_m\overline{\mathbb{F}}_q$, where $\overline{\mathbb{F}}_q$ is an algebraic closure of \mathbb{F}_q . For a prime l, it is well-known that the l-primary subgroup $J_m(l)$ of J_m satisfies

$$J_m(l)\simeq egin{cases} igoplus_{i=1}^{2g_m}\mathbb{Q}_l/\mathbb{Z}_l & ext{ if } l
eq p, \ igoplus_{i=1}^{\lambda_m}\mathbb{Q}_p/\mathbb{Z}_p & ext{ if } l=p, \end{cases}$$

where g_m is the genus of K_m , and λ_m is an integer where $0 \leq \lambda_m \leq g_m$. The integer λ_m is called the Hasse-Witt invariant of K_m .

Kida and Murabayashi gave an explicit formula for g_m for all monic polynomial $m \in A$ as Corollary 1 in the section 2 of [K-M]. Applying their genus formula to the cases of deg m = 1 and deg m = 2, we have gotten

Theorem 1.1. Let $m \in A$ be a monic polynomial.

(1) If $\deg m = 1$, then we have $g_m = 0$.

Received March 12, 2012. Revised October 5, 2012 and December 15, 2012.

²⁰⁰⁰ Mathematics Subject Classification(s): 11M38, 11R60.

Key Words: cyclotomic function field, Jacobian variety.

^{*}Department of Mathematical Sciences, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, 990-8560, Japan. e-mail: shiomi@sci.kj.yamagata-u.ac.jp

^{© 2013} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

(2) If $\deg m = 2$, then we have

$$g_m = \begin{cases} \frac{(q-2)(q+1)}{2} & \textit{if } m \textit{ is irreducible,} \\ \\ \frac{(q-2)(q-1)}{2} & \textit{if } m = P^2 \textit{ where } P \textit{ is a monic polynomial} \\ \\ & \textit{of degree one,} \\ \\ \\ \frac{(q-2)(q-3)}{2} & \textit{if } m = PQ \textit{ where } P, Q \textit{ are distinct monic polynomials of degree one.} \end{cases}$$

Next we consider the Hasse-Witt invariant case. The main theorem of this paper is the following results.

Theorem 1.2. Let $m \in A$ be a monic polynomial, and $q = p^r$.

- (1) If deg m = 1, then we have $\lambda_m = 0$.
- (2) If $\deg m = 2$, then we have

$$\lambda_{m} = \begin{cases} \left(\frac{p(p+1)}{2}\right)^{r} - q - 1 & \text{if } m \text{ is irreducible,} \\ 0 & \text{if } m = P^{2} \text{ where } P \text{ is a monic polynomial (II)} \\ & \text{of degree one,} \\ \left(\frac{p(p+1)}{2}\right)^{r} - 3q + 3 & \text{if } m = PQ \text{ where } P, Q \text{ are distinct} \\ & \text{monic polynomials of degree one.} \end{cases}$$
(III)

Noting that $\lambda_m \leq g_m$, we have $\lambda_m = 0$ if deg m = 1. Hence we obtain Remark. the first assertion of Theorem 1.2.

We call K_m ordinary if $\lambda_m = g_m$. By comparing Theorem 1.1 and 1.2, we obtain the following results.

Corollary 1.3. Let $m \in A$ be a monic polynomial of degree two.

- (1) Assume that q = p. Then K_m is ordinary if and only if one of the following conditions holds: (a) q = 2, (b) m is irreducible, (c) m = PQ where P,Q are distinct polynomials of degree one.
- (2) Assume that $q = p^r (r \ge 2)$. Then K_m is not ordinary.

The second assertion of Corollary 1.3 is generalized as follows:

Assume that $q = p^r(r \ge 2)$, and $m \in A$ is a monic polynomial. Then K_m is ordinary if and only if $\deg m = 1$. In this case, K_m is rational.

§ 2. Preparations

In this section, we review some basic facts for zeta functions, L-functions, and power residue symbols.

Let us define the zeta function of K_m as follows

$$\zeta(s, K_m) = \prod_{\mathfrak{p}: \text{prime}} \left(1 - \frac{1}{N\mathfrak{p}^s}\right)^{-1},$$

where \mathfrak{p} runs through all primes of K_m , and $N\mathfrak{p}$ is the number of elements of the reduce class field of \mathfrak{p} . By the standard fact about the zeta function, there is a polynomial $Z_m(u) \in \mathbb{Z}[u]$ such that

$$\zeta(s, K_m) = \frac{Z_m(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}.$$

Then we have the following relation between λ_m and $Z_m(u)$.

Theorem 2.1. (cf. Proposition 11.20 in [Ro]).

$$\lambda_m = \deg \bar{Z}_m(u),$$

where $Z_m(u) \in \mathbb{F}_p[u]$ is the reduction of $Z_m(u)$ modulo p.

Let X_m be the group of all primitive Dirichlet characters modulo m. Then $\zeta(s, K_m)$ can be written as follows

$$\zeta(s, K_m) = \left\{ \prod_{\chi \in X_m} L(s, \chi) \right\} (1 - q^{-s})^{-\frac{[K_m:k]}{q-1}},$$

where $L(s,\chi) = \sum_{\substack{a \in A \\ a: \text{monic}}} \chi(a)q^{-s \deg a}$. (cf. Lemma 2.1 in [Sh1]). For a character $\chi \in X_m$, we call χ real if $\chi(a) = 1$ for all $a \in \mathbb{F}_q^{\times}$. Otherwise, we call χ imaginary.

Let $m \in A$ be a monic polynomial of degree d. For $\chi \in X_m$, we put

$$s_i(\chi) = \sum_{\substack{a: \text{monic} \\ \text{deg } a=i}} \chi(a).$$

Then it is known that

- $s_i(\chi) = 0$ if χ is non-trivial and $i \ge \deg f_{\chi}$,
- $\sum_{i=0}^{d-1} s_i(\chi) = 0$ if χ is non-trivial and real,

where f_{χ} is the conductor of χ (cf. section 3 in [G-R]). Assume that d=2. Then $L(s,\chi)$ can be calculated as follows

$$L(s,\chi) = \begin{cases} (1-q^{1-s})^{-1} & \text{if } f_{\chi} = 1, \\ 1 & \text{if } \deg f_{\chi} = 1, \\ 1-q^{-s} & \text{if } f_{\chi} = m, \text{ and } \chi \text{ is real,} \\ 1+s_1(\chi)q^{-s} & \text{if } f_{\chi} = m, \text{ and } \chi \text{ is imaginary.} \end{cases}$$

Hence we obtain

(2.1)
$$Z_m(u) = \prod_{\substack{f_\chi = m \\ \chi: \text{imaginary}}} (1 + s_1(\chi)u).$$

In the end of this section, we review a power residue symbol. For an integer $n \geq 2$, let W_n be the set of all n-th roots of unity. Let K be a number field containing W_n , and let \mathcal{O}_K be the ring of integers of K. Let \mathfrak{p} be a prime ideal of K not dividing n. For $\alpha \in \mathcal{O}_K$ which is prime to \mathfrak{p} , there exists uniquely $\left(\frac{\alpha}{\mathfrak{p}}\right)_n \in W_n$ satisfying

$$\left(\frac{\alpha}{\mathfrak{p}}\right)_{\mathfrak{m}} \equiv \alpha^{(N\mathfrak{p}-1)/n} \mod \mathfrak{p}.$$

We call $\left(\frac{1}{\mathfrak{p}}\right)_n$ the power residue symbol mod \mathfrak{p} of order n.

§ 3. A proof of Theorem 1.2

The purpose of this section is to prove the second assertion of Theorem 1.2.

$$\S 3.1.$$
 The case (I)

Assume that m is a monic irreducible polynomial of degree two. Take $\gamma \in \mathbb{F}_{q^2}$ so that $m(\gamma) = 0$. Then $f(T) \mapsto f(\gamma)$ gives rise to an isomorphism $A/mA \xrightarrow{\sim} \mathbb{F}_{q^2}$. Now let \mathfrak{p} be a prime ideal of $K = \mathbb{Q}(e^{2\pi i/(q^2-1)})$ dividing p, and let $\chi_{\mathfrak{p}} = \left(\frac{1}{\mathfrak{p}}\right)_{q^2-1}$ be the power residue symbol mod \mathfrak{p} of order $q^2 - 1$. We see that $\chi_{\mathfrak{p}}^n$ is real if and only if n is divisible by q - 1. Therefore, by the equality (2.1), we have

(3.1)
$$Z_m(u) = \prod_{\substack{0 \le n \le q^2 - 2\\ n \not\equiv 0 \mod q - 1}} (1 + s_1(\chi_{\mathfrak{p}}^n)u).$$

Under the identification $A/mA = \mathbb{F}_{q^2}$, we have an equality

$$s_1(\chi_{\mathfrak{p}}^n) = \sum_{\alpha \in \mathbb{F}_q} (\gamma + \alpha)^n$$

in $\mathbb{F}_{q^2} = \mathcal{O}_K/\mathfrak{p}$.

For $1 \le n \le q^2 - 2$ $(n \not\equiv 0 \mod q - 1)$, we consider the q-adic expansion n = a(n) + b(n)q. By the Newton formula, we have gotten

$$\sum_{\alpha \in \mathbb{F}_q} (T + \alpha)^n = -\binom{b(n)}{q - 1 - a(n)} (T^q - T)^{a(n) + b(n) - (q - 1)},$$

as was verified by Gekeler (cf. Corollary 3.14 in [Ge]). Here $\binom{*}{*}$ is a binomial coefficient. This implies an equality

$$s_1(\chi_{\mathfrak{p}}^n) = -\binom{b(n)}{q-1-a(n)} (\gamma^q - \gamma)^{a(n)+b(n)-(q-1)}$$

in \mathbb{F}_{q^2} . Notice that $\binom{b(n)}{q-1-a(n)} \equiv 0 \mod p$ for a(n)+b(n) < q-1. Therefore, by Theorem 2.1 and the equality (3.1), we obtain

$$(3.2) \ \lambda_m = \# \left\{ 1 \le n \le q^2 - 2 : a(n) + b(n) > q - 1, \ \binom{b(n)}{q - 1 - a(n)} \not\equiv 0 \mod p \right\},$$

where ${}^{\#}S$ is the number of elements of a set S. Next we will calculate the right side of the equality (3.2). For $1 \le n \le q^2 - 2$, we put

$$a(n) = a_0(n) + a_1(n)p + \dots + a_{r-1}(n)p^{r-1},$$

$$b(n) = b_0(n) + b_1(n)p + \dots + b_{r-1}(n)p^{r-1},$$

where $0 \le a_i(n), \ b_i(n) \le p-1 \ (i=0,1,...,r-1)$. Since

$$q - 1 - a(n)$$

$$= (p - 1 - a_0(n)) + (p - 1 - a_1(n))p + \dots + (p - 1 - a_{r-1}(n))p^{r-1},$$

we have

$$\begin{pmatrix} b(n) \\ q - 1 - a(n) \end{pmatrix} \equiv \prod_{i=0}^{r-1} \begin{pmatrix} b_i(n) \\ p - 1 - a_i(n) \end{pmatrix} \mod p.$$

Hence we obtain the following equivalence

$$\begin{pmatrix} b(n) \\ q - 1 - a(n) \end{pmatrix} \not\equiv 0 \mod p \Leftrightarrow a_i(n) + b_i(n) \ge p - 1 \ (0 \le i \le r - 1).$$

We see that

$$\left(\frac{p(p+1)}{2}\right)^{r} = \# \left\{ n \in [0, q^{2} - 1] : a_{i}(n) + b_{i}(n) \geq p - 1 \ (0 \leq i \leq r - 1) \right\},$$

$$q = \# \left\{ n \in [0, q^{2} - 1] : a(n) + b(n) = q - 1 \right\},$$

$$1 = \# \left\{ n \in [0, q^{2} - 1] : a(n) + b(n) = 2(q - 1) \right\},$$

where $[0, q^2 - 1] = \{0, 1, 2, ..., q^2 - 1\}$. Therefore we have

$$\lambda_m = \left(\frac{p(p+1)}{2}\right)^r - q - 1.$$

§ 3.2. The case (II)

Let $\alpha \in \mathbb{F}_q$ and $m(T) = (T - \alpha)^2$. Let ε denote the image of $T - \alpha$ in A/mA. Then $f(T) \mapsto f(\alpha) + f'(\alpha)\varepsilon$ gives rise to an isomorphism $A/mA \stackrel{\sim}{\to} \mathbb{F}_q[\varepsilon]$. It follows that any character $\chi : (A/mA)^{\times} \to \mathbb{C}^{\times}$ is given by $f(T) \mapsto \eta(f(\alpha))\psi(f'(\alpha)/f(\alpha))$, where η is a multiplicative character of \mathbb{F}_q , and ψ is an additive character of \mathbb{F}_q . Furthermore $s_1(\chi)$ is nothing but the Gauss sum $G(\eta^{-1}, \psi)$. It is readily seen that

- χ is trivial $\Leftrightarrow \eta$ is trivial and ψ is trivial,
- $\deg f_{\chi} = 1 \Leftrightarrow \eta$ is non-trivial and ψ is trivial,
- $f_{\chi} = m$ and χ is real $\Leftrightarrow \eta$ is trivial and ψ is non-trivial,
- $f_{\chi} = m$ and χ is imaginary $\Leftrightarrow \eta$ is non-trivial and ψ is non-trivial.

By the equality (2.1), we have

$$Z_m(u) = \prod (1 + G(\eta^{-1}, \psi)u),$$

where η runs through all non-trivial multiplicative characters of \mathbb{F}_q , and ψ runs through all non-trivial additive characters of \mathbb{F}_q .

Let \mathfrak{p} be a prime ideal of $\mathbb{Q}(e^{2\pi i/p}, e^{2\pi i/(q-1)})$ dividing p. If η is non-trivial and ψ is non-trivial, then we have $G(\eta^{-1}, \psi) \in \mathfrak{p}$ by the Stickelberger theorem for Gauss sums (cf. Theorem 11.2.1 in [B-E-W]). Hence we obtain $\lambda_m = 0$ by Theorem 2.1. This completes the proof of the case (II).

Remark. I appreciate that the referee taught me the above proof. We can generalize the case (II) as follows: $\lambda_{P^n} = 0$ $(n \ge 0)$ if P is a monic polynomial of degree one (cf. Proposition 3.2 in [Sh1]).

§ 3.3. The case (III)

Let $\alpha, \beta \in \mathbb{F}_q$ $(\alpha \neq \beta)$ and $m(T) = (T - \alpha)(T - \beta)$. Then $f(T) \mapsto (f(\alpha), f(\beta))$ gives rise to an isomorphism $(A/mA)^{\times} \xrightarrow{\sim} \mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times}$. It follows that any character $\chi : (A/mA)^{\times} \to \mathbb{C}^{\times}$ is given by $f(T) \mapsto \chi_1(f(\alpha))\chi_2(f(\beta))$, where χ_1 and χ_2 are the multiplicative characters of \mathbb{F}_q . Furthermore we have an equality

(3.3)
$$s_1(\chi) = \chi_2(-1)(\chi_1\chi_2)(\alpha - \beta)J(\chi_1,\chi_2),$$

where $J(\chi_1, \chi_2)$ denotes the Jacobi sum associated to χ_1 and χ_2 . It is readily seen that

- χ is trivial $\Leftrightarrow \chi_1$ and χ_2 are trivial,
- deg $f_{\chi} = 1 \Leftrightarrow$ one of χ_1 and χ_2 is non-trivial and the other is trivial,
- $f_{\chi} = m$ and χ is real $\Leftrightarrow \chi_1$ and χ_2 are non-trivial and $\chi_1 \chi_2$ is trivial,
- $f_{\chi} = m$ and χ is imaginary $\Leftrightarrow \chi_1, \chi_2, \text{ and } \chi_1\chi_2 \text{ are non-trivial.}$

Let \mathfrak{p} be a prime ideal of $\mathbb{Q}(e^{2\pi i/(q-1)})$ above p. Let $\chi_{\mathfrak{p}} = \left(\frac{1}{\mathfrak{p}}\right)_{q-1}$ be the power residue symbol mod \mathfrak{p} of order q-1. Then we have the following one to one corresponding

$$\left\{\chi \in X_m: \frac{\chi \text{ is imaginary of}}{\text{conductor } m}\right\} \overset{\text{1:1}}{\longleftrightarrow} \left\{ (\chi_{\mathfrak{p}}^{n_1}, \chi_{\mathfrak{p}}^{n_2}): \frac{1 \leq n_1, n_2 \leq q-2,}{n_1+n_2 \not\equiv 0 \mod q-1} \right\}.$$

By the equalities (2.1) and (3.3), we have

$$\lambda_m = \deg(Z_m(u) \mod \mathfrak{p})$$

$$= \sum_{\substack{1 \le n_1 \le q-2 \\ 1 \le n_2 \le q-2 \\ n_1+n_2 \not\equiv 0 \mod q-1}} \deg(1 + \chi_{\mathfrak{p}}^{n_2}(-1)\chi_{\mathfrak{p}}^{n_1+n_2}(\alpha - \beta)J(\chi_{\mathfrak{p}}^{n_1}, \chi_{\mathfrak{p}}^{n_2})u \mod \mathfrak{p}).$$

Next we will calculate $\operatorname{ord}_{\mathfrak{p}} J(\chi_{\mathfrak{p}}^{n_1}, \chi_{\mathfrak{p}}^{n_2})$, where $\operatorname{ord}_{\mathfrak{p}}$ is the valuation of \mathfrak{p} . For an integer $n \in \mathbb{Z}$, we define $L(n) \in \mathbb{Z}$ as follows

$$0 \le L(n) < q - 1$$
, $L(n) \equiv n \mod q - 1$.

We consider the p-adic expansion

$$L(n) = a_0(n) + a_1(n)p + \dots + a_{r-1}(n)p^{r-1} \quad (0 \le a_i(n) < p).$$

Define l(n) as follows

$$l(n) = a_0(n) + a_1(n) + \dots + a_{r-1}(n).$$

For $1 \le n_1, n_2 \le q - 2$ $(n_1 + n_2 \ne q - 1)$, it is known as the Stickelberger theorem that

$$\operatorname{ord}_{\mathfrak{p}} J(\chi_{\mathfrak{p}}^{n_1}, \chi_{\mathfrak{p}}^{n_2}) = r - \frac{l(n_1) + l(n_2) - l(n_1 + n_2)}{p - 1}$$
$$= r - \# \left\{ 0 \le i \le r - 1 : L(n_1 p^i) + L(n_2 p^i) > q - 1 \right\}$$

(cf. Corollary 11.2.4 and Theorem 11.2.9 in $[\mbox{B-E-W}]$). Noting that

$$J(\chi_{\mathfrak{p}}^{n_1}, \chi_{\mathfrak{p}}^{n_2})J(\chi_{\mathfrak{p}}^{q-1-n_1}, \chi_{\mathfrak{p}}^{q-1-n_2}) = q,$$

we obtain

$$\lambda_{m} = \# \left\{ (n_{1}, n_{2}) \in [1, q - 2]^{2} : \frac{n_{1} + n_{2} \not\equiv 0 \mod q - 1}{\operatorname{ord}_{\mathfrak{p}} J(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}) = 0} \right\}$$

$$= \# \left\{ (n_{1}, n_{2}) \in [1, q - 2]^{2} : \frac{n_{1} + n_{2} \not\equiv 0 \mod q - 1}{\operatorname{ord}_{\mathfrak{p}} J(\chi_{\mathfrak{p}}^{n_{1}}, \chi_{\mathfrak{p}}^{n_{2}}) = r} \right\}$$

$$= \# \left\{ (n_{1}, n_{2}) \in [1, q - 2]^{2} : \frac{n_{1} + n_{2} \not\equiv 0 \mod q - 1}{l(n_{1}) + l(n_{2}) = l(n_{1} + n_{2})} \right\}$$

by the Stickelberger theorem. We see that

$$l(n_1) + l(n_2) = l(n_1 + n_2)$$

$$\iff L(n_1 p^{r-1-i}) + L(n_2 p^{r-1-i}) \le q - 1 \ (i = 0, 1, 2, ..., r - 1)$$

$$\iff a_i(n_1) + a_i(n_2) \le p - 1 \ (i = 0, 1, 2, ..., r - 1).$$

Therefore we have

$$\lambda_m = \# \left\{ (n_1, n_2) \in [1, q - 2]^2 : \frac{n_1 + n_2 \not\equiv 0 \mod q - 1,}{a_i(n_1) + a_i(n_2) \le p - 1 \ (0 \le i \le r - 1)} \right\}.$$

Notice that

$$\left(\frac{p(p+1)}{2}\right)^{r} = \#\left\{(n_1, n_2) \in [0, q-1]^2 : a_i(n_1) + a_i(n_2) \le p-1 \ (0 \le i \le r-1)\right\},\$$
$$3q - 3 = \#\left\{(n_1, n_2) \in [0, q-1]^2 : n_1 = 0 \text{ or } n_2 = 0 \text{ or } n_1 + n_2 = q-1\right\}.$$

Hence we have

$$\lambda_m = \left(\frac{p(p+1)}{2}\right)^r - 3q + 3.$$

§ 4. A proof of Theorem 1.4

The purpose of this section is to prove Theorem 1.4.

Lemma 4.1. Let m_1, m_2 be monic polynomials such that $m_1|m_2$. If K_{m_2} is ordinary, then K_{m_1} is also ordinary.

This follows from the following general result.

Lemma 4.2. Let k be a field of characteristic p, and let $\pi: Y \to X$ be a finite covering of projective non-singular curves over k. If Y is ordinary, then X is also ordinary.

Proof. We give a proof for the reader's convenience. Let A, B be the Jacobians of X, Y, respectively. Then π induces the homomorphism of abelian varieties $\pi^*: A \to B$, and the embedding of p-divisible groups $\pi^*: T_pA \to T_pB$. Assume that Y is ordinary. Then each slope of T_pB is only 0 or 1. Hence each slope of T_pA is only 0 or 1. Therefore X is also ordinary.

Now we prove Theorem 1.4.

Proof. Assume that $\deg m=1$. Then we have $g_m=\lambda_m=0$. Hence K_m is ordinary. Conversely, we assume that K_m is ordinary. Let $m=Q_1^{n_1}Q_2^{n_2}\cdots Q_t^{n_t}$ be the irreducible factorization, where $Q_1,Q_2,...,Q_t$ are distinct monic polynomials. By Lemma 4.1, $K_{Q_i^{n_i}}$ is ordinary for each i. It follows from Corollary 1.3 and Corollary 3.1 in [Sh2] that $\deg Q_i=1$ and $n_i=1$. Now suppose that $t\geq 2$. Again by Lemma 4.1, $K_{Q_1Q_2}$ is ordinary, which contradicts to the second assertion of Corollary 1.3.

Acknowledgements

The author wish to thank the referee for many helpful suggestions.

References

- [B-E-W] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley-Interscience Publication, New York, 1998.
- [Ge] E.-U. Gekeler, On power sums of polynomials over finite fields, J. Number Theory, **30** (1988), 11–26.
- [G-R] S. Galovich and M. Rosen, The class number of cyclotomic function fields, J. Number Theory, **13** (1981), 363–375.
- [Go] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1998.
- [Ha] D.R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc., 189 (1974), 77–91.
- [K-M] M. Kida and N. Murabayashi, Cyclotomic function fields with divisor class number one, Tokyo J. Math., 14 (1991), 45–56.
- [Ro] M. Rosen, Number Theory in Function Fields, Springer, Berlin, 2002.

- [Sh1] D. Shiomi, The Hasse-Witt invariant of cyclotomic function fields, Acta Arith., **150** (2011), 227–240.
- [Sh2] D. Shiomi, Ordinary cyclotomic function fields, J. Number Theory, **133** (2013), 523–533.