RIMS Kokyiroku Bessatsu
B44 (2013), 205211

Periodicity on poly-Euler numbers and
Vandiver type congruence for Euler numbers

By

Yasuo OHNO* and Yoshitaka SASAKI**

Abstract

Poly-Euler numbers are introduced as a generalization of classical Euler numbers. In this
article, a periodic property for poly-Euler numbers and Vandiver type congruence for Euler
numbers are discussed.

§1. Introduction

For every integer k, we define poly-Euler numbers E,(Lk) (n=0,1,2,...) by
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is the k-th polylogarithm. Poly-Euler numbers are a generalization of classical Euler

numbers F,, defined by
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Indeed, we easily see that E,(ll) = FE,,. The manner of generalization using the polylog-
arithm is due to Kaneko [3]. He introduced the poly-Bernoulli numbers IB,(lk) by

= t" (keZ)
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and discovered many meaningful properties of that. Furthermore, combinatorial inter-
pretations for poly-Bernoulli numbers were discovered by Brewbaker [2] and Launois [6]
up to the present (see also [10]). In the previous research, the authors presented many
properties of poly-Euler numbers ([7] and [8]), for example, explicit formulae, Clausen-
von Staudt type formula, and a parity formula. Further we also found certain combi-
natorial interpretations for poly-Euler numbers.

We should mention that the research on poly-Euler numbers relates to that of
multiple L values. In fact, poly-Euler numbers are introduced as special values of a
generalized Dirichlet L-function which relates to multiple L-functions (see [9] and [7, 8]).
We should also mention Arakawa-Kaneko’s zeta-function. Arakawa and Kaneko [1]
introduced a zeta-function which relates to the poly-Bernoulli numbers and the multiple
zeta-functions. This property has been applied to the research on the duality for multiple
zeta-star values (see [4] and [5]). Our L-function would also play a key role in the
research on multiple L values.

In this article, we treat a periodic property for poly-Euler numbers with negative
index and the Vandiver type congruence for Euler numbers. From the numerical data
(see Tables 1 and 2 below), we can find that the one’s digits of poly-Euler numbers
(n + 1)E7(1_k) (k,n > 0) change periodically with respect to k and n. We prove this
periodicity in the next section. In Section 3, we give the Vandiver type congruence for
Euler numbers. Tables 1 and 2 below are the lists of numerical values of poly-Euler
numbers (n + 1)E7(1_k).

§ 2. Periodicity for the one’s digits of poly-Euler numbers

From the numerical data, we can observe many interesting information of poly-
Euler numbers. Here, we focus on the one’s digits of poly-Euler numbers and prove the
periodicity. We start with reviewing an explicit formula for poly-Euler numbers which
will be used in the following sections. Hereafter, we put B = (n+ 1)E7(zk).

Theorem 2.1 (Theorems 3.1 and 6.1 in [7]).  For any non-negative integer n and
any integer k, we have

2 m
m=0

n+1
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Table 1. Poly-Euler numbers E,(L_k)(: (n+ 1)E,(L_k)) (0<k<4)

n\k 0 1 P 3 4
0 1 1 1 1 1
1 4 12 28 60 124
2 13 109 493 1837 6253
3 40 888 7192 42840 220120
4 121 6841 95161 865081 6396601
5 364 51012 1189108 16022100 165380884
6 1093 372709 14331493 280592677 3958958053
7 3280 2687088 168625072 4730230320 89841286960
8 9841 19200241 1951326961 77624198641 1961872865521
9 29524 136354812 22314285388 1249160130540 41639632236844
10 | 88573 964249309 252966361693 19811958812317 864960182738653

Table 2. Poly-Euler numbers E,(L_k)(: (n+ 1)E,(L_k)) 5<k<T)

n\k 5 6 7
0 1 1 1
1 252 508 1020
2 20269 63853 197677
3 1040088 4666072 20235480
4 41968441 255205561 1474388281
5 1460924052 11672605588 87058925460
6 46088370469 473519630053 4461656417317
7 1356820880688 17643342363952 206695980640560
8 37978754131441 617481161118961 8884959409517041
9 1023561900404652 20608543411101868 360705084750192300
10 | 26796243596416669 662962530489535453 14004154117362681757
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In particular, for poly-FEuler numbers with non-positive index, the above formula can be
rewritten as

k

(2.2) ECF) = (_;)k Z(—nlu{’;}{w + 3" — (4l + )"} (k> 0).
=0

The following theorem gives the periodicity for the one’s digits of poly-Euler num-
bers:

Theorem 2.2.  For any non-negative integers n, n’, k and k' withn =n’,k =k’
(mod 4), we have

ECHR = E,(l/_kl) (mod 10).

In particular, we have E,(l_k) = 65,(1_]6) + 54, (mod 10), where 6,, takes 1 if n is even
and 0 otherwise, and

( —(3" +3) for k=0 (mod 4),

ek _ 2m for k=1 (mod 4),
" —2n 4 (14 (=1)")  fork=2 (mod 4),
(2" +2)(1+(-1)") fork=3 (mod4).

Proof. The authors had shown the parity of poly-Euler numbers in [8]. Namely,
we have ES ™ =6, (mod 2). Therefore we need to show that ECH = glM (mod 5).
From (2.2), we have

k

(2.3) 2ECHF) = (—1)F Z(—l)lu{’l“}a(n,o (mod 5),

=0

where a(n,1) := (3 — )"+ — (1 — )L, Note that {}} =0 for 0 < k <[ and

(}+£5)

holds for any odd prime p and any non-negative integers I, k and k' with k& = £/
(mod p — 1). Therefore, when we put k = a, n = b (mod 4) (a,b € {0,1,2,3}), the
above formula becomes

2E(HF) = (—1)° Z(—nlu{‘;}a(b, ) (mod 5),
1=0
which gives ESM =gl h (mod 5). It follows that ESM = 6687 + 56, (mod 10)

from the Chinese remainder theorem. Furthermore, we have E(fk) = Efl,_k/) (mod 10)
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for any non-negative integers n, n’, k and ¥’ with n = n/, k = k&’ (mod 4), since E,(;’“)

E‘i,_k/) (mod 2) and ESM = E'T(l,_k/) (mod 5). Thus we obtain Theorem 2.2. O
§3. Vandiver type congruence for the Euler numbers
Kaneko [3] showed the following congruence for the Bernoulli numbers which is

originally due to Vandiver from the viewpoint of the poly-Bernoulli numbers: For any
odd prime p and positive integer n(< p — 2),

B,=> H(l+1)" (mod p),

where H,, := Z?:l i~1 is the n-th harmonic number and B,, is the n-th Bernoulli
number defined by

_1_Z_tn

Similarly, we obtain the following Vandiver type congruence for the Euler numbers from
the viewpoint of poly-Euler numbers.

Theorem 3.1.  For any odd prime p and non-negative integer n not exceeding
p — 3, we have
(p—1)/2
(n+1)E, = Z H;A(n,l) (mod p),
where
(0 when n s odd,
~ 1 when | = (p—1)/2 and n is even,
A(n.1) = (p—1)/

n/2
1 ‘
2; (27:;—: 1) (40 +2)"27  otherwise.

Proof. 1In [3], Kaneko showed an explicit formula for the poly-Bernoulli numbers:
For any integers k and n > 0, we have

B = (c1yr 3 ED M)

= (m+ 1)k

From this formula, we see that ]B%(l) = B(Q_p) (mod p) forn =0,1,...,p—2 and any odd

BV = BE P (

prime p. Consequently, mod p) forn =0,1,...,p—3 from Theorem 2.1.
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Hereafter we use another explicit formula for poly-Euler numbers which is a modified
version of (2.2) (see Corollary 6.6 in [7]):

ECR = (—1)k :O(—nlu{’;} nf (” + 1) (4l + 2)nti-m,

m
m=1
m:odd

Since E,(ll) = Evff_p ) (mod p), we have

p—2
(3.1) ED = Z(—nlu{p S 2}A(n,z) (mod p).

=0
Here, we have put
A(n,l) == [nf] (” 1 ) (4l +2)" =%
=\ '
Since 4(p — 1 — 1) +2 = —(4l + 2) (mod p), we have
0 (mod p) for I =(p—1)/2 and n is odd,
A(n,1) =141 (mod p) for I = (p—1)/2 and n is even,
(=1)"A(n,p—1—1) (mod p) otherwise.

Furthermore we remark that
p—2] _ i1 p—2
—-n'n = (—1)” —1—-1)! d
o 2= cortpmi o P72 oa
holds for any positive integer [ less than p — 1 (see Lemma 7.6 in [7]). Hence (3.1) is
rewritten as

0 (p—1)/2 p—2) ~

EY =~ —~1) A(n,1 d p).

== % v’ Ao mody
Thus the theorem is proved by using the following lemma:

Lemma 3.2 (Lemma 2 in [3]).  Suppose p is an odd prime, and 1 <1 < p — 2.
Then,

(—1)1—11!{1’ ] 2} — H, (mod p).
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