<table>
<thead>
<tr>
<th>Title</th>
<th>On v-adic periods of t-motives: a resume (Algebraic Number Theory and Related Topics 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MISHIBA, Yoshinori</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2013), B44: 59-65</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/209085</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
On v-adic periods of t-motives: a resume

By

Yoshinori Mishiba*

Abstract

This is a resume of our results ([7]) on v-adic periods of t-motives, where v is a “finite” place of the rational function field over a finite field. For a t-motive M, we define v-adic periods of M and the fundamental group of the Tannakian category generated by M. Our main result is the transcendental degree of the extension generated by the v-adic periods is equal to the dimension of the fundamental group.

§1. Introduction

The special values $\zeta(n)$ of the Riemann zeta function are important objects in number theory. However we do not know how many algebraic relations are there among them over \mathbb{Q}. Euler proved that if $n \geq 2$ is an even integer, then we have $\zeta(n)/\pi^n \in \mathbb{Q}$. The odd integer points are more mysterious and we have the following conjecture:

Conjecture 1.1. For each integer $n \geq 2$, we have the equality

$$\text{tr.deg}_Q \mathbb{Q}(\pi, \zeta(2), \ldots, \zeta(n)) = n - [n/2].$$

Here, for a real number x, we denote by $[x]$ the largest integer not greater than x.

To prove Conjecture 1.1 seems to be very difficult, but the function field analogue of this conjecture was proved by Chang and Yu ([4]). We explain this briefly.

Let \mathbb{F}_q be the finite field with q elements, p the characteristic of \mathbb{F}_q, $K := \mathbb{F}_q(\theta)$ the rational function field over \mathbb{F}_q, and $K_* := \mathbb{F}_q((\theta^{-1}))$ the ∞-adic completion of K. For each integer $n \geq 1$, the Carlitz zeta value is defined by

$$\zeta_C(n) := \sum_{a \in \mathbb{F}_q[\theta], \text{monic}} a^{-n} \in K_*.$$
This is the function field analogue of the Riemann zeta values. Fix a \((q - 1)\)st root \((-\theta)^{\frac{1}{q-1}}\) of \(-\theta\) and set

\[\tilde{\pi} := \theta(-\theta)^{\frac{1}{q-1}} \prod_{i=1}^{\infty} (1 - \theta^{1-\theta^i}(-1) \in K_{\infty}|((-\theta)^{\frac{1}{q-1}}). \]

This is an analogue of \(2\pi\sqrt{-1}\). By the definition of \(\zeta_C\), we have the equalities \(\zeta_C(np^n) = \zeta_C(n)p^n\) for all integers \(m, n \geq 1\). Carllitz proved that if \(n\) is divisible by \(q - 1\), then we have \(\zeta_C(n)/\tilde{\pi}^n \in K\). This is an analogue of the corresponding fact about the Riemann zeta values at positive even integers (note that \(q - 1\) and 2 are respectively the cardinalities of \(F_q[\theta]^\times\) and \(\mathbb{Z}^\times\)). Chang and Yu proved that these are essentially the only relations among the special values.

Theorem 1.2 ([4, Corollary 4.6]). For each integer \(n \geq 1\), we have the equality

\[\text{tr.deg}_K K(\tilde{\pi}, \zeta_C(1), \ldots, \zeta_C(n)) = n + 1 - [n/p] - [n/(q-1)] + [n/p(q-1)]. \]

The proof of Theorem 1.2 uses Papanikolas’ result on periods of \(t\)-motives. We explain this result. Let \(t\) be a variable independent of \(\theta\). A \(t\)-motive over \(K\) is a free \(K[t]\)-module \(M\) of finite rank equipped with a “Frobenius action” satisfying certain conditions. Let \(C_{\infty}\) be the \(\infty\)-adic completion of an algebraic closure of \(K_{\infty}\) and \(|\cdot|_{\infty}\) its valuation. Set \(T := \{f \in C_{\infty}[t]|f \text{ converges on } |t|_{\infty} \leq 1 \} \) and \(L := \text{Frac}T\) the fraction field of \(T\). For a \(t\)-motive \(M\), a Betti realization \(H_B(M) \subset L \otimes_{K[t]} M\) is defined. This is an \(F_q(t)\)-vector space and we have \(\text{dim}_{F_q(t)} H_B(M) \leq \text{rank}_{K[t]} M\). Assume that the equality holds. Such \(t\)-motives are called \emph{rigid analytically trivial}. Fix bases \(x\) of \(H_B(M)\) and \(m\) of \(M\). We obtain the matrix \(\Psi = (\Psi_{ij})_{i,j} \in \mathrm{G}L_r(L)\) such that \(m = \Psi x\) in \(L \otimes M\), where \(r\) is the rank of \(M\). We can construct a “good” category of rigid analytically trivial \(t\)-motives and this category forms a neutral Tannakian category with fiber functor \(H_B\). Thus we obtain an algebraic group \(\Gamma \subset \mathrm{G}L_r\) over \(F_q(t)\) which corresponds to the Tannakian subcategory generated by \(M\) via the Tannakian duality.

In this situation, Papanikolas proved the following theorem:

Theorem 1.3 ([8, Theorem 4.3.1, 4.5.10]). Let \(M\), \(\Psi\) and \(\Gamma\) be as above. Then we have

\[\text{tr.deg}_{K(t)} K(t)(\Psi_{11}, \Psi_{12}, \ldots, \Psi_{rr}) = \dim \Gamma. \]

Note that, each component of \(\Psi\) converges at \(t = \theta\), and moreover Papanikolas proved the equality

\[\text{tr.deg}_K K(\Psi_{11}|_{t=\theta}, \Psi_{12}|_{t=\theta}, \ldots, \Psi_{rr}|_{t=\theta}) = \dim \Gamma \]

by using the “\(\text{ABP-criterion}\)” ([2]). Anderson and Thakur showed ([3]) that the Carlitz zeta values are described by linear combinations of entries of \(\Psi|_{t=\theta}\) over \(K\) for certain \(t\)-motives. Hence Theorem 1.2 is proved by calculations of algebraic groups.
For a finite place \(v \), there exist \(v \)-adic zeta values and \(v \)-adic realizations of \(t \)-motives. In \([7]\) we proved a \(v \)-adic analogue of Theorem 1.3. However we do not know whether we can apply this result to the \(v \)-adic zeta values.

§2. \(t \)-motives

Before we state our results, we review \(t \)-motives. The notion of \(t \)-motive was introduced by Anderson in \([1]\). Let \(K \) and \(t \) be as in Section 1. We define an endomorphism \(\sigma \) on \(K[t] \) by

\[
\sigma: K[t] \rightarrow K[t]; \quad \sum_i a_i t^i \mapsto \sum_i a_i^q t^i.
\]

Definition 2.1. A \(t \)-motive over \(K \) is a free \(K[t] \)-module \(M \) of finite rank equipped with a \(\sigma \)-semilinear map \(\varphi: M \rightarrow M \) such that

- \(\det \varphi = c(t - \theta)^n \) (\(c \in K^\times \), \(n \geq 0 \)),
- \(M \) is finitely generated over \(K[\varphi] \).

Note that \(\det \varphi \) in the first condition is the determinant of the matrix \(A \in \text{GL}_r(K[t]) \) which satisfies \(\varphi \mathfrak{m} = A \mathfrak{m} \) for a fixed basis \(\mathfrak{m} \) of \(M \), where \(r \) is the \(K[t] \)-rank of \(M \). Since \(K[t]^\times = K^\times \), the validity of the first condition is independent of the choice of \(\mathfrak{m} \).

Remark. There exists an anti-equivalence of categories between the category of \(t \)-motives over \(K \) and the category of “abelian \(t \)-modules” over \(K \). Roughly speaking, an abelian \(t \)-module is an algebraic group \(\mathbb{G}_a^d \) over \(K \) for some \(d \geq 0 \) equipped with an \(\mathbb{F}_q[t] \)-action which satisfies certain conditions.

Example 2.2 (Carlitz \(t \)-motive). As a \(K[t] \)-module, set \(M := K[t] \). We define a \(\varphi \)-action on \(M \) by

\[
\varphi(a) := (t - \theta) \sigma(a)
\]

for each \(a \in M \). This forms a \(t \)-motive. We call this \(t \)-motive the Carlitz \(t \)-motive. The Carlitz \(t \)-motive corresponds to an abelian \(t \)-module \(\mathbb{G}_a \) equipped with an \(\mathbb{F}_q[t] \)-action defined by \(\mathbb{F}_q[t] \rightarrow \text{End}(\mathbb{G}_a); t \mapsto (x \mapsto \theta x + x^q) \).

§3. \(v \)-adic case

Let \(v \in \mathbb{F}_q[t] \) be an irreducible monic polynomial of degree \(d \). Set \(K^{\text{sep}}(t)_v := K^{\text{sep}}(t) \otimes_{K^{\text{sep}}[t]} \varprojlim_n K^{\text{sep}}[t]/v^n \), the \(v \)-adic completion of \(K^{\text{sep}}(t) \), where \(K^{\text{sep}} \) is a separable closure of \(K \). We define \(K(t)_v \) and \(\mathbb{F}_q(t)_v \) similarly. The endomorphism \(\sigma \) on \(K[t] \)
naturally extends to an endomorphism on $K^{\text{sep}}(t)_{v}$, and we have $(K^{\text{sep}}(t)_{v})^\sigma = \mathbb{F}_q(t)_{v}$, where $(-)^\sigma$ is the σ-fixed part. For a t-motive M over K, we set
\[V(M) := (K^{\text{sep}}(t)_{v} \otimes K[t] M)^\sigma \otimes \varphi. \]

We call $V(M)$ the v-adic realization of M. This is an $\mathbb{F}_q(t)_{v}$-vector space and the absolute Galois group $G_K := \text{Gal}(K^{\text{sep}}/K)$ of K acts on $V(M)$ naturally. For any t-motive M, we can prove that $\dim_{\mathbb{F}_q(t)_{v}} V(M) = \text{rank}_{K[t]} M$. Thus we can fix bases \mathbf{x} of $V(M)$ and \mathbf{m} of M, we obtain the matrix $\Psi = (\Psi_{ij})_{i,j} \in \text{GL}_r(K^{\text{sep}}(t)_{v})$ such that $\mathbf{m} = \Psi \mathbf{x}$ in $K^{\text{sep}}(t)_{v} \otimes M$. Each component of the matrix Ψ is called a v-adic period of M. If we factorize $v = \prod_{l \in \mathbb{Z}/d} (t - \lambda_l)$ in \mathbb{F}_q, we have the decomposition $K^{\text{sep}}(t)_{v} = \prod_l K^{\text{sep}}((t - \lambda_l))$. Thus we can write $\Psi_{ij} = (\Psi_{ijl})_{l \in \mathbb{Z}/d}$ where $\Psi_{ijl} \in K^{\text{sep}}((t - \lambda_l))$ for each i, j and l.

To construct the v-adic analogue of the algebraic group Γ, we consider a certain subcategory of the category of φ-modules over $K(t)_{v}$. A φ-module over $K(t)_{v}$ is a finite-dimensional $K(t)_{v}$-vector space N equipped with a σ-semilinear map $\varphi : N \to N$. A morphism between φ-modules is a $K(t)_{v}$-linear map which commutes with φ’s. For a φ-module N, we set
\[V(N) := (K^{\text{sep}}(t)_{v} \otimes K(t)_{v} N)^\sigma \otimes \varphi. \]

We have a natural injection
\[K^{\text{sep}}(t)_{v} \otimes \mathbb{F}_q(t)_{v} V(N) \to K^{\text{sep}}(t)_{v} \otimes K(t)_{v} N. \]

Let \mathcal{C} be the full subcategory of the category of φ-modules over $K(t)_{v}$ whose objects are the φ-modules such that the above map is an isomorphism. We can prove that $K(t)_{v} \otimes K[t] M$ is an object of \mathcal{C} for each t-motive M. Recall that a neutral Tannakian category over a field k is a rigid abelian k-linear tensor category \mathcal{A} for which $k \xrightarrow{\sim} \text{End}(\mathbf{1})$ and there exists an exact faithful k-linear tensor functor $\omega : \mathcal{A} \to \text{Vec}(k)$, where $\mathbf{1}$ is the unit object of \mathcal{A} and $\text{Vec}(k)$ is the category of finite-dimensional k-vector spaces (cf. [5, Definition 2.19]). Any such functor ω is said to be a fiber functor for \mathcal{A}. We can prove that the category \mathcal{C} forms a neutral Tannakian category over $\mathbb{F}_q(t)_{v}$, and the functor V is a fiber functor for \mathcal{C}. For a t-motive M over K, we set \mathcal{C}_M to be the Tannakian subcategory of \mathcal{C} generated by $K(t)_{v} \otimes M$. Let Γ_v be the algebraic group over $\mathbb{F}_q(t)_{v}$ corresponding to \mathcal{C}_M via the Tannakian duality. Thus we obtain the matrix Ψ and the algebraic group Γ_v from a t-motive M. We have the following theorem, which is a v-adic analogue of Theorem 1.3:

Theorem 3.1 ([7, Theorem 4.14, 5.15]). Let M, Ψ and Γ_v be as above. Then we have
\[\text{tr.deg}_{K(t)_{v}} K(t)_{v}(\Psi_{11l}, \Psi_{12l}, \ldots, \Psi_{rrl}) = \dim \Gamma_v. \]
for all $l \in \mathbb{Z}/d$.

Example 3.2. Let M be the Carlitz t-motive defined in Example 2.2. Then we have $\Gamma_v = \mathbb{G}_m$, the multiplicative group over $\mathbb{F}_q(t)_v$, and the transcendental degree is one.

By using Theorem 3.1, we can prove the following proposition:

Proposition 3.3 ([7, Proposition 6.4, Corollary 7.4]). Fix an integer $n \geq 1$.

1. For each $\alpha \in K$, there exists an element $L_{\alpha,n} = (L_{\alpha,n,l})_{l} \in K^\text{sep}[t]_v = \prod_l K^\text{sep}[t - \lambda_l]$ such that $\sigma(L_{\alpha,n}) = \sigma(\alpha) + L_{\alpha,n}/(t - \theta)^n$.

2. Fix elements $\alpha_1, \ldots, \alpha_r \in K$. If $L_{\alpha_1,n,l}, \ldots, L_{\alpha_r,n,l}$ are linearly independent over $K(t)_v$ for some $l \in \mathbb{Z}/d$, then $L_{\alpha_1,n,l'}, \ldots, L_{\alpha_r,n,l'}$ are algebraically independent over $K(t)_v$ for each $l' \in \mathbb{Z}/d$.

Remark. In the ∞-adic case, an analogous element of $L_{\alpha,n}$ is constructed explicitly, and its value at $t = \theta$ is the n-th Carlitz polylogarithm of α. Thus we consider $L_{\alpha,n}$ as a v-adic formal polylogarithm.

§ 4. Outline of the proof of Theorem 3.1

In this section, we will sketch the proof of Theorem 3.1. We will construct an algebraic group Γ' defined over $\mathbb{F}_q(t)_v$ such that the dimension of Γ' is equal to the transcendental degree in Theorem 3.1, and there exists an isomorphism $\Gamma' \cong \Gamma$. We continue to use the notations of the previous sections, and factorize $v = \prod_{l \in \mathbb{Z}/d}(t - \lambda_l)$ in $\overline{\mathbb{F}_q}$ so that $\lambda_l^q = \lambda_{l+1}$ for each l. Set $F := \mathbb{F}_q(t)_v$, $E := K(t)_v$, $L := K^\text{sep}(t)_v$ and $L_l := K^\text{sep}((t - \lambda_l))$ for each l.

Let $X := (X_{ij})$ be an $r \times r$ matrix of independent variables X_{ij}, and set $\Delta := \det(X)$. We set $E[X, \Delta^{-1}] := E[X_{11}, X_{12}, \ldots, X_{rr}, \Delta^{-1}]$. We define E-algebra homomorphisms $\nu : E[X, \Delta^{-1}] \rightarrow L; X_{ij} \mapsto \Psi_{ij}$ and $\nu_l : E[X, \Delta^{-1}] \rightarrow L_l; X_{ij} \mapsto \Psi_{ijl}$, and set

$$Z := \text{Spec} E[X, \Delta^{-1}]/\text{Ker} \nu$$

and

$$Z_l := \text{Spec} E[X, \Delta^{-1}]/\text{Ker} \nu_l$$

for each l. It is clear that the dimension of Z_l is equal to the transcendental degree which we want to calculate. To construct Γ', we define matrices $\tilde{\Psi} = (\tilde{\Psi}_{ij})_{i,j} := (\Psi_{ij} \otimes 1)_{i,j}^{-1}(1 \otimes \Psi_{ij})_{i,j} \in \text{GL}_r(L \otimes_E L)$ and $\tilde{\Psi}_{lm} = (\tilde{\Psi}_{ijm})_{i,j} := (\Psi_{ijl} \otimes 1)_{i,j}^{-1}(1 \otimes \Psi_{ijm})_{i,j} \in \text{GL}_r(L_l \otimes_E L_m)$ for each $l, m \in \mathbb{Z}/d$. We define F-algebra homomorphisms
\(\mu : F[X, \Delta^{-1}] \to L \otimes_E L; X_{ij} \mapsto \overline{\Psi}_{ij} \) and
\(\mu_{lm} : F[X, \Delta^{-1}] \to L_l \otimes_E L_m; X_{ij} \mapsto \overline{\Psi}_{ijlm} \)
for each \(l \) and \(m \). Set
\[
\Gamma' := \text{Spec } F[X, \Delta^{-1}] / \text{Ker } \mu
\]
and
\[
\Gamma'_{lm} := \text{Spec } F[X, \Delta^{-1}] / \text{Ker } \mu_{lm}.
\]
By a simple calculation, we have \(\text{Ker } \mu_{0,m} = \text{Ker } \mu_{1,m+1} = \cdots \).
Thus we can set \(\Gamma'_{m} := \Gamma'_{0,m} = \Gamma'_{1,m+1} = \cdots \) for each scheme \(Y \) over \(F \), we set \(Y_E := Y \times \text{Spec } F \text{Spec } E \).

\textbf{Proposition 4.1} ([7, Proposition 4.11]).

(1) Let \(\psi : Z \times_E Z \to Z \times_E \text{GL}_{r/E} \) be the morphism of affine \(E \)-schemes defined by \((u,v) \mapsto (u,u^{-1}v) \). Then \(\psi \) factors through an isomorphism \(\psi' : Z \times_E Z \cong Z \times_E \Gamma'_E \) of affine \(E \)-schemes.

(2) For any \(l \) and \(m \), let \(\psi_{lm} : Z_l \times_E Z_{l+m} \to Z_l \times_E \text{GL}_{r/E} \) be the morphism of affine \(E \)-schemes defined by \((u,v) \mapsto (u,u^{-1}v) \). Then \(\psi \) factors through an isomorphism \(\psi'_{lm} : Z_l \times_E Z_{l+m} \cong Z_l \times_E \Gamma'_{m,E} \) of affine \(E \)-schemes.

In particular, we have \(\dim \Gamma' = \dim \Gamma'' = \dim Z_l = \text{tr.deg}_E E(\Psi_{11l}, \Psi_{12l}, \ldots, \Psi_{rsl}) \) for each \(l \) and \(m \).

For any object \(N \) in \(C_M \), we can define a \(\Gamma' \)-action on \(V(N) \). This is functorial in \(N \) and we have a functor
\[
\xi : C_M \to \text{Rep}_F(\Gamma')
\]
which is compatible with tensor products, where \(\text{Rep}_F(\Gamma') \) is the category of finite-dimensional \(F \)-representations of \(\Gamma' \). Thus we obtain the morphism \(f : \Gamma' \to \Gamma_v \) of algebraic groups over \(F \) which corresponds to the functor \(\xi \) via the Tannakian duality. We can check easily that the morphism \(f \) is a closed immersion. To prove that \(f \) is an
On v-adic periods of t-motives

isomorphism, we consider the Galois representation $G_K \to \text{GL}(V(M))$ which is obtained naturally by the definition of V. This representation factors as follows:

$$G_K \to \Gamma'(F) \hookrightarrow \Gamma_v(F) \hookrightarrow \text{GL}(V(M)).$$

Since the functor V induces an equivalence of categories $V: C \to \text{Rep}_F(G_K)$, where $\text{Rep}_F(G_K)$ is the category of finite-dimensional continuous F-representations of G_K (cf. [6, Appendix]), the set of F-valued points $\Gamma_v(F)$ is dense in Γ_v. Therefore we conclude that the immersion $f : \Gamma' \hookrightarrow \Gamma_v$ is an isomorphism. This is an essentially different point from Papanikolas’ proof for the ∞-adic case, in which the Zariski density is not proved and other facts are used to show this isomorphism.

References