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§1. Introduction

Let R be a discrete valuation ring with fraction field K, and let A_{K} be an abelian

variety over K. Néron showed that A_{K} can be extended to a smooth and separated

group scheme A of finite type over R, characterized by the following extension property:
for any discrete valuation ring R' étale over R, with fraction field K'

,
the restriction

map A(R')\rightarrow A_{K}(K') is surjective.

Suppose that A_{K} is the Jacobian of a proper smooth geometrically connected curve

X_{K} . By denition, A_{K} is the Picard variety of X_{K} . The curve X_{K} being projective,
it can certainly be extended to a proper flat curve X over R. One can then ask about

the relation between the Néron model A and the Picard functor of X/R ,
if there is any.

The answer was given by Raynaud. To get a Néron extension property for étale points
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on the Picard side, it is enough to restrict to those X which are regular. Such models of

the curve X_{K} do exist, after Abhyankar and Lipman. Then A is the biggest separated

quotient of the schematic closure of A_{K} in \mathrm{P}\mathrm{i}\mathrm{c}_{X/R}.
Suppose now that A_{K} is the Picard variety of a proper smooth geometrically con‐

nected scheme X_{K} ,
of dimension at least two. It is still not known in general whether

X_{K} admits a proper flat and regular model over R.

The purpose of this survey is to sketch the construction of models X of X_{K} ,
whose

Picard functor does satisfy a Néron extension property for étale points. It is then

possible to reconstruct the Néron model A from the Picard functor \mathrm{P}\mathrm{i}\mathrm{c}_{X/R} . As a

consequence, we obtain that the sections of the identity component A^{0} of A can be

interpreted as invertible sheaves on X which are algebraically equivalent to zero (when
R is complete with algebraically closed residue field). Note that the converse statement,

namely, the fact that any such sheaf denes a section of A^{0}
,

is not known in general.

Precisely, we will see that this statement is related to a conjecture of Grothendieck

about the duality theory for Néron models of abelian varieties.

§2. Picard varieties

The Picard group of a scheme X is the group of isomorphism classes of invertible

sheaves on X
, equipped with the tensor product operation. It is denoted by Pic(X).

Denition 2.1. Let X\rightarrow S be a morphism of schemes. The Picard functor of
X over S is the fppf sheaf associated to the presheaf

(\mathrm{S}\mathrm{c}\mathrm{h}/S)^{\mathrm{o}}\rightarrow( Sets)

T\mapsto \mathrm{P}\mathrm{i}\mathrm{c}(X\times s^{T)}.

It is denoted by \mathrm{P}\mathrm{i}\mathrm{c}_{X/S}.

The Picard functor of a proper scheme X over a field K is representable by a

K‐group scheme locally of finite type (Murre [26] and Oort [28]). The representing
scheme is still denoted by \mathrm{P}\mathrm{i}\mathrm{c}_{X/K} and is called the Picard scheme of X . The connected

component of the identity section is denoted by \mathrm{P}\mathrm{i}\mathrm{c}_{X/K}^{0} . It is an open and closed

subgroup scheme of finite type of \mathrm{P}\mathrm{i}\mathrm{c}_{X/K}.

Theorem 2.2 ([14] 2.1 (ii) and 3.1). Let X be a proper geometrically normal

scheme over a field K. Then \mathrm{P}\mathrm{i}\mathrm{c}_{X/K}^{0} is proper over K
,

and the reduced subscheme

\mathrm{P}\mathrm{i}\mathrm{c}_{X/K,\mathrm{r}\mathrm{e}\mathrm{d}}^{0} is a subgroup scheme of \mathrm{P}\mathrm{i}\mathrm{c}_{X/K}^{0}.
Denition 2.3. Let X be a proper geometrically normal scheme over a field K.

The abelian variety \mathrm{P}\mathrm{i}\mathrm{c}_{X/K,\mathrm{r}\mathrm{e}\mathrm{d}}^{0} is the Picard variety of X.
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Denition 2.4. Let X be a proper scheme over a field K . An invertible sheaf

\mathcal{L} on X is algebraically equivalent to zero if the image of its class under the canonical

morphism
Pic (X)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}_{X/K}(\mathrm{K})

is contained in the Picard variety of X . The group of classes of invertible sheaves on X

which are algebraically equivalent to zero is denoted by Pic
\ovalbox{\tt\small REJECT}
(X).

Example 2.5. Let X be a proper curve. As the obstruction to the smooth‐

ness of \mathrm{P}\mathrm{i}\mathrm{c}_{X/K} lives in H^{2}(X, \mathcal{O}_{X}) ([14] 2.10 (ii)), the scheme \mathrm{P}\mathrm{i}\mathrm{c}_{X/K} is smooth, and

\mathrm{P}\mathrm{i}\mathrm{c}_{X/K,\mathrm{r}\mathrm{e}\mathrm{d}}^{0}=\mathrm{P}\mathrm{i}\mathrm{c}_{X/K}^{0} . It is the Jacobian of X ,
which is an abelian variety if X is smooth.

The degree of an invertible sheaf \mathcal{L} on the proper curve X is the difference of the

coherent Euler characteristics

 $\chi$(\mathcal{L})- $\chi$(\mathcal{O}_{X}) .

Let \overline{K} be an algebraic closure of K and denote by \overline{X_{i}} the reduced irreducible components

of X\otimes_{K}\overline{K} . Then an invertible sheaf on X is algebraically equivalent to zero if and

only if \mathcal{L}|_{\overline{X_{i}}} is of degree zero for all i ([9] 9.2/13).

Example 2.6. Let X be an abelian variety. Denote by

m, p_{1}, p_{2}:X\times KX\rightarrow X

the group law on X
,

the first and the second projection. An invertible sheaf on X is

primitive if the invertible sheaf

m^{*}\mathcal{L}\otimes p_{1}^{*}\mathcal{L}^{-1}\otimes p_{2}^{*}\mathcal{L}^{-1}

on X\times KX is trivial. In [25] §13, Mumford constructs an abelian variety which parame‐

trizes the primitive invertible sheaves on X . In particular, these sheaves are algebraically

equivalent to zero. Conversely, any invertible sheaf on X which is algebraically equiv‐
alent to zero is primitive ([25] (vi) page 75). Hence the abelian variety constructed in

[25] § 13 coincides with the Picard variety of X . As it is realized as a quotient of X

by a finite subgroup scheme, it is of the same dimension as X . Moreover, the tangent

space at the identity section of \mathrm{P}\mathrm{i}\mathrm{c}_{X/K} is H^{1}(X, \mathcal{O}_{X}) ([14] 2.10 (iii)), whose rank over

K is the dimension of X ([25] Corollary 2 page 129). It follows that \mathrm{P}\mathrm{i}\mathrm{c}_{X/K} is smooth,
so that \mathrm{P}\mathrm{i}\mathrm{c}_{X/K}^{0} is the Picard variety of X

,
called the dual abelian variety of X . It is

denoted by X'

As X admits a section, the identity map in \mathrm{P}\mathrm{i}\mathrm{c}_{X/K}(\mathrm{P}\mathrm{i}\mathrm{C}) can be represented by
an invertible sheaf on X\times {}_{K}\mathrm{P}\mathrm{i}\mathrm{c}_{X/K} ,

which is trivial on the two slices X\times K\{0\} and

\{0\}\times {}_{K}\mathrm{P}\mathrm{i}\mathrm{c}_{X/K} ([9]8.1.4). Its restriction to the product X\times KX' is the birigidied
Poincaré sheaf of X.
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§3. Néron models of abelian varieties

From now on, K will be the fraction field of a discrete valuation ring R ,
and k will

be the residue field of R.

Denition 3.1. Let A_{K} be an abelian variety over K. A Néron model A of A_{K}
is a smooth and separated scheme of finite type over R with generic fiber A_{K} ,

such that

for all smooth R‐scheme Y
,

the canonical restriction map

\mathrm{H}\mathrm{o}\mathrm{m}_{R}(Y, A)\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{K}(Y_{K}, A_{K})

is bijective.

A Néron model of A_{K} is unique up to unique isomorphism, and is a group scheme

over R such that the canonical open immersion A_{K}\rightarrow A is a group homomorphism.

Moreover, for any étale extension of discrete valuation rings R\rightarrow R' , any point of A_{K}
with value in the fraction field of R' extends uniquely as an R'‐point of A . In other

words, denoting by R^{\mathrm{s}\mathrm{h}} the strict henselization of R and by K^{\mathrm{s}\mathrm{h}} its fraction field, any

K^{\mathrm{s}\mathrm{h}} ‐point of A_{K} extends as an R^{\mathrm{s}\mathrm{h}} ‐point of A . Conversely:

Proposition 3.2 ([9]7.1/1). Let A_{K} be an abelian variety over K and A be a

smooth and separated group scheme of finite type with generic fiber A_{K} . Assume that

the restriction map

A(R^{\mathrm{s}\mathrm{h}})\rightarrow A(K^{\mathrm{s}\mathrm{h}})

is surjective. Then A is the Néron model of A_{K}.

Néron models of abelian varieties were constructed in [27].

Theorem 3.3 (Néron). An abelian variety over K admits a Néron model.

See [9] for a proof in the language of schemes. See [1], [9] 1.3 and [13] for surveys.

When the abelian variety A_{K} is given as a Picard variety, we will see in the next

section that its Néron model can be constructed using the theory of the Picard func‐

tor. Before that, let us illustrate the notion of Néron models by quoting an ad hoc

construction for elliptic curves.

Denition 3.4. Let X_{K} be a proper smooth geometrically connected curve over

K. A regular model of X_{K} is a proper flat regular scheme X over R with generic fiber

X_{K} . It is minimal if for all regular model Y of X_{K} , every birational map Y--\mathrm{K}X

extends as a morphism Y\rightarrow X.
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A minimal regular model is unique up to unique isomorphism. The existence of

regular models is due to Abhyankar [3] and Lipman [19]. Lipman�s proof is also presented
in [2]. Lichtenbaum [18], Shafarevich [33] and Néron [27] proved the existence of minimal

ones for curves of genus at least one. It is also presented in [20] 9.3.21.

Theorem 3.5. A proper smooth geometrically connected curve over K of genus

at least one admits a minimal regular model.

Theorem 3.6 (Néron). The Néron model of an elliptic curve over K is realized

by the smooth locus of its minimal regular model.

See [27] Chapter III. It is also presented in [9] 1.5 and [20] 10.2.14.

§4. Néron models of Picard varieties

§4.1. The case of Jacobians

Let X_{K} be a proper smooth geometrically connected curve over K, J_{K}:=\mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K}^{0}
be its Jacobian and J be the Néron model of J_{K} . Let X be \mathrm{a} (not necessarily minimal)
regular model X of X_{K} and \mathrm{P}\mathrm{i}\mathrm{c}_{X/R} be its Picard functor. Raynaud showed that J can

be constructed from \mathrm{P}\mathrm{i}\mathrm{c}_{X/R} ([31] 8.1.4).

First note that the generic fiber of \mathrm{P}\mathrm{i}\mathrm{c}_{X/R} is the whole Picard scheme of X_{K} . In

order to restrict to a relevant subfunctor with generic fiber J_{K} ,
one uses the process of

schematic closure.

Denition 4.1. Let F be an fppf sheaf over the category of R‐schemes and G_{K}
be a subsheaf of the generic fiber F_{K} . The schematic closure of G_{K} in F is the fppf
sheaf associated to the presheaf p\overline{G_{K}} dened as follows: for all R‐scheme T, p\overline{G_{K}}(T) is

the set of morphisms T\rightarrow F such that there exists a factorization

F

with Z a flat R‐scheme and u_{K}\in F(Z) contained in G_{K}(Z_{K}) .

Let P be the schematic closure of J_{K} in \mathrm{P}\mathrm{i}\mathrm{c}_{X/R} . By denition, an invertible sheaf \mathcal{L}

on X denes an element of P(R) if and only if its restriction to X_{K} denes an element of

J_{K}(K) ,
that is, \mathcal{L}\otimes K is of degree zero (Example 2.5). In particular, P is not separated

as soon as the special fiber X_{k} is not integral: any integral component of X_{k} is then a
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non‐principal divisor, and hence denes a non‐zero section of P whose generic fiber is

zero. Hence to go from P to a separated sheaf, it is necessary to make these sections

equal to zero, that is, to divide P by the schematic closure E\subset P of the zero section

of J_{K}.

Theorem 4.2 (Raynaud). Assume that the map \mathrm{B}\mathrm{r}(K^{\mathrm{s}\mathrm{h}})\rightarrow \mathrm{B}\mathrm{r}(\mathrm{X}) induced

by X_{K^{\mathrm{s}\mathrm{h}}}/K^{\mathrm{s}\mathrm{h}} on the Brauer groups is injective. Then J=P/E.

We have denoted by K^{\mathrm{s}\mathrm{h}} the fraction field of the strict henselization of R . The

map \mathrm{B}\mathrm{r}(K^{\mathrm{s}\mathrm{h}})\rightarrow \mathrm{B}\mathrm{r}(X_{K^{\mathrm{s}\mathrm{h}}}) is injective for instance if the residue field k is perfect or if

X_{K}(K^{\mathrm{s}\mathrm{h}}) is non‐empty (see [9] page 203 for references).

Sketch of proof. We have seen that the fppf sheaf P/E is separated. Its repre‐

sentability by a scheme comes from the following fact: a group object in the category of

algebraic spaces which is locally of finite type and separated over R is a scheme (Anan‐
tharaman [4]). In general, one cannot apply this result directly because P is not always
an algebraic space. However, there exists an algebraic space (P, Y) locally of finite type
over R together with an étale epimorphism

r:(P, Y)\rightarrow P.

The space (P, Y) is constructed using the theory of rigidicators ([31] §2). Then P/E
can be rewritten as (P, Y)/H where H is the schematic closure of the kernel of r_{K} in

(P, Y) . Now the above representability result can be applied to conclude that P/E is a

separated group scheme locally of finite type over R.

The scheme P/E is smooth because the relative dimension of X over R is one:

as mentioned in Example 2.5, the obstruction to the (formal) smoothness of \mathrm{P}\mathrm{i}\mathrm{c}_{X/R}
vanishes if the H^{2} of the fibers of X/R are trivial.

The scheme P/E is of finite type. This can be seen in two different ways. The first

one is a consequence of the intersection theory on the regular scheme X ([9] 9.5/11).
The second one relies on the finiteness of the Néron‐Severi groups of the fibers of X/R,
and makes use of the existence of the Néron model J of J_{K} (loc. cit. 9.5/7).

To prove that J=P/E ,
it remains to see that the restriction map (P/E)(R^{\mathrm{s}\mathrm{h}})\rightarrow

(P/E)(K^{\mathrm{s}\mathrm{h}}) is surjective (Proposition 3.2). First, using the Leray spectral sequence

for the multiplicative group on X_{K^{\mathrm{s}\mathrm{h}}} ,
the injectivity assumption at the level of Brauer

groups ensures that \mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K}(K^{\mathrm{s}\mathrm{h}})=\mathrm{P}\mathrm{i}\mathrm{c}(X_{K^{\mathrm{s}\mathrm{h}}}) . It follows that

(P/E)(R^{\mathrm{s}\mathrm{h}})\rightarrow(P/E)(K^{\mathrm{s}\mathrm{h}})

is surjective if

\mathrm{P}\mathrm{i}\mathrm{c}(X_{R^{\mathrm{s}\mathrm{h}}})\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(X_{K^{\mathrm{s}\mathrm{h}}})
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is. The latter is true because X is regular. Indeed, as regularity is a local notion with

respect to the étale topology, the scheme X_{R^{\mathrm{s}\mathrm{h}}} is regular too. So if \mathcal{L}_{K^{\mathrm{s}\mathrm{h}}} is an invertible

sheaf on X_{K^{\mathrm{s}\mathrm{h}}} ,
which can be interpreted as a divisor on X_{K^{\mathrm{s}\mathrm{h}}} ,

one can consider the

associated cycle and take its schematic closure in X_{R^{\mathrm{s}\mathrm{h}}} . Then, because of the regular‐

ity of X_{R^{\mathrm{s}\mathrm{h}}} ,
the resulting 1‐codimensional cycle on X_{R^{\mathrm{s}\mathrm{h}}} is a divisor. The associated

invertible sheaf extends \mathcal{L}_{K^{\mathrm{s}\mathrm{h}}} on X_{R^{\mathrm{s}\mathrm{h}}}. \square 

§4.2. Semi‐factorial models

In proving Theorem 4.2, the regularity of the model X is used to show that the

scheme P/E is of finite type over R ,
via intersection theory on X . However we have

quoted an alternative argument which is valid even if X is singular. The regularity of

X is also used to ensure that the restriction map

\mathrm{P}\mathrm{i}\mathrm{c}(X_{R^{\mathrm{s}\mathrm{h}}})\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(X_{K^{\mathrm{s}\mathrm{h}}})

is surjective. In higher dimension, it is not known at the present time whether a proper

smooth scheme over K admits a proper flat regular model over R . However, the above

surjectivity is a weaker property.

Denition 4.3. Let X be a scheme over R . It is semi‐fa ctorial over R if the

restriction map

Pic (X)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(\mathrm{X})

is surjective.

Theorem 4.4 ([29] 3.1). A proper geometrically normal scheme over K admits

a proper flat normal and semi‐factorial model over R ,
which remains semi‐factorial

after the extension R\rightarrow R^{\mathrm{s}\mathrm{h}}.

The first step in the proof of 4.4 is a modication process of a coherent module over

a smooth morphism by a blowing‐up of the base. The latter comes from the flattening

techniques of Raynaud and Gruson [32].

Lemma 4.5. Let B be a noetherian scheme and Y\rightarrow B be a smooth morphism

of finite type. Let \mathcal{M} be a coherent \mathcal{O}_{Y} ‐module which is invertible above a schematically
dense open subset U\subset B . Then there exists a U‐admissible blowing‐up B'\rightarrow B and an

invertible sheaf on Y\times BB' which coincides with \mathcal{M}\otimes_{B}B' above U\times BB'

Sketch of proof of Theorem 4.4. Relying on Lemma 4.5, we will sketch the con‐

struction of a semi‐factorial model of X_{K} in the case where the identity map in

\mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K}(\mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K})
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can be represented by an invertible sheaf \mathcal{P}_{K} on X_{K}\times {}_{K}\mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K} (e.g. if X_{K} admits a

section [9] 8.1.4).
By Nagata�s compactication ([11], [12], [23]), the K‐scheme X_{K} admits a proper

flat model X/R . As the Néron‐Severi group of X_{K} is finitely generated, there exist

invertible sheaves \mathcal{L}_{K,1} ,
. . .

, \mathcal{L}_{K,r} on X_{K} which generate the image of

Pic(X) \rightarrow \mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K}(K)/\mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K}^{0}(K) .

Each \mathcal{L}_{K,i} can be extended to a coherent module on X ([16] 9.4.8). Let $\Lambda$_{0} be the Néron

model of the abelian variety \mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K,\mathrm{r}\mathrm{e}\mathrm{d}}^{0} and extend \mathcal{P}_{K}|_{X_{K}\times {}_{K}\mathrm{P}\mathrm{i}\mathrm{c}_{x_{K/K,\mathrm{r}\mathrm{e}\mathrm{d}}}^{0}} to a coherent

module on  X\times $\Lambda$ . We obtain in this way a coherent module \mathcal{M} on  X\times R $\Lambda$ ,
where

 $\Lambda$:=$\Lambda$_{0}\coprod_{i=1}^{r}\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(R) .

Applying Lemma 4.5 with (Y\rightarrow B)=(X\times R $\Lambda$\rightarrow X) and U=X_{K} ,
we find a blowing‐

up X'\rightarrow X centered in the special fiber of X/R and an invertible sheaf \overline{\mathcal{M}} on  X'\times R $\Lambda$
which extends \mathcal{M}\otimes K.

Let us show that X' is a semi‐factorial model of X_{K} over R . Let \mathcal{L}_{K} be an invertible

sheaf on X_{K} . Its image $\lambda$_{K} in \mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K}(K) can be written as

$\lambda$_{K,0}+\displaystyle \sum_{i=1}^{r}n_{i}$\lambda$_{K,i}
where $\lambda$_{K,0}\in \mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K}^{0}(K) and for i=1

,
. .

:, r, $\lambda$_{K,i} is the image of \mathcal{L}_{K,i} in \mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K}(K)
and n_{i} is some integer. But there are sections $\lambda$_{i} of  $\Lambda$ extending the  $\lambda$_{K,i} ,

and the

invertible sheaf

\overline{\mathcal{M}}|_{1\times$\lambda$_{0}}R\otimes_{i=1}^{r}(\overline{\mathcal{M}}|_{1\times$\lambda$_{i}}R)^{\otimes n_{i}}
extends

\mathcal{P}_{K}|_{1\times$\lambda$_{K,0}}K\otimes_{i=1}^{r}\mathcal{L}_{K}^{\otimes n_{i^{i}}}\simeq \mathcal{P}_{K}|_{1\times$\lambda$_{K,0}}K\otimes_{i=1}^{r}(\mathcal{P}_{K}|_{1\times$\lambda$_{K,i}}K)^{\otimes n_{i}}\simeq \mathcal{P}_{K}|_{1\times$\lambda$_{K}}K\simeq \mathcal{L}_{K}
on X' \square 

Using semi‐factorial models instead of regular ones, the proof of Theorem 4.2 re‐

mains valid in higher dimension, except for the fact that the Picard functor \mathrm{P}\mathrm{i}\mathrm{c}_{X/R} is

formally smooth, which is no longer true in general. Thus we have to include another

step in the process of constructing the Néron model of the Picard variety of X_{K} from

\mathrm{P}\mathrm{i}\mathrm{c}_{X/R}.

Denition 4.6. Let G be a group scheme over R which is locally of finite type.
A group smoothening of G is a morphism \overline{G}\rightarrow G of R‐group schemes, with \overline{G} smooth,

satisfying the following universal property: any R‐morphism from a smooth R‐scheme

to G admits a unique factorization through \overline{G}\rightarrow G.
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A group smoothening of G exists and is unique up to unique isomorphism ([9]
7.1/4 )^{}.

Theorem 4.7. Let X_{K} be a proper geometrically normal and geometrically con‐

nected scheme over K
,

and A_{K}:=\mathrm{P}\mathrm{i}\mathrm{c}_{X_{K}/K,\mathrm{r}\mathrm{e}\mathrm{d}}^{0} be its Picard variety. Let X be a

proper flat model of X_{K} which is semi‐factorial over R^{\mathrm{s}\mathrm{h}} . Denote by P the schematic

closure of A_{K} in \mathrm{P}\mathrm{i}\mathrm{c}_{X/R} and by E that of the unit section. Assume that the map

\mathrm{B}\mathrm{r}(K^{\mathrm{s}\mathrm{h}})\rightarrow \mathrm{B}\mathrm{r}(X_{K^{\mathrm{s}\mathrm{h}}}) induced by X_{K^{\mathrm{s}\mathrm{h}}}/K^{\mathrm{s}\mathrm{h}} on the Brauer groups is injective. Then

P/E is a scheme and its group smoothening realizes the Néron model of A_{K}.

§4.3. Identity components

Denition 4.8. Let G be a commutative group functor over the category of R‐

schemes, whose fibers are representable by schemes locally of finite type. The identity

component of G is the subfunctor G^{0} dened as follows. For all R‐scheme T, G^{0}(T) is

the set of morphisms T\rightarrow G whose two fibers T_{K}\rightarrow G_{K} and T_{k}\rightarrow G_{k} factor through
the identity components of G_{K} and G_{k} respectively.

Let us examine the relationship between the identity components of the Picard

functor and of the Néron model.

Theorem 4.9 (Raynaud). In the situation of Theorem 4.2, the canonical map

\mathrm{P}\mathrm{i}\mathrm{c}_{X/R}^{0}\rightarrow J^{0}

is an epimorphism of fppf sheaves. It is an isomorphism if the gcd of the geometric

multiplicities of the irreducible components of X_{k} is 1.

See [31] 4.2.11) and 8.2.1.

Theorem 4.10 ([9]9.6/1). In the situation of Theorem 4.2, assume that R is

complete and k algebraically closed. Then the canonical map

\mathrm{P}\mathrm{i}\mathrm{c}_{X/R}^{0}(R)\rightarrow J^{0}(R)

is surjective.

In the situation of Theorem 4.7, there is no canonical map from \mathrm{P}\mathrm{i}\mathrm{c}_{X/R}^{0} to A,
because of the defect of smoothness of \mathrm{P}\mathrm{i}\mathrm{c}_{X/R} . Hence, to get analogous statements, it

lIn loc. cit., the group scheme G is assumed to be of finite type over R . However, the result remains

true without the quasi‐compactness assumption. Indeed, as G is a group scheme, its defect of

smoothness is the same at any R^{\mathrm{s}\mathrm{h}} ‐section; in particular, this defect is bounded, so that the same

proof works if G is only locally of finite type.
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is necessary to smooth the Picard functor. However, as the latter is not representable in

general, the group smoothening process cannot be applied directly to \mathrm{P}\mathrm{i}\mathrm{c}_{X/R} . We thus

have to replace the Picard functor by the rigidied one, which is an algebraic space, for

which the group smoothening does make sense. See [29] 10.3 and 10.5. As a corollary,
we obtain some information on the algebraic equivalence on X/R.

Denition 4.11. Let X be a proper R‐scheme. An invertible sheaf on X is

algebraically equivalent to zero (relative to R) if the image of its class under the canonical

morphism

\mathrm{P}\mathrm{i}\mathrm{c}(X)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}_{X/R}(\mathrm{R})

is contained in the subgroup \mathrm{P}\mathrm{i}\mathrm{c}_{X/R}^{0}(R) . The group of classes of invertible sheaves on

X which are algebraically equivalent to zero is denoted by Pic
\ovalbox{\tt\small REJECT}
(X).

In other words, an invertible \mathcal{O}_{X} ‐module is algebraically equivalent to zero if its

restrictions to the fibers X_{K} and X_{k} are (Denition 2.4).

Theorem 4.12 ([29] 10.9). In the situation of Theorem 4.7, assume that R is

complete and k algebraically closed. Then the image of the restriction map

A^{0}(R)\rightarrow A_{K}(K)

is contained in the image of the restriction map

\mathrm{P}\mathrm{i}\mathrm{c}^{\ovalbox{\tt\small REJECT}}(X)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}^{0}(X_{K})\rightarrow A_{K}(K) .

There is a particular situation where the inverse inclusion holds.

§4.4. A conjecture of Grothendieck

Let A_{K} be an abelian variety over K and A_{K}' be its Picard variety, that is, its dual

abelian variety (Example 2.6). Let A be the Néron model of A_{K} and A' be that of

A_{K}' . When A is semi‐abelian, Künnemann showed in [17] that there exists a canonical

projective flat regular R‐scheme containing A as a dense open subscheme. In general,
a variant of Theorem 4.4 provides a projective flat normal R‐scheme \overline{A} containing A as

a dense open subscheme, such that the restriction map

Pic (\overline{A})\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(A)

is surjective, and remains surjective after the extension R\rightarrow R^{\mathrm{s}\mathrm{h}} ([29] 6.2). In particular,
Theorem 4.7 applies with X=\overline{A} to get a construction of A' from \mathrm{P}\mathrm{i}\mathrm{c}_{\overline{A}/R} . Moreover,
when R is complete and k algebraically closed, Theorem 4.12 asserts that there is a
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canonical commutative diagram

A_{K}'(K)\rightarrow^{\sim}\mathrm{P}\mathrm{i}\mathrm{c}^{0}(A)

(A')(R)\mathrm{J}_{0}\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(\overline{A})\mathrm{J}_{0}
(the injectivity of \mathrm{P}\mathrm{i}\mathrm{c}^{0}(\overline{A})\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}^{0}(A) comes from the fact that \overline{A} admits a section,

[31] 6.4.13 In particular, the bottom map is injective. The question of its surjectivity
is related to a conjecture of Grothendieck about the Néron models A and A'

Let \mathcal{P}_{K} be the birigidied Poincaré sheaf on A_{K}\times KA_{K}' . Considering \mathcal{P}_{K} as a

line bundle, and removing its zero section, one gets a \mathbb{G}_{m,K} ‐torsor on A_{K}\times KA_{K}' ,
still

denoted by \mathcal{P}_{K} . The torsor \mathcal{P}_{K} is endowed with a richer structure, coming from the fact

that there is no non‐trivial homomorphism from an abelian scheme to the multiplicative

group and from the Theorem of the Square for abelian schemes. The resulting structure

is the one of a biextension of (A_{K}, A_{K}') by \mathbb{G}_{m,K} ([15] VII 2.9.5). The latter means that

\mathcal{P}_{K} admits two partial group scheme structures, namely one over each of the factors

of the product A_{K}\times KA_{K}' ,
and that for each of these structures it is an extension of

A_{K}\times KA_{K}' by the multiplicative group, in a compatible manner (loc. cit. 2.1).
Grothendieck studied the question of the extension of \mathcal{P}_{K} over R as a biextension

of (A, A') by \mathbb{G}_{m,R} . Precisely, he constructed the obstruction to the existence of such an

extension. This obstruction lives on the group of connected components of the special
fibers of A and A' . The latter are the étale k‐group schemes $\Phi$_{A}:=A_{k}/A_{k}^{0} and $\Phi$_{A'}:=

A_{k}'/(A_{k}')^{0} ,
and the obstruction is a pairing

\langle, \rangle:$\Phi$_{A}\times $\Phi$\rightarrow \mathbb{Q}/\mathbb{Z}

canonically dened from \mathcal{P}_{K} ([15] IX 1.2.1).

Conjecture 4.13 (Grothendieck). The pairing \langle, \rangle is perfe ct.

In particular, as soon as $\Phi$_{A} is non‐zero, the obstruction \langle, \rangle should not vanish, and

the Poincaré biextension \mathcal{P}_{K} should not extend to the Néron models A and A' . However,
the duality between A_{K} and A_{K}' should be reected at the level of the component groups

$\Phi$_{A} and $\Phi$_{A'}.

Let us indicate the cases where the conjecture is proved. First, Grothendieck stud‐

ied the restriction of the pairing to the \ell‐parts of the component groups, with \ell prime
to the characteristic of  k

,
and he also investigated the semi‐stable reduction case; see

[15] IX 11.3 and 11.4. See [7] and [34] for full proofs. In [15] IX 1.3, Grothendieck

also mentions an unpublished work of Artin and Mazur in the case of the Jacobian of
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a proper smooth curve. Next, Bégueri proved the conjecture in the mixed character‐

istic case with perfect residue field ([6]), and McCallum in the case where k is finite

([24]). Then Bosch proved the conjecture for abelian varieties with potentially multi‐

plicative reduction, again for perfect residue fields ([10]). Bertapelle and Bosch provided

counter‐examples to the conjecture when the residue field k is not perfect ([5]). In the

case where A_{K} is the Jacobian of a proper smooth geometrically connected curve X_{K},
Bosch and Lorenzini proved the conjecture when X_{K} admits a point in an unramied

extension of K ([8]; see also [22] and [30] for slight generalizations). They also provide
new counter‐examples in the case where k is not perfect. Finally, Loerke proved the

conjecture for abelian varieties of small dimension ([21]). The equal characteristic case

with innite residue field remains open in general.

Here is a consequence of the perfectness of Grothendieck�s pairing \langle, \rangle.

Theorem 4.14 ([30] 3.2.1). Assume R complete and k algebraically closed. Let

\overline{A} be a proper flat normal R ‐scheme containing A as a dense open subscheme, and such

that the restriction map \mathrm{P}\mathrm{i}\mathrm{c}(\overline{A})\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}(A) is surjective. If Conjecture 4.13 attached to

the abelian variety A_{K} is true, then the canonical map

(A')^{0}(R)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}^{0}(\overline{A})

is bijective.

There are two steps in the proof of 4.14. First, Bosch and Lorenzini showed that

Grothendieck�s pairing is a specialization of Néron�s local height pairing attached to A_{K}

([8]4.4). Second, one describes Néron�s pairing in terms of intersection multiplicities
on the semi‐factorial compactication \overline{A} . One can then interpret the perfectness of

Grothendieck�s pairing as a condition on the algebraic equivalence on \overline{A}
,

and when the

latter holds, the map (A')^{0}(R)\rightarrow \mathrm{P}\mathrm{i}\mathrm{c}^{0}(\overline{A}) is surjective.
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