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Abstract. In this document I report my research outcome during my stay at the Yukawa 
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1.  Introduction 
I have been visiting at the Yukawa Institute of Theoretical Physics (YITP) from March 1st to March 
31st 2016, and was supported by the International Research Unit of Advanced Future Studies. During 
my stay I have attended a workshop “International Workshop on Advanced Future Studies” from 
March 14th to March 16th, and gave a talk entitled “Statistical-Physics-based Clustering in Networks”. 
The main research output of my stay during this period is the study on effects of triangles in some 
network problems, which will be introduced in the following text. 
 
1.1. Background of the problems  
Lost of problems of complex systems are defined on a network that represents interactions between 
agents of the system. For example percolation on a social network gives a simple example of 
spreading of disease over human contacts.  Associative memory models give simple examples to 
memory stored by neurons connected by synapses in human brain. Many efforts have been devoted to 
study analytically the statistical property of the system on a given network, especially when network 
have some good properties like locally-tree like structure. However real-world networks often contain 
many closed triangles, which contribute to a large clustering coefficient. For example in the social 
networks we often observe a phenomenon that friends of friends are friends, a typical phenomenon of 
clustering due to presence of triangles in the network. There are few analytical studies about effects of 
triangles on the network problems. In this report I give a non-technical summary on my study on 
effects of triangles for some network problems, including percolation problem, and neural network as 
associative memory.  
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1.2. Methods and main results 
Our method is based on the belief propagation algorithm considering triangles, and the generalized 
non-backtracking matrix which is obtained by linearizing the belief propagation algorithm at the 
factorized fixed point when the system under study has a certain type of symmetry. Our results show 
that using a simple model for networks, e.g. random networks with local clustering,  the effects can be 
quantitatively studied and are different in different problems: On the percolation problems, 
considering of triangles gives a tighter lower-bound for the true percolation transition than the lower-
bound given by  inverse of the leading eigenvalue of the non-backtracking matrix. On the associative 
memory problem,  starting from a locally tree like topology and increasing number of triangles will 
always harmful to the associative memory and decrease the capacity of the neural network. In the 
following text we will describe in detail these two problems. 
 
2.  Percolation on networks with clustering 
Percolation if one of the well-studied problem in statistical physics, and has been used to model many 
systems including spreading of diseases, attack of Internet, etc. In this (bond percolation) problem, 
consider a network with n nodes and m edges, each edge is open with probability p, and is closed with 
probability 1-p. We are interested in the size of connected percolation clusters which is set of nodes 
connected by open edges. The percolation is a random process, on each realization of the open-close 
configuration of edges, the percolation cluster could be different. However in the thermodynamic limit 
(n goes to infinity), the statistical properties of the percolation cluster can be well-characterized. In 
general with p value there are two situations, one is the non-percolation case that with n goes to 
infinity, size of the largest percolation cluster is finite, a simple example for this case is with p=0 
where all edges are closed and there are n clusters each of which has size 1. The other case is the 
percolation case where the largest percolation cluster is infinite. In general there is a percolation 
transition p* separating these two cases. So the size of the largest percolation cluster and the position 
of the percolation transition, are of great interest in statistical physics, therefore many theory have 
been proposed to describe these two quantities.  

Recently, some progresses have been made (Karrer, 2014; Hamilton, 2014) when the network is 
sparse and locally-tree like which means short loops (including triangles, quadrangles) in networks are 
rare. In the paper, authors have made use the Bethe approximation (Bethe, 1935) which assumes the 
independence of conditional probabilities that is exact when the network is a tree, and is a good 
approximation when the network is large and sparse. Authors also show that the inverse of the leading 
eigenvalue of the non-backtracking matrix (Krzakala, 2013) gives a lower bound to the true 
percolation transition. 

However as we have described in the Introduction, most of the real-world networks like the human 
social networks, are not locally-tree like, as there are many triangles giving the network a high 
clustering coefficient (Watts, 1998). So the average size of the giant cluster computed in using the 
Bethe approximation could be a bad approximation to percolation on a network with lots of triangles, 
thus the lower-bound given by the inverse of the non-backtracking matrix could be a not tight. In this 
work we propose to improve the approach using the Bethe approximation by considering the effect of 
triangles. This is actually related to the Kikuchi approximation (also known as cluster expansion 
approximation) on a general graphs. If we choose a simple random graph model with clustering 
(Newman, 2009), where loops longer than 4 are, the Kikuchi-related method can be simplified to 
Bethe approximation considering edges and triangles, and this is the theoretical bases of our analysis. 

Assuming the network contains only single edges (i.e., edges do not belong to any triangle) and 
triangles, first thing we can do is to write out the iterative equations for the marginal probability of a 
node belonging to a cluster of a particular size s, considering the effects of triangles. However this 
probability is not solvable in practice because of the larges number of possible cluster size. Fortunately 
the moment generating function of this probability is solvable and results to belief propagation 
equations (Yedidia, 2001) using two kinds of messages. One kind of messages is sent along a directed 
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single edge of the graph from one node to another node; the other kind of messages is sent along a 
triangle to one of its end-point. From a random initial condition, this belief propagation equation will 
converge to a fixed-point from which we can compute the marginal probability of each node and the 
size of the giant cluster.  Interestingly, belief propagation equations always converge in this case, 
indicating that there is no one-step replica symmetry breaking effects (Mezard, 2001),  as opposed in 
other problems, e.g. in optimization problems (Zhang, 2009; Barbier, 2013). We think this may be due 
to the fact that the leading eigenvector always corresponds to one fixed-point of BP, and is always out 
of the bulk of the spectrum of the non-backtracking matrix as we illustrate below. 

First we observe that all messages equal to 1 is always a fixed-point of the belief propagation 
equation. We call this fixed-point the factorized fixed-point. The point where the factorized fixed-
point becomes unstable is our estimate for the percolation transition. The stability analysis of the 
factorized fixed-point of belief propagation is equivalent to finding the leading eigenvector of a new 
matrix we call the generalized non-backtracking matrix. As opposed to the non-backtracking matrix 
(Krzakala, 2013) which is defined on the directed edges of a graph, our generalized non-backtracking 
matrix is defined on directed edges and triangles of the graph. Since all elements of the matrix are 
non-negative, Perron-Frobenius applies that the leading eigenvalue is positive, as well as the elements 
of the elements of the leading eigenvector. Then by constructing a matrix with the same size as the 
generalized non-backtracking matrix, but has the same non-trivial eigenvalues as the non-backtracking 
matrix, then we can use the Collatz-Wielandt theorem to prove that the leading eigenvalue of the 
generalized non-backtracking matrix is always smaller or equal to the leading eigenvalue of the non-
backtracking matrix. Further more, we also prove that the threshold given using the generalized non-
backtracking matrix is always less or equal to the true percolation transition.  

As a summary we show that the percolation transition given by the generalized non-backtracking 
matrix considering triangles is a lower-bound to the true percolation transition on an infinite connected 
graph, and is tighter than the bound given by inverse of the non-backtracking matrix. 
 
3.  Associative memory networks with clustering 
There have been lots of analytical studies on the performance of an associative memory on fully 
connected graphs and on randomly diluted networks (Amit, 1985; Coolen, 2001; Zhang, 2015). 
However real neural networks have never been fully connected or randomly diluted. Simulation work 
reported that clustering is harmful to the performance of associative memory (McGraw, 2003; Kim, 
2004), however there has been little study on analytical treatment to this effect. In the previous study 
we have considered this effect of loops to the dynamics of an associative memory (Zhang 2008), 
however the equilibrium properties, e.g. the position of the spin glass transition, to our best knowledge, 
has not been addressed before. 

In this work we study the effect of triangles using the similar technics used in the previous section 
on percolation � the recent developed method of non-backtracking matrices (Krzakala, 2013; Zhang, 
2015), but on weighted networks where weights are generated by Hebb’s rule (I.e., essentially we are 
considering the Hopfield model (Hopfield, 1982). The non-backtracking operator for the Hopfield 
model is exactly the same as that for the Ising model (Zhang, 2015), so as the same procedure in the 
previous section, we extend this operator to consider the effect of triangles. 

Following the belief propagation equation that written out in (Zhang, 2015), which was written out 
for the Ising model on graphs without (with rare) loops, we modified it into a form considering 
triangles. In this set of equations, there are still two kinds of messages: one is passing along directed 
edges (i to j), representing the marginal probability of node j taking value +1; the other kind of 
message is passing along triangles to one of its end-node, representing the marginal probability which 
is the expectation of the probability that the triangle ``wants’’ its end-node to take +1. These 
probabilities are also called cavity probabilities in statistical physics. Then we note that when system 
has no external fields, as in the Hopfield model (Hopfield, 1982), the belief propagation equation has a 
factorized (paramagnetic) fixed-point where marginal probabilities are zero. This fixed-point reflects 
only the symmetry in the system: if we change all the +1 to -1 and all -1 to +1 in one configuration, 
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the Hamiltonian of the system does not change at all, due to the symmetric couplings given by the 
Hebb’s rule in the Hopfield model. So we can do exactly the same thing as we did in the last section, 
for the percolation problem, expanding the belief propagation equation to the first order around this 
factorized fixed-point, resulting to the generalized non-backtracking matrix as we introduced in the 
previous section. 

However the generalized non-backtracking matrix is different from the one we introduced in last 
section in several ways: (i) positions of non-zero elements (the topology of the matrix) are the same 
but the non-zero elements are different. In Hopfield model, elements of the matrix are given by the 
memorized patterns, while in percolation the elements depends on the edge-open probability. (ii) The 
generalized non-backtracking matrix for percolation has non-negative elements, thus its leading 
eigenvalue and eigenvector are non-negative and they are essentially what we want. However in the 
Hopfield model, the generalized non-backtracking matrix contains negative elements, thus its leading 
eigenvalue could be negative, or even a complex value.  

For Hopfield model, we essentially need first P eigenvalues and eigenvectors with P denoting 
number of memorized patterns. If there are P real eigenvalues outside the bulk in the spectrum, they 
correspond to P successfully memorized patterns, and the sign of the eigenvectors can be used to 
retrieve all patterns simultaneously. If number of patterns that we want to memorize is too large, the 
leading eigenvalue could be complex, representing the spin-glass state of the system. So the existence 
of eigenvalues out of the complex bulk tells us that system is in the retrieval phase; otherwise the 
system is in the spin glass phase. Thus the point when real eigenvalues join the bulk, system has a spin 
glass phase transition. 

Using technics described above, we estimated the phase diagram for Hopfield model in the 
temperature and pattern-number plane, on networks with only single edges and triangles. And we 
found that with the same number of edges, the more triangles there are in the network, the smaller 
retrieval phase there are in the phase diagram. So as a conclusion, clustering is harmful to the 
performance of Hopfield model.  
 
4.  Summary 

In this document I have reported two problems that I have been studying during my stay at the 
Yukawa Institute of Theoretical Physics during March, 2016. Using the similar technique � analysis 
of the spectrum of generalized non-backtracking matrix considering triangles in the network. We have 
estimated the effect of the triangles to the phase transitions of the system, and to the performance of 
the system. The study on the percolation problem will be summarized into a research paper, while the 
study on the Hopfield model is still in its early stage and needs more work to complete. 

 
5.  Acknowledgements 

I would like to thank the International Research Union of Advanced Future Studies for providing 
financial support, Yukawa Institute for Theoretical Physics for hospitality, and Professor Masatoshi 
Murase for hosting me. Part of the computations in this work was performed on the High Performance 
Computing Center of Institute of Theoretical Physics, Chinese Academy of Sciences. 

 
6.  References 
Karrer, B., Newman M.E.J. and Zdeborova, L. Percolation on Sparse Networks. Phys. Rev. Lett., 113, 

208702, 2014. 
Hamilton, K. E. and Pryadko, L. P. Tight Lower Bound for Percolation Threshold on an Infinite Graph. 

Phys. Rev. Lett., 113, 208701, 2014. 
Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborova, L. and Zhang, P. Spectral 

redemption in clustering sparse networks. Proc. Natl. Acad. Sci. USA, 110, 20935-20940, 2013 
Watts, D. and Strogatz, S. Collective dynamics of 'small-world' networks. Nature, 393, 440, 1998. 
Bethe, H. Statistical theory of superlattices. Proc. R. Soc. London A, 150, 552-575, 1935. 



 
 
 
 

 
Journal of Integrated Creative Studies 
 
 
 

5 
 

Newman, M. E. Random graphs with clustering. Physical review letters, 103, 058701, 2009. 
Yedidia, J., Freeman, W. and Weiss, Y. Understanding belief propagation and its generalizations. 

International Joint Conference on Artificial Intelligence (IJCAI), 2001. 
M\'ezard, M. and Parisi, G. The bethe lattice spi glass revisited. Eur. Phys. J. B, 20, 217, 2001. 
Zhang, P., Zeng, Y. and Zhou, H. Stability analysis on the finite-temperature replica-symmetric and 

first-step replica-symmetry-broken cavity solutions of the random vertex cover problem. Phys. 
Rev. E, 80, 021122, 2009. 

Barbier, J., Krzakala, F., Zdeborova, L. and Zhang, P. The hard-core model on random graphs 
revisited. Journal of Physics: Conference Series, 473, 012021, 2013. 

Amit, D., Gutfreund, H. and Sompolinsky, H. Spin-glass models of neural networks. Phys. Rev. A, 32, 
1007 ,1985. 

Coolen, A. C. C.  Statistical Mechanics of Recurrent Neural Networks II. Dynamics arXiv:, cond-mat:, 
0006011, 2000. 

Zhang, P. Nonbacktracking operator for the Ising model and its applications in systems with multiple 
states. Phys. Rev. E, 91, 042120, 2015. 

Kim, B. J. Performance of networks of artificial neurons: The role of clustering. Phys. Rev. E, 69, 
045101, 2004. 

McGraw, P. N. and Menzinger, M. Topology and computational performance of attractor neural 
networks. Phys. Rev. E, 68, 047102, 2003. 

Zhang, P. and Chen, Y. Transient Dynamics of Sparsely Connected Hopfield Neural Networks with 
Arbitrary Degree Distributions. Physica A, 387, 1009, 2008. 

Zhang, P. and Chen, Y. Topology and dynamics of attractor neural networks: the role of loopiness. 
Physica A, 387, 4411-4416, 2008. 

Hopfield, J. J. Neural Networks and Physical Systems with Emergent Collective Computational 
Abilities. Proc. Natl. Acad. Sci. USA, 79, 2554, 1982. 
 




