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1 Introduction

String theory contains various branes that come in diverse dimensions, such as D-branes,

and they have played a crucial role in understanding the non-perturbative aspects of string

theory. Among these branes, ones with small (≤ 2) codimension have been relatively less

studied, probably due to their non-standard features. For instance, the codimension-2

D7-brane destroys the spacetime asymptotics by introducing conical deficit, and the codi-

mension-1 D8-brane terminates spacetime a finite distance from it as the dilaton diverges.

However, it is such peculiarities that make small-codimension branes special and all the

more interesting. For example, the fact that 7-branes change spacetime asymptotics is

precisely what makes the F-theory geometries work [1, 2]. More recently, it was pointed

out [3, 4] that small-codimension branes can be spontaneously created out of ordinary (co-

dimension > 2) branes by the supertube transition [5] and generically lead to non-geometric
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spacetime. In particular, black holes in string theory are typically constructed by intersect-

ing multiple stacks of branes, which can spontaneously polarize by the supertube transition

into small-codimension branes. So, studying small-codimension branes and the accompany-

ing non-geometric structure of spacetime is relevant for understanding microscopic physics

of black holes in string theory.

Five-dimensional supergravity has been extensively used as a convenient paradigm in

which to study black holes in string theory. In particular, all supersymmetric solutions

of d = 5, N = 1 ungauged supergravity with vector multiplets have been completely

classified in [6, 7].1 This supergravity theory describes the low-energy physics of M-theory

compactified on a Calabi-Yau 3-fold X or, in the presence of an additional S1 [6, 9], of

type IIA string theory compactified on X. In the latter picture, these supersymmetric

solutions represent a system of D6, D4, D2, and D0-branes wrapped on various cycles

inside X [14]. Let us call this solution of d = 5 supergravity the “4D/5D solution.” The

4D/5D solution is completely specified by a set of harmonic functions, which we collectively

denote by H, on a spatial R3 base. Its general form is

H(x) = h+
N∑
p=1

Γp
|x− ap|

, (1.1)

and the associated 4D/5D solution represents a bound state of N black hole centers, which

are sitting at x = ap (p = 1, . . . , N) and are made of D6, D4, D2, and D0-branes represented

by the coefficients Γp. The black hole centers are of codimension 3, being a point in the R3.

The 4D/5D solution has been applied to various studies of black holes and rings in four

and five dimensions, such as the black hole attractor mechanism [15–21], split attractor

flows and wall crossing [14, 22–25], and microstate geometries [26, 27].

The supertube transition [5] is a spontaneous polarization phenomenon in which a

particular combination of branes puffs up into a new dipole charge. For example, if we put

two orthogonal D2-branes together, they will polarize into an NS5-brane along an arbitrary

closed curve parametrized by λ. We represent this process as follows:

D2(45) + D2(67)→ ns5(λ4567) , (1.2)

where D2(45) denotes the D2-brane wrapped around 45 directions and “ns5” in lowercase

means that it is a dipole charge. We assume that 4567 directions are compact.2 As

we have mentioned, such D2-branes appear in the 4D/5D solution described by (1.1),

and the supertube transition (1.2) implies that the solution must actually be extended to

include codimension-2 sources along arbitrary curves in the R3, in order to describe the

full configuration space of the brane system.

1For supersymmetric solutions in more general d = 5, N = 1 supergravities, such as gauged theories and

theories with hyper and tensor multiplets, see [8–13].
2Note that the process (1.2) is what will happen if we put together two D2-branes preserving supersym-

metry. There is no option for them not to puff up. Two D2-branes on top of each other, un-puffed up,

are not supersymmetric, unless 4567 directions are non-compact (and thus branes are infinite in extent) or

gs = 0; see [28, section 3.1].
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As we will see in explicit examples later, this does not just mean to smear the codi-

mension-3 singularities in the harmonic function (1.1) along a curve to get a codimension-2

singularity, but the harmonic function can also have branch-point singularities and be multi-

valued in R3. It is a generic feature of codimension-2 branes that, as one goes around their

worldvolume, the spacetime fields undergo a U-duality transformation [3, 4] and become

multi-valued; the harmonic function being multi-valued is the manifestation of this.

For the transition (1.2), it is only the B-field that are multi-valued around the su-

pertube (ns5). However, there are also supertube transitions that produce non-geometric

exotic branes, around which the metric is multi-valued. One example is

D2(89) + D6(456789)→ 52
2(λ4567; 89) , (1.3)

where 52
2 is a non-geometric exotic brane which are obtained by two transverse T-dualities

of the NS5-brane and have been much studied in the recent literature [3, 4, 29–44]. This

process exemplifies the fact that standard branes can generally turn into exotic branes with

non-geometric spacetime.

The purpose of the present paper is to demonstrate how configurations with codimen-

sion-2 sources, geometric and non-geometric, can be represented in the 4D/5D solution. To

our knowledge, the 4D/5D solution with codimension-2 sources has not been investigated

before, and represents a large unexplored area of research. For the codimension-3 case,

eq. (1.1) gives the general multi-center solution. More generally, however, the codimension-3

centers must polarize into supertubes, thus giving a multi-center solution of codimension-3

and codimension-2 centers. It is technically challenging to explicitly construct general

multi-center solutions involving codimension-2 centers. So, in this paper, we present some

simple but explicit solutions which must be useful for finding the general solutions. An

obvious application of codimension-2 solutions is to generalize the studies previously done

for codimension-3 sources to include codimension-2 sources mentioned above. In [3, 4], it

was argued that codimension-2 play an essential role in the microscopic physics of black

holes and we hope that this paper will set a stage for research in that direction.

The plan of the rest of the paper is as follows. In section 2, we start by reviewing 5D

supergravity and the “4D/5D solution” which is supersymmetric and characterized by a set

of harmonic functions on R3. We explain that, although normally the harmonic functions

are assumed to have codimension-3 source, they can more generally have codimension-2

source as well. In section 3, we present some example solutions with codimension-2 source

in the harmonic functions. The examples include supertubes with standard and exotic

dipole charges and, in the latter case, the spacetime is non-geometric. In section 4, we

give an example in which codimension-3 source and codimension-2 one coexist. We con-

clude in section 5 with remarks on the fuzzball conjecture and the microstate geometry

program. The appendices explain our convention and some detail of the computations in

the main text.
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2 Setup

2.1 The 4D/5D solution

We start from d = 5, N = 1 ungauged supergravity coupled to two vector multiplets.

Including the graviphoton the theory contains three vector fields AI (I = 1, 2, 3) and

two independent scalar fields which can be parametrized by XI satisfying the constraint
1
6CIJKX

IXJXK = 1. Here, CIJK are constants that are symmetric under permutations

of IJK, and are given by CIJK = |εIJK | in our case.3 The bosonic action of this theory is

S =
1

16πG5

∫ (
−R∗1+QIJ ∗F I∧F J+QIJ ∗dXI∧dXJ− 1

6
CIJKF

I∧F J∧AK
)
, (2.1)

where ∗ means the five-dimensional Hodge dual and F I = dAI . The metric for the kinetic

term is

QIJ =
1

2
diag

(
(X1)−2, (X2)−2, (X3)−2

)
. (2.2)

The supersymmetric solutions of this theory have been completely classified [6–9] by

solving Killing spinor equations. There are two classes of supersymmetric solutions, de-

pending on whether the Killing vector constructed from the Killing spinor bilinear is null

or timelike. Here we will only consider the latter case. For the timelike class solution, the

metric and gauge fields are given by

ds2
5 = −Z−2/3(dt+ k)2 + Z1/3ds2

HK , Z = Z1Z2Z3 ,

AI = BI − Z−1
I (dt+ k) ,

(2.3)

where the functions ZI and the 1-forms k,BI depend only on the coordinates of the 4D base

with the hyper-Kähler metric ds2
HK. The scalars XI are related to the electric potential

ZI by

XI = Z1/3Z−1
I . (2.4)

It will be convenient to define the magnetic field strength by

ΘI = dBI . (2.5)

The demand of supersymmetry leads to the following BPS equations to be satisfied by

the quantities ΘI , ZI , and k:

ΘI = ∗4ΘI , (2.6a)

d ∗4 dZI =
1

2
CIJKΘJ ∧ΘK , (2.6b)

(1 + ∗4)dk = ZIΘ
I , (2.6c)

where ∗4 is the Hodge dual with respect to the 4D metric ds2
HK. If we solve these equations

in the order presented, the problem is linear; namely, at each step, we have a Poisson

equation with the source given in terms of the quantities found in the previous step.

3However, most of our expressions below are valid even for general CIJK .
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If we assume the presence of an additional translational Killing vector that preserves

the hyper-Kähler structure (namely, if the Killing vector is tri-holomorphic), the 4D base

should be a Gibbons-Hawking space [45] and its metric must take the following form [46]:

ds2
HK = V −1(dψ +A)2 + V δijdx

idxj , i, j = 1, 2, 3 . (2.7)

Here, the 1-form A and the scalar V depend only on the coordinates xi of the R3 base and

satisfy

dA = ∗3dV. (2.8)

The isometry direction ψ has periodicity 4π. The orientation of the 4-dimensional base is

given by

εψ123 = +
√
gHK = V. (2.9)

From (2.8), it is easy to see that V is a harmonic function on R3,

4V = 0 , 4 = ∂i∂i . (2.10)

Solving the BPS equations. If we decompose ΘI and k according to the fiber-base de-

composition of the Gibbons-Hawking metric (2.7), we can solve all the BPS equations (2.6)

in terms of harmonic functions on R3. For later convenience, let us recall how this goes in

some detail [9].

First, by self-duality (2.6a), the 2-form ΘI can be written as

ΘI = (dψ +A) ∧ θI + V ∗3 θI , (2.11)

where θI is a 1-form on R3 and ∗3 is the Hodge dual on R3. The closure dΘI = 0 (the part

multiplying dψ + A) implies dθI = 0, which means that θI = dΛI with a scalar ΛI . If we

plug this equation back into dΘI = 0, we find

4(V ΛI) = 0 . (2.12)

Therefore, ΛI = −V −1KI with KI harmonic, and

ΘI = −(dψ +A) ∧ d(V −1KI)− V ∗3 d(V −1KI) . (2.13)

Next, plugging (2.13) into (2.6b), we find that ZI satisfies the following Laplace equa-

tion:

4ZI = CIJKV ∂i(V
−1KJ) ∂i(V

−1KK) =
1

2
CIJK4(V −1KJKK) , (2.14)

where in the last equality we used harmonicity of V,KI . This means that

ZI = LI +
1

2
CIJKV

−1KJKK , (2.15)

where LI is harmonic.

Furthermore, if we decompose the 1-form k as

k = µ(dψ +A) + ω , (2.16)
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where ω is a 1-form on R3, we can show that the condition (2.6c) leads to another Laplace

equation:

4µ = V −1∂i
[
V ZI∂i(V

−1KI)
]

= 4
(

1

2
V −1KILI +

1

6
CIJKV

−2KIKJKK

)
. (2.17)

In the last equality, we used harmonicity of V,KI , LI . Therefore, µ is given in terms of

another harmonic function M as

µ = M +
1

2
V −1KILI +

1

6
CIJKV

−2KIKJKK . (2.18)

The 1-form ω is found by solving the equation

∗3 dω = V dM −MdV +
1

2
(KIdLI − LIdKI) (2.19)

that also follows from (2.6c). By taking d ∗3 of this equation, we can derive the so-called

integrability equation:

0 = V4M −M4V +
1

2
(KI4LI − LI4KI) . (2.20)

This must be satisfied for the 1-form ω to exist. Although we allow delta-function sources

for the Laplace equations (2.10), (2.12), (2.14) and (2.17), this equation (2.20) must be

imposed without allowing any delta function in order for ω to exist.

Finally, we note that the magnetic potential BI can be written as

BI = V −1KI(dψ +A) + ξI , dξI = − ∗3 dKI . (2.21)

In summary, under the assumption of the additional U(1) symmetry, we can solve all

the equations (2.6) in terms of harmonic functions V , KI , LI , M . We will refer to this

solution as the “4D/5D solution”.

The 10 and 11-dimensional uplift. The 5D solution (2.3) can be thought of as coming

from 11D M-theory compactified on T 6 = T 2
45 × T 2

67 × T 2
89, with the following metric and

the 3-form potential:

ds2
11 = −Z−2/3(dt+ k)2 + Z1/3ds2

HK + Z1/3(Z−1
1 dx2

45 + Z−1
2 dx2

67 + Z−1
3 dx2

89) ,

A3 = AIJI , J1 ≡ dx4 ∧ dx5, J2 ≡ dx6 ∧ dx7, J3 ≡ dx8 ∧ dx9 ,
(2.22)

where dx2
45 ≡ (dx4)2 + (dx5)2 and so on. The scalars XI = Z1/3Z−1

I correspond to the

volume of the 2-tori. M-theory on T 6 has N = 4 supersymmetry (32 supercharges) in 5D,

and the theory (2.1) gives its N = 1 truncation in which only 8 supercharges are kept.

In the presence of the isometry direction ψ in the 4D base as in (2.7), the above

11D configuration (2.22) can be reduced on it to a 10D type IIA configuration using the

– 6 –
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formula (A.1) as follows:

ds2
10,str = − 1√

V (Z − V µ2)
(dt+ ω)2 +

√
V (Z − V µ2) dxidxi

+

√
Z − V µ2

V
(Z−1

1 dx2
45 + Z−1

2 dx2
67 + Z−1

3 dx2
89) ,

e2Φ =
(Z − V µ2)3/2

V 3/2Z
, B2 = (V −1KI − Z−1

I µ)JI ,

C1 = A− V µ

Z − V µ2
(dt+ ω) ,

C3 =
[
(V −1KI − Z−1

I µ)A+ ξI − Z−1
I (dt+ ω)

]
∧ JI .

(2.23)

We note that the complexified Kähler moduli τ1, τ2, and τ3 for the 2-tori T 2
45, T 2

67, and

T 2
89, respectively, are

τ1 =
R4R5

l2s

(
B45 + i

√
detGab

)
=
R4R5

l2s

[(
K1

V
− µ

Z1

)
+ i

√
V (Z − V µ2)

Z1V

]
, (2.24)

where a, b = 4, 5, and similarly for τ2, τ3. We denoted the radii of xi directions by Ri,

i = 4, · · · , 9. If we compactify the theory to 4D, these τ I become scalar moduli parametriz-

ing the moduli space [SL(2,R)/SO(2)]3.

2.2 Codimension-3 sources

As we have seen above, the 4D/5D solution is specified by the set of harmonic functions

V , KI , LI , M . The general harmonic functions with codimension-3 sources are [9, 14]

V = h0 +
N∑
p=1

Γ0
p

|x− ap|
, KI = hI +

N∑
p=1

ΓIp
|x− ap|

,

LI = hI +

N∑
p=1

ΓpI
|x− ap|

, M = h0 +

N∑
p=1

Γp0
|x− ap|

,

(2.25)

where x = (x1, x2, x3), and ap ∈ R3 is the position of the sources at which the harmonic

functions become singular. The integrability condition (2.20) demands that the position

of the centers satisfy ∑
q( 6=p)

〈Γp,Γq〉
apq

= 〈h,Γp〉 (2.26)

where 〈u, v〉 ≡ u0v0 − u0v
0 + 1

2(uIvI − uIvI) and apq ≡ |ap − aq|. See figure 1(a) for a

schematic explanation of codimension-3 solutions. When we embed the 5D supergravity

in string/M-theory, these singularities are interpreted as brane sources. For example, in

the type IIA picture (2.23), the singularities in the harmonic functions (2.25) have the

following interpretation as brane sources [14]:

V ↔ D6(456789) ,

K1 ↔ D4(6789)

K2 ↔ D4(4589)

K3 ↔ D4(4567)

,

L1 ↔ D2(45)

L2 ↔ D2(67)

L3 ↔ D2(89)

, M ↔ D0 . (2.27)
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(a) (b)

Figure 1. The 4D/5D solution is specified by harmonic functions on the base R3. (a) The

codimension-3 solution is specified by point-like singularities of the harmonic functions. (b) The

general solution involves point-like (codimension-3) as well as string-like (codimension-2) singular-

ities in the harmonic functions.

Note that, in our description, the branes are always smeared along all transverse directions

inside the compact directions (456789). For example, the D4(6789)-brane is smeared along

the 45 directions. So, all the branes in (2.27) can be regarded as having codimension 3

(pointlike in R3).

Many known black hole and black ring solutions in 4D and 5D are included in the

4D/5D solutions with the harmonic functions having codimension-3 singularities, (2.25).

For example, the 3-charge black hole in 5D with the charges of M2(45), M2(67), M2(89)-

branes, which is dual to the Strominger-Vafa black hole [47], can be expressed by the

following harmonic functions:

V =
1

r
, KI = 0 , LI = 1 +

QI
r
, M = 0 . (2.28)

Other examples include the BMPV black hole [48], the supersymmetric black ring [7, 49,

50], the MSW black hole [51], multi-center black hole/ring solutions [14] and microstate

geometries [26, 27].

2.3 Codimension-2 sources

In the previous subsection, we considered the 4D/5D solution which has only codimension-3

sources of D-branes. However, recall that, in string theory, certain combinations of branes

can undergo a supertube transition [5], under which branes spontaneously polarize into

new dipole charge, gaining size in transverse directions. For example, as we have discussed

in the Introduction, two transverse D2-branes can polarize into an NS5-brane along an

arbitrary closed curve λ, as in (1.2). Because the NS5-brane is along a closed curve, it has

no net NS5 charge but only NS5 dipole charge. The original D2 charges are dissolved in the

NS5 worldvolume as fluxes. When the curve λ is inside the R3
123, which is generically the

case and is assumed henceforth, the NS5-brane appears as a codimension-2 object in the

non-compact 123 directions. Therefore, if we are to consider generic solutions describing D-

brane systems, we must include codimension-2 brane sources in the 4D/5D solution. Even

– 8 –
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in such situations, the procedure (2.13)–(2.18) to solve the BPS equations goes through

and the solution is given by the harmonic functions V,KI , LI ,M . However, they are

now allowed to have codimension-2 singularities in R3. See figure 1(b) for a schematic

explanation for solutions with codimension-2 sources.

To get some idea about solutions with codimension-2 sources, here we present the

harmonic functions for the D2 + D2 → ns5 supertube (1.2) when the puffed-up ns5-brane

is an infinite straight line along x3.4

V = 1 , K1 = K2 = 0 , K3 = q θ ,

L1 = 1 +Q1 log
Λ

r
, L2 = 1 +Q2 log

Λ

r
, L3 = 1 , M = −1

2
q θ ,

(2.29)

where q = l2s/(2πR8R9), Q1Q2 = q2, and Λ is a constant.5 We took the cylindrical

coordinates for the R3 base,

ds2
3 = dr2 + r2dθ2 + (dx3)2. (2.30)

We will discuss such solutions more generally in the next sections. A novel feature is that

the harmonic function K3 has a branch-point singularity along the x3 axis at r = 0. So,

K3 does not just have a codimension-2 singularity but is multi-valued. This K3 cannot be

obtained by smearing a K3 with codimension-3 singularities as in (2.25). As one can see

from (2.23), this K3 leads to the B-field

B2 =
l2sθ

2πR8R9
dx8 ∧ dx9. (2.31)

Around the x3-axis, this has monodromy ∆B2 = l2s/(R8R9), which is the correct one

for an NS5-brane extending along 34567 directions and smeared along 89 directions. On

the other hand, the codimension-2 singularities in L1, L2 represent the D2-brane sources

dissolved in the NS5 and are obtained by smearing codimension-3 singularities in (2.25).

The monodromy in M (2.29) does not have direct physical significance here, because what

enters in physical quantities is µ, which is trivial in the present case: µ = M + 1
2K

3L3 = 0.

In the lower dimensional (4D) picture, the B-field appears as the scalar moduli τ I

defined in (2.24). For the present case (2.31), we have

τ3 =
θ

2π
. (2.32)

As we go around r = 0, the modulus τ3 has the monodromy

τ3 → τ3 + 1 , (2.33)

which can be understood as an SL(2,Z) duality transformation. It was emphasized in [3, 4]

that the charge of the codimension-2 brane is measured by the duality monodromy around

4An infinitely long NS5-brane would not be a dipole charge. The solution (2.29) must be regarded as a

near-brane approximation of an NS5-brane along a closed curve.
5Λ is the cutoff for r, beyond which the near-brane approximation mentioned in footnote 4 breaks down.
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it. It is possible to consider codimension-2 objects around which there is more general

SL(2,Z) monodromy of τ I . For example, if we have an object around which there is the

following monodromy:

τ3 → τ3

−τ3 + 1
, or τ ′3 → τ ′3 + 1 , τ ′3 ≡ − 1

τ3
, (2.34)

it corresponds to an exotic brane called the 52
2(34567, 89)-brane [3, 4]. This brane is non-

geometric since the T 2
89 metric is not single-valued but is twisted by a T -duality transfor-

mation around it. The 52
2-brane is produced in the supertube transition (1.3) and must

also be describable within the 4D/5D solution in terms of multi-valued harmonic functions.

We will see this in explicit examples in the following sections.

3 Examples of codimension-2 solutions

In the previous section, we have motivated codimension-2 solutions and presented simplest

examples of them — straight supertubes. In this section, we consider more “realistic”

codimension-2 solutions that should serve as building blocks for constructing more general

solutions.

3.1 1-dipole solutions

We begin with the case of a pair of D-branes puffing up into a supertube with one new

dipole charge, such as (1.2) and (1.3) presented in the Introduction. The supergravity

solution for such 1-dipole supertubes can be obtained by dualizing the known solutions

describing supertubes, such as the one in [52].6 In that sense, the solutions presented here

are not new. However, they have not been discussed in the context of the 4D/5D solutions

and harmonic functions as we do here.

D2(67)+D2(45)→ns5(λ4567). As just mentioned, the supergravity solution for the

D2 + D2 → ns5 supertube (1.2) can be obtained by dualizing known solutions, and we

can read off from it the harmonic functions using the relations in the previous section.

Explicitly, the harmonic functions are

V = 1 , K1 = 0 , K2 = 0 , K3 = γ ,

L1 = f2 , L2 = f1 , L3 = 1 , M = −γ
2
.

(3.1)

Here, the harmonic functions f1 and f2 are given by

f1 = 1 +
Q1

L

∫ L

0

dλ

|x− F(λ)|
, f2 = 1 +

Q1

L

∫ L

0

|Ḟ(λ)|2dλ
|x− F(λ)|

, (3.2)

where x = F(λ) is the profile of the supertube in R3 and satisfies F(λ + L) = F(λ). The

functions f1 and f2 represent the D2(67) and D2(45) charges, respectively, dissolved in

6See e.g. [4, 53] for details of such dualization procedures.
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Figure 2. (a) The function γ has a monodromy as one goes around the cycle c that links with the

profile. (b) The integral region in eq. (3.9). The contribution from the top and bottom surfaces of

the tube is negligible if the tube is very thin.

the codimension-2 worldvolume of the ns5 supertube. Q1 is the D2(67) charge, while the

D2(45) charge is given by

Q2 =
Q1

L

∫ L

0
dλ |Ḟ(λ)|2. (3.3)

The charges Q1, Q2 are related to the quantized D-brane numbers N1, N2 by

Q1 =
gsl

5
s

2R4R5R8R9
N1 , Q2 =

gsl
5
s

2R6R7R8R9
N2 , L =

2πgsl
3
s

R4R5
N1 , (3.4)

where Ri, i = 4, . . . , 9 are the radii of the xi directions. We have also written down the

expression for L, the periodicity of the profile function F(λ), in terms of other quantities.7

The function γ is defined via the differential equation

dα = ∗3dγ (3.5)

where α is a 1-form in R3 given by (see appendix B)

αi =
Q1

L

∫ L

0

Ḟi(λ) dλ

|x− F(λ)|
. (3.6)

It is easy to see from (3.5) that γ is harmonic: 4γ = ∗3d ∗3 dγ = ∗3d2α = 0. Note that,

even though α is single-valued, the function γ defined via the differential equation (3.5)

is multi-valued and has a monodromy as we go along a closed circle c that links with the

profile; see figure 2(a). The monodromy of γ can be computed by integrating dγ along c,

which can be homotopically deformed to a very small circle near some point on the profile,

and is equal to ∫
c
dγ =

∫
c
∗3dα =

4πQ1

L
. (3.7)

The integrability condition (2.20) requires

V4M −M4V +
1

2
(KI4LI − LI4KI) = −4γ ≡ 0 . (3.8)

Superficially, this is satisfied because γ is harmonic. However, one must be careful because

γ is singular along the profile and may have delta-function source there (as is the case for

7In the F1-P system, L corresponds to the length of the fundamental string. For the expressions of L in

different duality frames, see references in footnote 6.
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L1,2). We can show that it actually does not even have delta-function source as follows. If

we integrate 4γ over a small tubular volume V containing the profile x = F(λ), we get∫
V
d3x4γ =

∫
V
d∗3dγ =

∫
∂V
∗3dγ =

∫
∂V
dα =

∫
∂2V

α = 0 , (3.9)

where the last equality holds because α is single-valued. See figure 2(b) for explanation of

the integral region. Therefore, 4γ in (3.8) vanishes everywhere, even on the profile, and

the integrability condition is satisfied for any profile F(λ).

From harmonic functions (3.1), we can read off various functions and forms that appear

in the full solution:

Z1 = f2 , Z2 = f1 , Z3 = 1 , µ = 0 , ω = −α , ξ1 = ξ2 = 0 , ξ3 = −α . (3.10)

The existence of ω is guaranteed by the integrability condition. Substituting this data

into (2.23), we obtain the type IIA fields:

ds2
10 = −(f1f2)−1/2(dt− α)2 + (f1f2)1/2dxidxi

+ (f1/f2)1/2dx2
45 + (f2/f1)1/2dx2

67 + (f1f2)1/2dx2
89 ,

e2Φ = (f1f2)1/2, B2 = γ dx8 ∧ dx9,

C1 = 0 , C3 = −f−1
2 (dt− α) ∧ dx4 ∧ dx5 − f−1

1 (dt− α) ∧ dx6 ∧ dx7,

(3.11)

where we have dropped some total derivative terms in the RR potentials. Since f1, f2 → 1

as |x| → ∞, the spacetime is asymptotically R1,3 × T 6. Multi-valuedness is restricted to

the B-field and the metric is single-valued; namely, this solution is geometric.

One can show that the solution (3.11) has the expected monopole charge; it has

monopole charge for D2(67) and D2(45) but not for NS5 (we show this for more gen-

eral solutions in the next subsection). The dipole charge for NS5 is easier to see in the

monodromy of the Kähler moduli, as we discussed around (2.31), and their values are

τ1 = i
R4R5

l2s

√
f1

f2
, τ2 = i

R6R7

l2s

√
f2

f1
, τ3 =

R8R9

l2s

(
γ + i

√
f1f2

)
. (3.12)

τ1 and τ2 are single-valued while, as we can see from (3.7), τ3 has the following monodromy

as we go around the supertube along cycle c:

τ3 → τ3 + 1 , (3.13)

where we used (3.4) and (3.7). This is the correct monodromy around an NS5-brane. So,

this solution has the expected monopole and dipole charge.

Although we have derived the harmonic functions (3.1) by dualizing known solutions,

we can also derive it by requiring that they represent the charge and dipole charge expected

of the supertube (1.2) as follows. First, no D6-brane means V = 1 and no D0-brane means

µ = 0. Then (2.23) implies that, in order to have an NS5-brane along the profile F(λ), the

harmonic function K3 ≡ γ must have the monodromy (3.7). As we show in appendix B,
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this means that γ must be given in terms of α via (3.5) and (3.6). Next, to account for the

D2 charges dissolved in the NS5 worldvolume, we need L1, L2 given in (3.1) and (3.2).

Note that, if we lift the supertube (1.2) to M-theory, we have

M2(67) + M2(45)→ m5(λ4567) . (3.14)

Therefore, our solution simply corresponds to the 4D version of Bena and Warner’s solution

in [7]. The difference is that they were discussing 5D solutions with general supertube

shapes, while we are focusing on solutions which has an isometry and can be reduced to

4D. Because of that, we can be more explicit in the solution in terms of harmonic functions.

D2(89)+D6(456789)→ 52
2(λ4567;89). The second example is the D2 + D6 → 52

2

supertube (1.3), which can be obtained by taking the T -dual of the above solution (3.11)

along 6789 directions. Involving the exotic 52
2-brane, this is a non-geometric supertube

where the metric becomes multi-valued.8

Harmonic functions which describe this supertube (1.3) are

V = f2 , K1 = γ , K2 = γ , K3 = 0 ,

L1 = 1 , L2 = 1 , L3 = f1 , M = 0 .
(3.15)

The charges appearing in harmonic functions are related to brane numbers by

Q1 =
gsl

5
s

2R4R5R6R7
N1 , Q2 =

gsls
2
N2 , L =

2πgsl
7
s

R4R5R6R7R8R9
N1 . (3.16)

As we can easily check, the integrability condition (2.20) is trivially satisfied. The various

functions and forms are

Z1 = Z2 = 1 , Z3 = f1F , ξ1 = ξ2 = −α , ξ3 = 0 , µ = f−1
2 γ , ω = −α . (3.17)

The IIA fields are given by

ds2
10 = −(f1f2)−1/2(dt− α)2 + (f1f2)1/2dxidxi + (f1/f2)1/2(dx2

4567 + f−1
1 F−1dx2

89) ,

e2Φ = f
1/2
1 f

−3/2
2 F−1, B2 = − γ

f1f2F
dx8 ∧ dx9,

C1 = β2 − f−1
1 γ (dt− α) ,

C3 = − 1

f1F
(dt− α) ∧ dx8 ∧ dx9 − γ

f1f2F
β2 ∧ dx8 ∧ dx9,

(3.18)

where we defined

F ≡ 1 +
γ2

f1f2
. (3.19)

We have dropped some total derivative terms in the RR potentials. Since f1, f2 → 1 as

|x| → ∞, the spacetime is asymptotically R1,3 × T 6. However, because the multi-valued

function γ enters the metric, this spacetime is non-geometric. Every time one goes through

8The metric for an exotic non-geometric supertube (D4 + D4→ 52
2) was first discussed in [3, 4].
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the supertube, one goes to different spacetime with different radii for T 2
89, although it is

related to the original one by T -duality.

It is not difficult to show that the solution (3.18) carries the expected monopole charge

for D2(89) and D6(456789), and not for other charges. To see the 52
2 dipole charge, let us

look at the Kähler moduli which are

τ1 = i
R4R5

l2s

√
f1

f2
, τ2 = i

R6R7

l2s

√
f1

f2
, τ3 =

R8R9

l2s

(
− γ

f1f2F
+ i

1√
f1f2F

)
. (3.20)

If we define

τ ′3 ≡ − 1

τ3
=

l2s
R8R9

(
γ + i

√
f1f2

)
, (3.21)

the monodromy around the supertube is simply

τ ′3 → τ ′3 + 1 , (3.22)

where we used (3.7) and (3.16). This is the correct monodromy for the 52
2-brane.

Although one sees that the RR potentials are also multi-valued in (3.18), this does

not mean that we have further monopole or dipole charges. We will see this in a different

example in subsection 3.2.

Other duality frames. One can also consider supertube transitions in other duality

frames, such as

D0 + D4(4567)→ ns5(λ4567) (3.23)

or

D4(6789) + D4(4589)→ 52
2(λ4567, 89) . (3.24)

The latter transition (3.24) was studied in [3, 4]. The configuration on the left hand side

of (3.23) and (3.24) are not in the timelike class but in the null class [6, 8], and their

analysis requires a different 5D ansatz from the one we used above.

3.2 2-dipole solutions

A naive attempt. In the above, we demonstrated how the codimension-2 solution with

one dipole charge fits into the 4D/5D solution. The next step is to combine two such

solutions so that there are two different types of dipole charge. For example, can we

construct a solution in which the supertube transition (1.2) happens simultaneously for

two different D2-D2 pairs? For example, consider

D2(45) + D2(89)→ ns5(λ4589)

D2(67) + D2(89)→ ns5(λ6789) .
(3.25)

How can we construct harmonic functions corresponding to this configuration? For co-

dimension-3 solutions (2.25), having multiple centers was achieved just by summing the
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harmonic functions for each individual center. So, a naive guess is to simply sum the

harmonic functions for each individual supertube, as follows:9

V = 1 , K1 = γ′ , K2 = γ , K3 = 0 ,

L1 = f1 , L2 = f ′1 , L3 = f2 + f ′2 , M = −γ
2
− γ′

2
.

(3.26)

However, this does not work; as one can easily check, the integrability condition (2.20) is

not generally satisfied for this ansatz (3.26). The two dipoles talk to each other and we

must appropriately modify the harmonic functions to construct a genuine solution.

A non-trivial 2-dipole solution. So, the above naive attempt does not work and we

must take a different route to find a 2-dipole solution. Here, we use the superthread (or

supersheet) solution of [54] to construct one. The superthread solution describes a system

of D1 and D5-branes with traveling waves on them, and corresponds to the following

simultaneous supertube transitions:

D1(5) + P(5)→ d1(λ)

D5(56789) + P(5)→ d5(λ6789) .
(3.27)

The left hand side of (3.27) can be thought of as the constituents of the 3-charge black

hole. This is not just a trivial superposition of D1-P and D5-P supertubes, since the two

supertubes interact with each other.

The superthread solution was originally obtained as a BPS solution in 6D supergravity.

The BPS equations in 6D have a linear structure [55] which descends to that of the 5D

equations (2.6) and facilitates the construction of explicit solutions. The 6D BPS equations

involve a lightlike coordinate v and a 4-dimensional base space which is flat R4 for the

superthreads. We use ~x = (x1, x2, x3, x4) for the coordinates of R4. The superthread

solution is characterized by profile functions ~Fp(v), which describe the fluctuation of the

D1 and D5-brane worldvolume. The index p = 1, · · · , n labels different threads of the

D1-D5 supertubes. We review the superthread solution in appendix C.

If we smear the superthread solution along x4 and v directions, it describes the D1-D5-

P supertube (3.27) extending along the R3
123 directions and can be connected to the 4D/5D

solutions discussed in section 2.1. After duality transformations,10 the resulting solution

can be regarded as describing precisely the 2-dipole configuration (3.25). More precisely,

the final configuration is as follows. We have n supertubes labeled by p = 1, . . . , n and

the p-th tube has the profile x = Fp(λp) ∈ R3, where λp parametrizes the profile and the

function Fp has the periodicity Fp(λp + Lp) = Fp(λp). The p-th tube carries the D2(45),

D2(67), D2(89) monopole charges Qp1, Qp2, Qp3 respectively, as well as ns5 dipole charges

displayed in (3.25).

9This was obtained by permuting KI, LI of (3.1) and also by a suitable reparametrization of λ in f ′1, f ′2.
10Specifically, to go from (3.27) to (3.25), we can take T4567, S, then T4 duality transformations and

rename coordinates as 456789→ 894567, so that D1(5), D5(56789), P(5) charges map into D2(45), D2(67),

D2(89) charges, respectively.
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Explicitly, the harmonic functions describing the 2-dipole configuration (3.25) are

V = 1 , K1 = γ2 , K2 = γ1 , K3 = 0 , (3.28a)

LI = 1 +
∑
p

QpI

∫
p

1

Rp
= ZI , I = 1, 2 , (3.28b)

L3 = 1 +
∑
p

∫
p

ρp
Rp

+
∑
p,q

Qpq

∫∫
p,q

[
Ḟp · Ḟq

2RpRq
− ḞpiḞqj(RpiRqj −RpjRqi)
FpqRpRq(Fpq +Rp +Rq)

]
−K1K2, (3.28c)

M =
1

2

∑
p,q

Qpq

∫∫
p,q

εijkḞpqiRpjRqk
FpqRpRq(Fpq +Rp +Rq)

− 1

2
(K1L1 +K2L2) (3.28d)

where we defined

Rp(λp) ≡ x− Fp(λp) , Fpq(λp, λq) ≡ Fp(λp)− Fq(λq) ,

Rp ≡ |Rp| , Fpq ≡ |Fpq| , Qpq ≡ Qp1Qq2 +Qp2Qq1 .
(3.29)

Also, for integrals along the supertubes, we defined∫
p
≡ 1

Lp

∫ Lp

0
dλp ,

∫∫
p,q
≡ 1

LpLq

∫ Lp

0
dλp

∫ Lq

0
dλq (3.30)

and the dependence on the parameter λp in (3.28) has been suppressed.11 The quantity

ρp(λp) in (3.28c) is an arbitrary function corresponding to the D2(89) density along the

p-th tube. A similar density could be introduced for M in (3.28d), but it had been ruled

out by a no-CTC (closed timelike curve) analysis in [54] and was not included here. The

scalars γI satisfy

dγI = ∗3dαI , αI =
∑
p

QpI

∫
p

Ḟp · dx
Rp

, I = 1, 2 , (3.31)

generalizing (3.5), (3.6). Furthermore, the 1-form ω is given by

ω = ω0 + ω1 + ω2 , (3.32a)

ω0 =
∑
p

(Qp1 +Qp2)

∫
p

Ḟp · dx
Rp

, ω1 =
1

2

∑
p,q

Qpq

∫∫
p,q

Ḟp · dx
RpRq

, (3.32b)

ω2 =
1

4

∑
p,q

Qpq

∫∫
p,q

Ḟpqi
Fpq

[(
1

Rp
− 1

Rq

)
dxi − 2

RpiRqj −RpjRqi
RpRq(Fpq +Rp +Rq)

dxj
]
. (3.32c)

11For example, the first term in the second line of (3.28c) means
∑n
p,q=1

Qpq

LpLq

∫ Lp

0
dλp

∫ Lq

0
dλq

Ḟp(λp)·Ḟq(λq)

2Rp(λp)Rq(λq)
. Note that, even for p = q, the integral is two-dimensional; namely, the summand for p = q

is
Qpp

L2
p

∫ Lp

0
dλp

∫ Lp

0
dλ′p

Ḟp(λp)·Ḟp(λ
′
p)

2Rp(λp)Rp(λ′
p)

.
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The charges QpI , Qp3 and the profile length Lp are related to quantized numbers by12

Qp1 =
gsl

5
s

2R6R7R8R9
Np , Qp2 =

gsl
5
s

2R4R5R8R9
Np ,

Qp3 =
gsl

5
s

2R4R5R6R7
Np3 , Lp =

2πgsl
3
s

R4R5
Np .

(3.33)

It is interesting to compare the above harmonic functions (3.28) with the naive

guess (3.26). The naive V , K1, K2, K3, L1, L2 were correct, but L3, M needed cor-

rection terms proportional to Qpq to be a genuine solution. Since Qpq involves the product

of two types of charge (D2(45) and D2(67)) and represents interaction between two different

dipoles.

It is not immediately obvious that L3 and M in (3.28) are harmonic on R3. One can

show that their Laplacian is given by

4L3 = −4π
∑
p

∫
p
ρp δ

3(x− Fp)− 4π
∑
p,q

Qpq

∫∫
p,q

Ḟp · Ḟq

Fpq
δ3(x− Fp) , (3.34)

4M = −1

2
KI4LI = 2π

∑
p

QpI

∫
p
KI(Fp) δ

3(x− Fp) . (3.35)

Namely, L3 and M are harmonic up to delta-function source along the profile. In deriving

these, we used the following relations:

4
[

RpiRqj −RpjRqi
FpqRpRq(Fpq +Rp +Rq)

]
= −RpiRqj −RpjRqi

R3
pR

3
q

, (3.36)∫
p

Rp · Ḟp

R3
p

=

∫
p
∂λp

(
1

Rp

)
= 0 , 4

(
1

|x|

)
= −4πδ3(x) . (3.37)

With the relations (3.34) and (3.35), it is straightforward to show that the integrability

condition (2.20) is identically satisfied for any profile.

The harmonic functions L3,M in (3.28) are multi-valued, because K1,K2 are. How-

ever, the quantities that actually enter the 10D metric (2.23) are single-valued. Indeed,

Z3 = 1 +
∑
p

∫
p

ρp
Rp

+
∑
p,q

Qpq

∫∫
p,q

[
Ḟp · Ḟq

2RpRq
− ḞpiḞqj(RpiRqj −RpjRqi)
FpqRpRq(Fpq +Rp +Rq)

]
, (3.38a)

µ =
1

2

∑
p,q

Qpq

∫∫
p,q

εijkḞpqiRpjRqk
FpqRpRq(Fpq +Rp +Rq)

. (3.38b)

So, the metric is single-valued and the spacetime is geometric. This is as it should be

because the configuration (3.25) does not contain any non-geometric exotic branes.

12The p-th tube has equal D2(45) and D2(67) numbers by construction. It is also possible for the p-th

tube to carry only the D2(45) (or D2(67)) charge. In that case, Qp2 = 0 (resp. Qp1 = 0) and Qp1 (Qp2) is

still given by (3.33).
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Single/multi-valuedness and physical condition. It is instructive to see how these

multi-valued harmonic functions come about in solving the BPS equations as reviewed in

subsection 2.1. Assume that we are given V,KI of (3.28a) (which corresponds to having

specific ns5-brane dipole charges and no D6-brane), and consider finding LI , M or equiv-

alently ZI , µ from the BPS equations. To find ZI , we must solve (2.14). For I = 1, 2, this

gives a simple Laplace equation for L1, L2, whose solution is (3.28b). On the other hand,

the equation (2.14) for Z3 reads

4Z3 = 4(K1K2) = 2∂iK
1∂iK

2 = 2(∂iα1j∂iα2j − ∂iα1j∂jα2i) . (3.39)

Although K1,2 are multi-valued, the last expression in (3.39) is a single-valued. Therefore,

it is possible to solve this Poisson equation for Z3 using the standard Green function

− 1
4π

1
|x−x′| , and the result will be automatically single-valued. The above solution (3.38a)

corresponds to this solution. This is physically the correct solution in the current situation

where we only have standard (D2 and NS5) branes and the metric must be single-valued.

Alternatively, we can solve (3.39) in terms of a multi-valued function. If we rewrite (3.39)

as 4L3 = 0 with L3 = Z3 − K1K2, then L3 = 1 +
∑

p

∫
p(ρp/Rp) ≡ Lalt

3 is a possible

solution. This is the direct analogue of what we did for the codimension-3 solution. This

gives a multi-valued Z3 = L3 + K1K2 ≡ Zalt
3 and hence a multi-valued metric, which is

physically unacceptable.

One may find it strange that there are two different solutions, Z3 of (3.38a) and

Zalt
3 , to the same Poisson equation (3.39). However, the solution to the Poisson equation is

unique given the boundary condition at infinity. The two solutions have different boundary

conditions (a single-valued one for the Z3 of (3.38a) and a multi-valued one for Zalt
3 ) and

there is no contradiction that they are both solutions to the same Poisson equation. The

BPS equations such as (3.39) must be solved taking into account the physical situation one

is considering.

The µ equation (2.17) is

4µ =
1

2
4(KILI) = ∂iK

I∂iZI = εijk|εIJ |∂jαJk∂iZI . (3.40)

Again, we have two options. The first one is to use the standard single-valued Green

function to the last expression to obtain the single-valued µ as given in (3.38b). The

second one is to rewrite the above as 4M = 0, M = µ − (1/2)KILI and say that M is

single-valued. This gives multi-valued µ and is inappropriate for the current situation.

Closed timelike curves. It is known that near an over-rotating supertube there can be

closed timelike curves (CTCs) which must be avoided in physically acceptable solutions [52,

54]. The dangerous direction for the CTCs is known to be along the supertube, which is

inside R3. By setting dt = dψ = 0 in the metric (2.3), the line element inside R3 is

dl2 = −Z−2/3(µA+ ω)2 + Z1/3(V −1A2 + V dx2) . (3.41)

In the present case, we have V = 1 and A = 0, and therefore the line element becomes

dl2 = Z−2/3(−ω2 + Zdx2) , (3.42)

where ω is given by (3.32).
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In the near-tube limit in which we approach a particular point Fp(λ
0
p) on the p-th

curve, where λ0
p is the value of the parameter corresponding to that point, the functions

Z1,2,3 can be expanded as

ZI = QpIR+ 1 + cI +O(r⊥) , I = 1, 2 , (3.43a)

Z3 =
(
Qp1ḞpR+ d1 +O(r⊥)

)
·
(
Qp2ḞpR+ d2 +O(r⊥)

)
+ ρp(λ

0
p)R+ c3 + 1 +O(r⊥)

= Qp1Qp2|Ḟp|2R2 +
[
ρp(λ

0
p) + (Qp1d2 +Qp2d1) · Ḟp

]
R+ const. +O(r⊥) . (3.43b)

Here, Ḟp = Ḟp(λ
0
p) and R is defined as

R ≡ 2

|Ḟp|
ln

2|Ḟp|
r⊥

(3.44)

where r⊥ is the transverse distance in R3 from the point Fp(λ
0
p) on the tube. The constants

cI=1,2,3 and dI=1,2 are defined in appendix D. Similarly, ω0,1,2 are expanded as

ω0 = (Qp1 +Qp2)(Ḟp · dx)R+ (d1 + d2) · dx +O(r⊥) , (3.45a)

ω1 = Qp1Qp2(Ḟp · dx)R2 +
R
2

[
Qp1(d2+c2Ḟp) +Qp2(d1+c1Ḟp)

]
· dx +O(r⊥) , (3.45b)

ω2 =
R
2

∑
q( 6=p)

Qpq

∫
dλp

(
Ḟp(λ

0
p)− Ḟq(λp)

)
· dx

|Fp(λ0
p)− Fq(λp)|

+O(r⊥) . (3.45c)

By plugging in the above expressions, the line element (3.42) becomes

Z2/3dl2 = (Qp1Qp2)2R4|Ḟp|2
(
dx2 − |Ḟp · dx|2

|Ḟp|2

)
+ (Qp1Qp2)R3

[
ρp(λ

0
p)dx

2 +
(
|Ḟp|2dx2 − 2|Ḟp · dx|2

)(
Qp1(1 + c2) +Qp2(1 + c1)

)
+ Ḟp · (Qp1d2 +Qp2d1)dx2

]
+O(R2) . (3.46)

For displacement along the tube, dx ∝ Ḟp, the leading O(R4) term vanishes and the O(R3)

term gives the leading contribution. If the coefficient of the O(R3) term is negative for all

λ0
p ∈ [0, Lp], the cycle along the tube will be a CTC. Conversely, for the absence of CTCs,

there must be some value of λ0
p for which the following inequality is satisfied:

ρp(λ
0
p) ≥ Qp1

(
|Ḟp|2(1 + c2)− Ḟp · d2

)
+Qp2

(
|Ḟp|2(1 + c1)− Ḟp · d1

)
. (3.47)

This can be written more explicitly, using (D.11) and (D.15), as

ρp(λ
0
p) ≥ |Ḟp(λ

0
p)|2(Qp1 +Qp2) +

∑
q( 6=p)

Qpq

∫
dλp

Ḟp(λ
0
p) ·
(
Ḟp(λ

0
p)− Ḟq(λp)

)
|Fp(λ0

p)− Fq(λp)|
. (3.48)

This is analogous to the no-CTC condition for the superthread solution (eq. (2.34) in [54]).
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Charge and angular momentum. Let us study if the solution above has the expected

monopole and dipole charges. In the presence of Chern-Simons interaction, there are mul-

tiple notions of charge [56], and here we choose Page charge, which is conserved, localized,

quantized, and gauge-invariant under small gauge transformations. Specifically, the Dp-

brane Page charge is defined as [4, 56] (see also appendices A and E)

QPage
Dp =

1

(2πls)7−pgs

∫
M8−p

e−B2G =
1

(2πls)7−pgs

∫
∂M8−p

e−B2C . (3.49)

Here, M8−p is an (8− p)-manifold enclosing the Dp-brane, and G =
∑

pGp+1, C =
∑

pCp
with p odd (even) for type IIA (IIB). In the integrand, we must take the part with the

appropriate rank from the polyforms e−B2G, e−B2C. In the second equality, we used the

relation (A.4) between G and C.

Using the definition above, we can readily calculate Page charges for this 2-dipole

solution. For example, the D4(6789)-brane charge, which is expected to vanish, is given by

QPage
D4(6789) =

1

(2πls)3gs

∫
S2×T 2

45

e−B2G =
1

(2πls)3gs

∫
∂S2×T 2

45

e−B2C

=
R4R5

2πl3sgs

∫
∂S2

{[
− 1

Z1
+

V µ

Z − V µ2

(
K1

V
− µ

Z1

)]
ω + ξ1

}
, (3.50)

where in the last equality we used (E.4). If the surface S2 is at infinity enclosing the

entire profile, then the function in the [· · · ] above is single-valued. Also, the requirement of

integrability (2.20) guarantees that ω is also single-valued. Therefore, the entire first term

in the integrand is single-valued and does not contribute to the integral on ∂S2. The only

contribution comes from the second term, ξ1. Thus we find

QPage
D4(6789) =

R4R5

2πl3sgs

∫
∂S2

ξ1 =
R4R5

2πl3sgs

∫
S2

dξ1 = − R4R5

2πl3sgs

∫
S2

∗3dK1. (3.51)

The integral is equal to −4π times the coefficient of 1/r in the large r expansion of K1.

However, α2 = O(1/r2) and hence K1 = γ2 = O(1/r2) and the coefficient of the 1/r term

vanishes. So, we conclude that QPage
D4(6789) = 0, as expected. Similarly, other Page charges are

related to the coefficient of the 1/r in the large r expansion of the corresponding harmonic

function (see appendix E for the expressions for necessary RR potentials to compute the

Page charge). We find that the non-vanishing charges are

QPage
D2(45) = QPage

D2(67) =
∑
p

Np , (3.52)

QPage
D2(89) =

∑
p

Np3 , Qp3 =

∫
p
ρp , (3.53)

where we used (3.33).

It is easy to check that we have appropriate monodromy for ns5(λ4567) and ns5(λ6780).

The real part of τ1,2 contain K1,2 (2.24) and others are all single-valued. Then we can apply

same argument as (3.7). So we obtain

τ1 → τ1 + 1 , τ2 → τ2 + 1 (3.54)

as we go around each tubes. This is proper monodromy for our system.
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The angular momentum can be read off from the ADM formula [57]

gti = − 1√
V (Z − V µ2)

ωi = −2G4
xjJ ji

|x|3
+ · · · (3.55)

where G4 is 4-dimensional Newton constant. By expanding gti to the leading order, we

obtain

− gti =
xj

|x|3

(∑
p

(Qp1 +Qp2)

∫
p
ḞpiFpj +

1

4

∑
p,q

Qpq

∫∫
p,q

ḞpqiFpqj−ḞpqjFpqi
Fpq

)
+O

(
1

|x|3

)
(3.56)

where we used
1

Rp
=

1

|x|
+

x · Fp

|x|3
+O

(
1

|x|3

)
. (3.57)

Therefore the angular momentum of the 2-dipole solution is

J ji =
1

4G4

(∑
p

(Qp1 +Qp2)

∫
p
(ḞpiFpj − ḞpjFpi) +

1

2

∑
p,q

Qpq

∫∫
p,q

ḞpqiFpqj − ḞpqjFpqi
Fpq

)
.

(3.58)

The second term represents the contribution from the interaction between supertubes.

3.3 3-dipole solutions

We can also consider a 3-dipole configuration as an extension of the 2-dipole configura-

tion (3.25) such as

D2(45) + D2(89)→ ns5(λ4589)

D2(67) + D2(89)→ ns5(λ6789)

D2(45) + D2(67)→ ns5(λ4567) .

(3.59)

Because there is no D6-brane, we have V = 1. How can we find the rest of harmonic

functions for this 3-dipole configuration, generalizing the 2-dipole solution?

First, it is natural to guess that the 3-dipole solution has the dipole sources in all

KI=1,2,3, generalizing the 2-dipole case where KI=1,2 had dipole sources. Namely,

αI =
∑
p

QpI

∫
p

Ḟp · dx
Rp

, dKI = ∗3dαI , I = 1, 2, 3 . (3.60)

Note that the next layer of equation (2.14) to determine ZI is quadratic in KI and therefore

knows only about 2-dipole interactions. So, we can construct ZI the same way as in the

2-dipole case, as follows:

ZI = 1 +
∑
p

QpI

∫
p

ρpI
Rp

+ CIJK
∑
p,q

QpJQqK

∫∫
p,q

[
Ḟp · Ḟq

2RpRq
− ḞpiḞqj(RpiRqj −RpjRqi)
FpqRpRq(Fpq +Rp +Rq)

]
, (3.61)
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where I = 1, 2, 3 and the same shorthand notation (3.29) is used. Finally, the last layer of

equation (2.17) to determine µ is

4µ = ∂iZI∂iK
I = εijk∂iZI∂jα

I
k . (3.62)

Because ZI involves 2-dipole interactions, µ involves 3-dipole interactions. Although we

have not been able to solve this in terms of integrals along the tubes as in the 2-dipole case

(cf. (3.38b)), we know physically that the solution must be single-valued and therefore we

can solve it by using the standard single-valued Green function. Namely, the solution is

µ(x) = − 1

4π

∫
d3x′

∂iZI∂iK
I(x′)

|x− x′|
. (3.63)

In order to satisfy the integrability condition (2.20), we have no option of adding to this a

term like
∑

p

∫
p σp/Rp with an arbitrary function σp, as we did in the second term of (3.38a).

In the present case, with V = 1, 4KI = 0, the integrability condition (2.20) becomes

0 = V4M −M4V +
1

2
(KI4LI − LI4KI)

= 4M +
1

2
KI4LI = 4µ− ∂iZI∂iKI , (3.64)

where in the last equality we used (2.15), (2.18). This is nothing but (3.62). If we added

the term
∑

p

∫
p σp/Rp to the µ in (3.63), then the integrability condition would be violated

by a delta-function term. This is why we do not have an option of adding such a term. This

also explains as a corollary why we do not have a term like
∑

p

∫
p σp/Rp in the 2-dipole µ

in (3.38b).13

Although it is not as explicit as the 2-dipole case, (3.63) gives the interacting 3-dipole

solution in principle.

4 Mixed configurations

Thus far, we have studied the 4D/5D solution with codimension-2 centers. In this section,

we present a simple example in which codimension-3 and codimension-2 centers coexist.

As the simplest codimension-2 center, let us consider the 1-dipole configuration with

the harmonic functions (3.1),

V = 1 , K1 = 0 , K2 = 0 , K3 = γ ,

L1 = 1 + f2 , L2 = 1 + f1 , L3 = 1 , M = −γ
2
,

(4.1)

where we have extracted “1” as compared from (3.2) and

f1 =
Q1

L

∫ L

0

dλ

|x− F(λ)|
, f2 =

Q1

L

∫ L

0

|Ḟ(λ)|2dλ
|x− F(λ)|

, (4.2)

while γ is still given by (3.5) and (3.6).

13In the context of the supersheet solution [54], (the 6D version of) this was explained from the no-CTC

condition.
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We would like to add to this a codimension-3 source of the type (2.25). Here, let us

simply add a codimension-3 singularity to (4.1) as follows:

V = n0 +
n

r
,

K1 = k1
0 +

k1

r
, K2 = k2

0 +
k2

r
, K3 = k3

0 + γ +
k3

r
,

L1 = l01 + f2 +
l1
r
, L2 = l02 + f1 +

l2
r
, L3 = l03 +

l3
r
,

M = m0 −
γ

2
+
m

r
.

(4.3)

For these harmonic functions, the integrability condition (2.20) becomes

0 = −4πδ(x)

[
n0m−m0n+

1

2
(kI0lI − l0IkI)−

1

2

(
k1f2(x = 0) + k2f1(x = 0)

)]
− 2πγ δ(x)(n+ l3)

+
1

2

[(
k2

0 +
k2

r

)
4f1 +

(
k1

0 +
k1

r

)
4f2

]
. (4.4)

The three lines on the right hand side are of different nature and must vanish separately. So,

0 = n0m−m0n+
1

2
(kI0lI − l0IkI)−

1

2

Q

L

∫ L

0
dλ
k1|Ḟ(λ)|2 + k2

|F(λ)|
, (4.5a)

0 = n+ l3 , (4.5b)

0 = k2
0 +

k2

|F(λ)|
+ |Ḟ(λ)|2

(
k1

0 +
k1

|F(λ)|

)
for each value of λ . (4.5c)

The first equation (4.5a) says that the total force exerted by the tube on the r = 0 brane

must vanish. This is a single equation and easy to satisfy. The second equation is also

easy to satisfy. On the other hand, the third equation (4.5c) says that the force exerted

by the r = 0 brane on every point of the tube must vanish, and gives the most stringent

condition. Let us investigate this last condition in detail.

Note that, if the asymptotic moduli k1
0, k

2
0 vanished, then the distance between the

tube and the codimension-3 brane, |F(λ)|, would disappear from the condition (4.5c), and

we have

0 = k2 + |Ḟ(λ)|2k1 . (4.6)

Because |Ḟ(λ)|2 is the ratio of the D2(67) and D2(45) charge densities carried by the tube

while k1, k2 are the D4(6789), D4(4589) charges of the r = 0 brane, eq. (4.6) would mean

that the tube must have, at every point along it, charge density that would be mutually

supersymmetric with the r = 0 brane in flat space. This can of course happen only if the

total charge of the tube is mutually supersymmetric with the r = 0 brane. In this case,

the distance between the two objects is arbitrary, implying that they are not bound.

On the other hand, if the asymptotic moduli k1
0, k

2
0 are non-vanishing, the tube does

not have charge density that would be mutually BPS with the r = 0 brane in flat space,
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and the configuration represents a true bound state. The condition (4.5c) gives

|Ḟ(λ)|2 = −k
2
0|F(λ)|+ k2

k1
0|F(λ)|+ k1

. (4.7)

Because F(λ) is a vector with three components, this differential equation leaves the ori-

entation of Ḟ(λ) undetermined. Therefore, the tube profile can wiggle depending on two

functions of one variable. We expect that this remains true for more general configura-

tions with both codimension-2 and codimension-3 centers: each codimension-2 center has

a profile depending on two functions of one variable, so that the force from other centers

vanishes at each point along the tube.

5 Discussion

In this paper, we studied the BPS configurations of the brane system in string theory

in the framework of 5D supergravity. In the literature, multi-center configurations of

codimension-3 branes have been extensively studied. However, we pointed out that these

codimension-3 branes can polarize into codimension-2 ones by the supertube effect and

hence multi-center configurations involving codimension-2 branes along arbitrary curves

must also be included if we want to capture the full configuration space of the system.

Codimension-2 branes can be exotic, and the solution containing them can represent non-

geometric spacetime.

Therefore, the most general configuration is a multi-center configuration including

both codimension-3 branes and codimension-2 ones. In the framework of the 4D/5D so-

lution, such configurations are described by harmonic functions with codimension-3 and

codimension-2 singularities in R3. In this paper, we provided some simple examples of such

solutions, hoping that they serve as a guide for constructing general solutions.

The solutions with codimension-2 centers have various possible applications and im-

plications, some of them already mentioned in the Introduction. Here let us discuss their

relevance to the fuzzball proposal for black holes [28, 58–61] and the microstate geometry

program.

Smooth 4D/5D solutions with codimension-3 centers have been put forward as possible

microstates for the 3- and 4-charge black holes [26, 27]. However, the entropy represented

by these solutions have been estimated [62, 63] to be parametrically smaller than the

entropy of the corresponding black hole. In particular, for the 3-charge black hole, ref. [63]

considered placing a probe supertube in the scaling geometry [64, 65] and estimated the

associated entropy to be ∼ Q5/4 whereas the desired black hole entropy is ∼ Q3/2, where

Q ∼ Q1,2,3 is the charge of the black hole. In our setup, a supertube in a scaling geometry

corresponds to a configuration with codimension-3 centers as well as a codimension-2 one.

It may be possible to make their estimate more precise by including backreaction using our

setup.

Another issue with identifying smooth 4D/5D solutions with codimension-3 centers

with black hole microstates concerns the pure Higgs branch. Ref. [66] (see also [67]) studied

quiver quantum mechanics describing 3-center solutions and showed that most entropy of
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the system comes from zero-angular momentum states in what they call the pure Higgs

branch. On the other hand, the multi-center solutions with codimension-3 centers are

naturally identified with states in the Coulomb branch of the quiver quantum mechanics.

This is because the codimension-3 solutions are characterized by the position of the centers,

which corresponds to the adjoint vev in the quiver quantum mechanics. Therefore, these

solutions do not seem to correspond to typical microstates of the system. In contrast,

a codimension-2 center has a finite-sized profile, as a result of two branes getting bound

together and puffing up by the supertube effect. In the quiver quantum mechanics, this has

a natural interpretation as a Higgs branch state, with a finite vev for the bifundamental

matter connecting two centers or nodes. Therefore, it is very interesting to understand the

relation between the codimension-2 configurations in gravity and states in quiver quantum

mechanics to elucidate the role of codimension-2 centers in black hole microphysics.

We have focused on codimension-2 centers in this paper but, of course, we could

consider objects with still lower codimensions, namely one and zero. A codimension-1

center is a membrane in R3 and is a 4D/5D-solution realization of the “superstrata” recently

proposed as possible microstates [3, 4, 68, 69]. It is interesting to study if the setup of the

4D/5D solution sheds new light on superstrata or makes their construction and analysis

easier. Codimension-1 and codimension-0 branes are generally more non-geometric than

the codimension-2 ones [34, 37], and studying them in the context of the 4D/5D solution

is an interesting subject.

Explicit construction of a solution with codimension-2 centers with general charge, po-

sition and profile is technically a challenging problem. In subsection 3.2, we discussed how

to solve the BPS equations of subsection 2.1 for a 2-dipole supertube. As mentioned there,

when solving the BPS equations, there are multiple solutions differing in the monodromy

properties. We must construct them and choose from them the physically appropriate one

expected from the dipole charges produced by supertube transitions. This is in some sense

similar to (but more complicated than) the problem of finding solutions of F-theory with

various monodromies around 7-branes [1, 2, 70] and is a non-trivial task. In particular, in

the presence of non-trivial harmonic function V , which corresponds to having D6-branes,

solving eq. (2.14) is itself a challenging problem. We leave this for future research.

To conclude, the solutions involving codimension-2 provide interesting new directions

of research, and studying them is bound to reveal richer physics of brane systems than was

found in codimension-3 solutions. We hope to report on the progress in such research in

near future.
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A Convention

The reduction formulas for the 11D metric and 3-form potential to type IIA supergravity

in 10D are

ds2
11 = e−

2
3

Φds2
10,str + e

4
3

Φ(dx11 + C1)2,

A3 = C3 +B2 ∧ dx11.
(A.1)

The relation between the gauge-invariant RR field strength Gp+2 and the RR potential

Cp+1 is

Gp+2 = dCp+1 −H3 ∧ Cp−1 , (A.2)

where H3 = dB2. The higher forms G6, G8 are related to G4, G2 by

G6 = ∗G4 , G8 = − ∗G2 . (A.3)

If we define the polyforms G =
∑

pGp+1, C =
∑

pCp with p odd (even) for type IIA (IIB),

the relation (A.2) can be written more concisely as

G = dC −H3 ∧ C = eB2d(e−B2C) . (A.4)

We define the Hodge dual of a p-form ω in d dimensions as

(∗ω)i1···id−p =
1

p!
εi1···id−p

j1···jpωj1···jp , (A.5)

∗(dxj1 ∧ · · · ∧ dxjp) =
1

(d− p)!
dxi1 ∧ · · · ∧ dxid−pεi1···id−p

j1···jp , (A.6)

with

ε01...(d−1) = −
√
−g , ε01...(d−1) = +

1√
−g

. (A.7)

B Monodromic harmonic function

Here, we show that if the harmonic function γ has the monodromy (3.7) independent of

the cycle c, then it is given in terms of the 1-form α by (3.5) and (3.6).

Harmonicity of γ means that d(∗3dγ) = 0, which implies that ∗3dγ is closed and can

be written in terms of a 1-form α as ∗3dγ = dα at least locally. Because α has the gauge

ambiguity α → α + dΛ where Λ is a scalar, we can impose the “Lorenz gauge” ∂iαi = 0.

In this gauge, the monodromy of γ can be expressed as

∆γ =

∫
c
dγ =

∫
c
∗3dα =

∫
D
d ∗3 dα = −

∫
D
4αi

1

2
εijkdx

j ∧ dxk = −
∫
D
4αi ni d2A , (B.1)

where D is a 2-surface with ∂D = c, ni is the unit normal to D, and d2A is the area element

of D. In order for the monodromy ∆γ not to change even if we homotopically deform the

cycle c, the quantity 4α can only have delta-function source along the profile x = F(λ).

Therefore, it must be that

αi(x) =
1

L

∫ L

0

vi(λ)

|x− F(λ)|
dλ (B.2)
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where vi(λ) are some functions. This gives

4αi(x) = −4π

L

∫ L

0
vi(λ) δ2

(
x− F(λ)

)
dλ . (B.3)

Namely, αi has delta-function source distributed along the profile with (vectorial) density

vi. Then (B.1) is proportional to

vini ×
1

cos θ
× 1

|Ḟ|
, (B.4)

where θ is the angle between ni and the unit tangent to the profile, ti. The second factor

takes into account the fact that the curve does not necessarily perpendicularly intersect

with D, and the third factor takes into account the “speed” of the parametrization λ.

Because cos θ = tjnj and tj = Ḟj/|Ḟ|, the quantity (B.4) is equal to

vini
tjnj

. (B.5)

Given c, there are infinitely many choices for D which can intersect the profile at any point

at any angle. So, if (B.5) is to be independent of the choice of D, the only possibility is

vi ∝ Ḟi. This means that α is given by (3.6).

C Superthread

In this appendix, we briefly review the superthread solution which was used in subsec-

tion 3.2 to derive the 2-dipole solution. The superthread solution was originally obtained

in [54] as a BPS solution in 6D supergravity [55].

The metric for the superthread is

ds2
6 = 2(Z1Z2)−1/2dv

(
du+ k +

1

2
F dv

)
− (Z1Z2)1/2ds2

4 (C.1)

where the base space is flat R4 with metric ds2
4 = δijdx

idxj (i = 1, · · · , 4). We denote the

coordinates of the R4 by ~x = (x1, x2, x3, x4). All quantities that appear in the metric are

independent of the coordinate u. The scalars ZI , I = 1, 2 are harmonic functions in R4

and are given by

ZI = 1 +
∑
p

QpI
R2
p

, (C.2)

where

Rp ≡ |~x− ~F (p)(v)| (C.3)

and ~F (p)(v) ∈ R4 is the profile of the supertube. Note that we use this R4 version of Rp
only in this appendix (Rp in the main text is defined for R3 as in (3.29)). The 6D solution

also involve self-dual field strengths

ΘI = ∗4ΘI , I = 1, 2 , (C.4)
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which are related to ZI by the following equation:

dΘI = |εIJ | ∗4dŻJ . (C.5)

Here ˙ means the v-derivative and d is the exterior derivative with respect to the R4. For

ZI given in (C.2), this equation can be solved by

ΘI = (1 + ∗4)d

(
|εIJ |

∑
p

QpJ
~̇F (p) · d~x
R2
p

)
. (C.6)

The 1-form k appearing in the metric (C.1) satisfies the relation

(1 + ∗4)dk = ZIΘ
I . (C.7)

The solution to this equation is

k = k0 + k1 + k2 , (C.8a)

k0 =
∑
I=1,2

∑
p

QpI ~̇F
(p) · d~x
R2
p

, (C.8b)

k1 =
1

2

∑
p,q

Qpq
~̇F (q) · d~x
R2
pR

2
q

=
1

4

∑
p,q

Qpq

(
~̇F (p) + ~̇F (q)

)
· d~x

R2
pR

2
q

, (C.8c)

k2 =
1

4

∑
p,q

Qpq
Ḟ

(p)
i − Ḟ (q)

i

|~F (p) − ~F (q)|2

[(
1

R2
p

− 1

R2
q

)
dxi − 2

R2
pR

2
q

A(p,q)
ij dxj

]
, (C.8d)

where we defined

Qpq ≡ Qp1Qq2 +Qq1Qp2 . (C.9)

With this k, the scalar field F can be obtained by solving the equation

− ∗4d ∗4 dF = ∗4(Θ1 ∧Θ2) + 2Ż1Ż2 . (C.10)

This can be solved by

F = −1−
∑
p

ρp
R2
p

−
∑
p,q

Qpq

[ ~̇F (p) · ~̇F (q)

2R2
pR

2
q

−
Ḟ

(p)
i Ḟ

(q)
j A

(p,q)
ij

R2
pR

2
q |~F (p) − ~F (q)|2

]
, (C.11)

where

A(p,q)
ij ≡ R(p)

i R
(q)
j −R

(p)
j R

(q)
i − ε

ijklR
(p)
k R

(q)
l . (C.12)

After smearing out the above solution along x4 and v directions14 and identifying

quantities as stated in [71], we can reinterpret the quantities above (ZI ,Θ
I , k,F) in

terms of the harmonic functions appearing in the 4D/5D solution. Specifically, we ob-

tain V = 1, K3 = Θ3 = 0, F = −Z3. All other quantities can be read off from the

relations (2.15), (2.16), (2.18), and (2.19).

14The smearing along v is similar to that in [53].
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D Near-tube expansions

In this appendix, we carry out the near-tube expansions of quantities that are used in the

no-CTC analysis in the main text. To avoid clutter, we suppress the subscript p from the

quantities such as Fp and λp associated with the p-th tube.

We want to evaluate the near-tube limit of quantities such as

I(x) ≡
∫

dλ

|x− F(λ)|
. (D.1)

Consider a point x very close to the tube. Near the point x, the tube can be thought of as

a straight line. Let us take a cylindrical coordinate system (r⊥, θ, z) in which the point x

is at θ = z = 0. Also, let the point r⊥ = z = 0 on the curve (which is now a line) be F(λ0)

where λ0 is the value of the parameter corresponding to that point. Both the points x and

F(λ0) are in the z = 0 plane. Then, by approximating the curve by a straight line there,

|x− F(λ)| ≈
√
r2
⊥ + |Ḟ(λ0)|2(λ− λ0)2 (D.2)

where r⊥ is the radial distance from the curve. For very small r⊥, most contribution to

the integral (D.1) comes from very small |λ− λ0|. So, let us introduce a small cutoff ε > 0

and divide the integral as∫
dλ =

∫ λ0+ε

λ0−ε
dλ+

∫ λ0−ε
dλ+

∫
λ0+ε

dλ (D.3)

≡
∫ λ0+ε

λ0−ε
dλ+ Pε

∫
dλ (D.4)

where Pε
∫

means to exclude the interval [λ0 − ε, λ0 + ε] from the integral. We take the

following limit:

r⊥ → 0 , ε→ 0 , with
r⊥
ε
→ 0 . (D.5)

We take ε→ 0 so that the curve for λ ∈ [λ0 − ε, λ0 + ε] can be regarded as a straight line.

Because we are very close to the straight line, we must take r⊥ → 0, r⊥
ε → 0.

In this limit, the first term in (D.5) is evaluated as∫ λ0+ε

λ0−ε

dλ

|x− F(λ)|
≈
∫ λ0+ε

λ0−ε

dλ√
r2
⊥ + |Ḟ|2(λ− λ0)2

≈ 1

|Ḟ|

∫ |Ḟ|ε
−|Ḟ|ε

dλ′√
r2
⊥ + λ′2

≈ 2

|Ḟ|
log

(
2ε|Ḟ|
r⊥

)
(D.6)

where Ḟ ≡ Ḟ(λ0) and |Ḟ|(λ−λ0) ≡ λ′. This diverges as ε/r⊥ →∞ because the contribution

from an infinite straight line is infinite. However, of course, the actual curve is finite

and closed, and the integral must be finite. In other words, in the full integral (D.4),

ε-dependence must cancel out. Therefore, we must be able to split I(x) as follows:

I(x) =
2

|Ḟ|
ln

2|Ḟ|
r⊥

+ lim
ε→0

[
Pε

∫
dλ

|F(λ)− F(λ0)|
+

2

|Ḟ|
ln ε

]
+O(r⊥) , (D.7)
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where [. . . ] is finite in the ε→ 0 limit. Indeed, the second term in (D.3) is∫ λ0−ε dλ

|x− F(λ)|
≈
∫ λ0−ε dλ

|F(λ0)− F(λ)|
(D.8)

and includes a divergent contribution from near the upper bound of the integral, λ = λ0−ε.
The diverging contribution can be evaluated as

(D.8) ≈ 1

|Ḟ|

∫ −ε dλ′
|λ′|
≈ − 1

|Ḟ|
ln ε . (D.9)

We get an identical contribution from the third term in (D.3). These divergences precisely

cancel the second term in [. . . ] of (D.7).

So, for example, as we approach the point Fp(λ
0
p) on the p-th tube, the behavior of

the integral appearing in ZI=1,2 of (3.28b) is

∑
q

QqI

∫
q

1

Rq
=
∑
q

QqI
Lq

∫
dλq

|x− Fq(λq)|
=
QpI
Lp
R+ cI +O(r⊥) (D.10)

(see (3.30) for the first equality) where cI=1,2 is defined by

cI ≡
QpI
Lp

lim
ε→0

[
Pε

∫
dλp

|Fp(λ0
p)−Fp(λp)|

+
2

|Ḟp|
ln ε

]
+
∑
q( 6=p)

QqI
Lq

∫
dλq

|Fp(λ0
p)−Fq(λq)|

(D.11)

and is independent of r⊥. We also defined

R ≡ 2

|Ḟp|
ln

2|Ḟp|
r⊥

. (D.12)

Using the same argument, we can also derive the behavior of the integrals appearing

in ω and Z3 as follows:

∑
q

QqI

∫
q

Ḟq(λq)

Rq(λq)
=
∑
q

QqI
Lq

∫
Ḟq(λq) dλq
|x− Fq(λq)|

=
QpI
Lp

Ḟp(λ
0
p)R+ dI +O(r⊥) , (D.13)

∑
q

∫
q

ρq
Rq

=
∑
q

1

Lq

∫
ρq(λq) dλq
|x− Fq(λq)|

=
1

Lp
ρp(λ

0
p)R+ c3 +O(r⊥) , (D.14)

where

dI ≡
QpI
Lp

lim
ε→0

[
Pε

∫
Ḟp(λp) dλp

|Fp(λ0
p)−Fp(λp)|

+
2Ḟp(λ

0
p)

|Ḟp|
ln ε

]
+
∑
q( 6=p)

QqI
Lq

∫
Ḟq(λq) dλq

|Fp(λ0
p)−Fq(λq)|

,

(D.15)

c3 ≡
1

Lp
lim
ε→0

[
Pε

∫
ρp(λp) dλp

|Fp(λ0
p)−Fp(λp)|

+
2ρp(λ

0
p)

|Ḟp|
ln ε

]
+
∑
q( 6=p)

1

Lq

∫
ρq(λq) dλq

|Fp(λ0
p)−Fq(λq)|

.

(D.16)
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E The type IIA uplift and Page charges

The type IIA uplift of the 4D/5D solution is, including higher RR potentials (cf. (2.23)),

ds2
IIA,10 = − 1√

V Σ
d̃t

2
+
√
V Σ dx2

123 +

√
Σ

V
(Z−1

1 dx2
45 + Z−1

2 dx2
67 + Z−1

3 dx2
89) ,

e2Φ =
Σ3/2

V 3/2Z
, B2 = ΛIJI ,

C1 = −V µ
Σ

d̃t +A , C3 = (−Z−1
I d̃t+ ΛIA+ ξI) ∧ JI ,

C5 =

(
µ

Z2Z3
d̃t+Λ2Λ3A+Λ2ξ3+Λ3ξ2+ζ1

)
∧ J2 ∧ J3 + (cyclic) ,

C7 =

(
Σ

ZV
d̃t+Λ1Λ2Λ3A+Λ1Λ2ξ3+Λ2Λ3ξ1+Λ3Λ1ξ2+ΛIζI+W

)
∧ J1 ∧ J2 ∧ J3 ,

(E.1)

where

d̃t ≡ dt+ ω , Σ ≡ Z − V µ2, ΛI ≡ V −1KI − Z−1
I µ , (E.2)

and the 1-forms (A, ξI , ζI ,W ) are related to the harmonic functions (V,KI , LI ,M) by

dA = ∗3dV, dξI = − ∗3 dKI , dζI = − ∗3 dLI , dW = −2 ∗3 dM . (E.3)

The expressions for forms that are useful for computing the Page charge (3.49) are

e−B2C|1 = −V µ
Σ

d̃t +A ,

e−B2C|3 =

[(
− 1

Z1
+
V µΛ1

Σ

)
d̃t + ξ1

]
∧ J1 + (cyclic) ,

e−B2C|5 =

[(
Z1µ

Z
+

Λ2

Z3
+

Λ3

Z2
− V µΛ2Λ3

Σ

)
d̃t + ζ1

]
∧ J2 ∧ J3 + (cyclic) ,

e−B2C|7 =

[(
Σ

ZV
− µ
Z

ΛIZI−
Λ2Λ3

Z1
−Λ3Λ1

Z2
−Λ1Λ2

Z3
+
V µΛ1Λ2Λ3

Σ

)
d̃t+W

]
∧ J1 ∧ J2 ∧ J3 ,

(E.4)

where X|p means the p-form part of the polyform X.
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[13] J. Belloŕın, Supersymmetric solutions of gauged five-dimensional supergravity with general

matter couplings, Class. Quant. Grav. 26 (2009) 195012 [arXiv:0810.0527] [INSPIRE].

[14] B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites,

JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].

[15] S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes,

Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].

[16] A. Strominger, Macroscopic entropy of N = 2 extremal black holes,

Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].

[17] S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514

[hep-th/9602136] [INSPIRE].

[18] S. Ferrara and R. Kallosh, Universality of supersymmetric attractors,

Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].

[19] G.W. Moore, Les Houches lectures on strings and arithmetic, hep-th/0401049 [INSPIRE].

[20] P. Kraus and F. Larsen, Attractors and black rings, Phys. Rev. D 72 (2005) 024010

[hep-th/0503219] [INSPIRE].

[21] F. Larsen, The attractor mechanism in five dimensions, Lect. Notes Phys. 755 (2008) 249

[hep-th/0608191] [INSPIRE].

[22] F. Denef, On the correspondence between D-branes and stationary supergravity solutions of

type II Calabi-Yau compactifications, hep-th/0010222 [INSPIRE].

[23] F. Denef, (Dis)assembling special Lagrangians, hep-th/0107152 [INSPIRE].

– 32 –

http://dx.doi.org/10.1103/PhysRevLett.104.251603
http://arxiv.org/abs/1004.2521
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2521
http://dx.doi.org/10.1016/j.physrep.2013.07.003
http://arxiv.org/abs/1209.6056
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.6056
http://dx.doi.org/10.1103/PhysRevLett.87.011602
http://arxiv.org/abs/hep-th/0103030
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103030
http://dx.doi.org/10.1088/0264-9381/20/21/005
http://arxiv.org/abs/hep-th/0209114
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209114
http://dx.doi.org/10.4310/ATMP.2005.v9.n5.a1
http://arxiv.org/abs/hep-th/0408106
http://inspirehep.net/search?p=find+EPRINT+hep-th/0408106
http://dx.doi.org/10.1088/1126-6708/2004/04/048
http://arxiv.org/abs/hep-th/0401129
http://inspirehep.net/search?p=find+EPRINT+hep-th/0401129
http://dx.doi.org/10.1103/PhysRevD.71.045002
http://arxiv.org/abs/hep-th/0408122
http://inspirehep.net/search?p=find+EPRINT+hep-th/0408122
http://dx.doi.org/10.1088/1126-6708/2005/10/039
http://arxiv.org/abs/hep-th/0505185
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505185
http://dx.doi.org/10.1088/1126-6708/2007/01/020
http://arxiv.org/abs/hep-th/0610196
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610196
http://dx.doi.org/10.1088/1126-6708/2007/08/096
http://arxiv.org/abs/0705.2567
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.2567
http://dx.doi.org/10.1088/0264-9381/26/19/195012
http://arxiv.org/abs/0810.0527
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.0527
http://dx.doi.org/10.1007/JHEP11(2011)127
http://arxiv.org/abs/hep-th/0304094
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304094
http://dx.doi.org/10.1103/PhysRevD.52.R5412
http://arxiv.org/abs/hep-th/9508072
http://inspirehep.net/search?p=find+EPRINT+hep-th/9508072
http://dx.doi.org/10.1016/0370-2693(96)00711-3
http://arxiv.org/abs/hep-th/9602111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602111
http://dx.doi.org/10.1103/PhysRevD.54.1514
http://arxiv.org/abs/hep-th/9602136
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602136
http://dx.doi.org/10.1103/PhysRevD.54.1525
http://arxiv.org/abs/hep-th/9603090
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603090
http://arxiv.org/abs/hep-th/0401049
http://inspirehep.net/search?p=find+EPRINT+HEP-TH/0401049
http://dx.doi.org/10.1103/PhysRevD.72.024010
http://arxiv.org/abs/hep-th/0503219
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503219
http://arxiv.org/abs/hep-th/0608191
http://inspirehep.net/search?p=find+EPRINT+hep-th/0608191
http://arxiv.org/abs/hep-th/0010222
http://inspirehep.net/search?p=find+EPRINT+HEP-TH/0010222
http://arxiv.org/abs/hep-th/0107152
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107152


J
H
E
P
1
0
(
2
0
1
5
)
0
1
1

[24] G.W. Moore, PiTP lectures on BPS states and wall-crossing in d = 4, N = 2 theories,

http://www.sns.ias.edu/pitp2/2010files/Moore LectureNotes.rev3.pdf.

[25] F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos,

JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

[26] I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes,

Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].

[27] P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and

black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].

[28] S.D. Mathur, The fuzzball proposal for black holes: an elementary review,

Fortschr. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].

[29] E.A. Bergshoeff, T. Ort́ın and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210

[arXiv:1109.4484] [INSPIRE].

[30] T. Kikuchi, T. Okada and Y. Sakatani, Rotating string in doubled geometry with generalized

isometries, Phys. Rev. D 86 (2012) 046001 [arXiv:1205.5549] [INSPIRE].

[31] D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes

and its geometric framework, JHEP 12 (2013) 083 [arXiv:1306.4381] [INSPIRE].
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