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We propose a mechanism to evade the Lyth bound in models of inflation. We minimally extend 
the conventional single-field inflation model in general relativity (GR) to a theory with non-vanishing 
graviton mass in the very early universe. The modification primarily affects the tensor perturbation, while 
the scalar and vector perturbations are the same as the ones in GR with a single scalar field at least at the 
level of linear perturbation theory. During the reheating stage, the graviton mass oscillates coherently and 
leads to resonant amplification of the primordial tensor perturbation. After reheating the graviton mass 
vanishes and we recover GR.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Inflation [1] is the leading paradigm of very early universe cos-
mology, but its physical origin is still mysterious. The generation of 
primordial gravitational waves is a generic prediction of the infla-
tionary universe. It leads to B mode polarization in the CMB, and 
provides an important window to the physics of very early uni-
verse. It was reported that the primordial tensor-to-scalar ratio is 
r < 0.11 (95% CL), based on Planck full sky survey [2]. Several next-
generation satellite missions (CMBPol, COrE and LiteBIRD) as well 
as the ground based experiments (AdvACT, CLASS, Keck/BICEP3, Si-
mons Array, SPT-3G) and balloons (EBEX, Spider), are aimed at 
measuring primordial gravitational waves down to r ∼ 10−3. See 
Ref. [3] for a recent updated forecast on these future experiments.

According to the Lyth bound [4], the tensor-to-scalar ratio is 
proportional to the variation of the inflaton field during infla-
tion, i.e. �φ/Mp � ∫

dN
√

r/8. The threshold �φ = Mp then cor-
responds to r = 2 × 10−3, assumed that tensor power spectrum 
is nearly scale-invariant. The sizeable amplitude of the primordial 
gravitational waves requires a super-Planckian excursion of the in-
flaton, i.e. �φ > Mp .

In quantum field theory, the naturalness principle tells us that 
the variation of a field φ over the distance greater than the cutoff 
scale is generally regarded as being out of the validity of the the-
ory. In a gravitational system, we take the Planck mass as the UV 
cutoff scale, because gravity strongly couples to the matter sector 
and the graviton–graviton scattering violates unitarity above this 
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scale. Thus the inflationary prediction may not be reliable in the 
case of a super-Planckian excursion. Therefore, the detection of the 
primordial tensor perturbation with its amplitude larger than the 
threshold value r = 2 × 10−3 has a profound impact on our under-
standing of fundamental physics. It implies that either quantum 
field theory or gravity may be modified in the very early universe.

In this letter, by means of modifying gravity, we propose a 
new mechanism to evade the Lyth bound. We consider a mini-
mal extension of GR with a non-vanishing graviton mass term in 
the very early universe. Specifically we propose a model in which 
the graviton mass is proportional to the inflaton during reheat-
ing. Then the coherent oscillation of the inflaton induces that of 
graviton mass and gives rise to resonant amplification of the pri-
mordial tensor perturbation. This is a broad parametric resonance 
which includes all long wavelength modes, given the graviton mass 
is much greater than the Hubble constant during reheating. After 
reheating, the graviton mass vanishes as the inflaton decays and 
we recover GR.

2. A massive gravity theory

The theoretical and observational consistency of massive gravity 
has been a longstanding problem, the pioneering attempt could be 
traced back to Fierz and Pauli’s work in 1939 [5]. However, Fierz–
Pauli’s theory and its non-linear completion, the so-called dRGT 
massive gravity [6], suffer from many pathologies [7–11]. The ori-
gin of these pathologies is probably the Poincare symmetry of the 
Stückelberg scalar field configuration.

Away from the Poincare symmetry, a broad class of massive 
gravity theories have been discussed in the literature [12–18]. In 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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this letter, we consider a massive gravity theory with the internal 
symmetry [12,19]

ϕ i → �i
jϕ

j, ϕ i → ϕ i + �i
(
ϕ0

)
, (1)

where �i
j is the SO(3) rotational operator, �i

(
ϕ0

)
are three arbi-

trary functions of their argument, ϕ i and ϕ0 are four Stückelberg
scalars with non-trivial VEVs,

ϕ0 = f (t), ϕ i = xi, i = 1,2,3. (2)

These non-trivial VEVs give a non-vanishing graviton mass, due to 
the presence of preferred space–time frame. At the first derivative 
level, there are two combinations of the Stückelberg fields that re-
spect this symmetry,

X = gμν∂μϕ0∂νϕ
0,

Z ij = gμν∂μϕ i∂νϕ
j − gμν∂μϕ0∂νϕ

i · gλρ∂λϕ
0∂ρϕ j

X
. (3)

Note that in the language of ADM formalism, in the unitary gauge 
we have X = N−2 and Z ij = hij , where N is lapse and hij is the 
spatial metric. We will see below that the Z ij term gives rise to 
a non-vanishing mass to gravitational waves. The graviton mass 
term could be written as a generic scalar function of the above 
two ingredients.

Due to the internal symmetry ϕ i → ϕ i +�i
(
ϕ0

)
, there are only 

3 dynamical degrees of freedom (DOF) in our theory, i.e. 2 tensor 
modes, and 1 scalar mode. In the language of ADM formalism or 
the (3 + 1)-decomposition of space–time, we find that these two 
ingredients in Eq. (3) are free from the shift Ni and thus the as-
sociated Hamiltonian of gravity is linear in Ni . This implies that 
3 momentum constraints and the associated secondary constraints 
eliminate 3 DOF in hij , and the number of residual DOF is thus 3 
[15].

Now we apply this massive gravity theory to the early uni-
verse. To minimize our model, we identify the time-like Stückelberg
scalar with the inflaton scalar field φ, i.e. ϕ0 = φ. By doing this, 
we achieve a minimal model of massive gravity, in which only the 
tensor modes receive a modification, while the scalar and vector 
modes remain the same as the ones in the single scalar model in 
GR.

To be specific, we consider the following action with enhanced 
global symmetry ϕ i → constant · ϕ i ,

S =
∫

d4x
√−g

[
M2

p

2
R− 1

2
gμν∂μφ∂νφ − V (φ)

− 9

8
M2

pm2
g (φ)

δ̄Z ij δ̄Z ij

Z 2

]
, (4)

where V (φ) is the inflaton potential, the numerical factor 9/8 is 
inserted for later convenience, and δ̄Z ij is a traceless tensor de-
fined by [18]

δ̄Z ij ≡ Z ij − 3
Z ik Zkj

Z
, (5)

where Z ij is defined by Eq. (3) with ϕ0 replaced by φ, Z ≡ Z ijδi j , 
and the summation over repeated indices is understood. Note that 
the 2nd line of Eq. (4) is the graviton mass term, which does 
not contribute to the background energy momentum tensor. Its 
non-trivial contribution starts from the quadratic action in pertur-
bations.

The scalar functional dependence of graviton mass m2
g (φ) is 

still left undecided due to our ignorance of underlying fundamen-
tal theory. However, from the particle physics perspective, particle 
masses can be neglected at high energies, so that physics would 
become scale invariant and weakly coupled. We could reasonably 
expect that on the Hubble scale, i.e. one of the typical scales dur-
ing inflation, physics is still weakly coupled. We thus assume the 
following scalar dependence

m2
g(φ) = λφ2

1 + (φ/φ∗)4
, (6)

where φ∗ is the inflaton field value at the end of inflation. With-
out loss of generality, we assume φ = 0 is the minimum of the 
potential at which the inflaton settles down after reheating. Dur-
ing inflation, φ � φ∗ and graviton becomes massless on the scale 
that we are interested in, different polarizations of graviton are 
thus weakly coupled.

As usual, we consider a flat FLRW background,

ds2 = −dt2 + a2dx2. (7)

Due to the SO(3) rotational symmetry of the 3-space, we can de-
compose the metric perturbation into scalar, vector, and tensor 
modes. These modes are completely decoupled at linear order. We 
define the metric perturbation variables as

g00 = − (1 + 2α) ,

g0i = a(t) (Si + ∂iβ) ,

gij = a2(t)

[
δi j + 2ψδi j + ∂i∂ j E + 1

2
(∂i F j + ∂ j F i) + γi j

]
, (8)

where α, β , ψ and E are scalars, Si and Fi are vectors, and γi j

is tensor. The vector modes satisfy the transverse condition, ∂i S i =
∂i F i = 0, and the tensor modes satisfy the transverse and traceless 
condition, γ i

i = ∂iγ
i j = 0.

3. Tensor perturbation

The action for the tensor perturbation reads

S(2)
T = M2

p

8

∫
dtd3xa3

[
γ̇i jγ̇

i j −
(

k2

a2
+ m2

g

)
γi jγ

i j
]

. (9)

We see that the graviton receives a mass correction. We quantize 
the tensor mode as

γi j(x) =
∑
s=±

∫
d3k

[
akeij(k, s)γkeik·x + h.c.

]
, (10)

where ak is the annihilation operator and ei j(k, s) is the transverse 
and traceless polarization tensor which we normalize as

eij(k, s)eij(k, s′) = δss′ . (11)

The equation of motion for the tensor modes reads

γ̈k + 3H γ̇k +
(

k2

a2
+ m2

g

)
γk = 0. (12)

During inflation, the universe undergoes a superluminal expan-
sion with a nearly constant Hubble parameter. The vacuum fluc-
tuations are stretched and frozen on super-horizon scales. At this 
stage, the graviton mass is

m2
g � λφ2∗(φ∗/φI )

2, because φ4∗ 
 φ4
I , (13)

where the subscript “I” is for “inflation”. The inflaton fluctuation 
and metric perturbations are mixed on the scale ε1/2 H I during 
inflation [20]. In our framework, it is natural to expect that infla-
tion and massive gravity as new physics appear on the same scale. 
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Fig. 1. The resonant amplification of tensor modes during reheating. The horizontal axis is x ≡ Mt and the vertical axis is the relative amplitude of the tensor modes γk/γk∗ , 
where γk∗ is the amplitude at the end of inflation. Note that on the right figure the x-scale is much larger than the left one, and the vertical axis is logarithm of the growth 
rate. The parameters are ξ = 106 and � = 0.05, with the initial condition dγk/dx|x=1 = 0.
The mixings between different polarizations of massive graviton 
are characterized by the graviton mass scale. Therefore it amounts 
to that graviton mass during inflation satisfies

m2
g � λφ2∗(φ∗/φI )

2 ∼ H2
I ε 
 H2

I , (14)

where ε ≡ −Ḣ/H2 is the slow-roll parameter. As we shall see be-
low, this condition can be easily satisfied in our model. In passing, 
we note that as the scalar and vector modes are the same as in GR, 
our theory is free from the Higuchi ghost [21] even for mg < 2H
in the de Sitter space–time.

Given the small but non-vanishing mass, the inflationary tensor 
spectrum is calculated by

Pγ = 2H2

π2M2
p

(
k

aH

)2m2
g/3H2

, (15)

with the tilt

nt � −2ε + 2m2
g

3H2
, (16)

Significantly, the tensor spectrum has the blue tilt if m2
g > 3H2ε .

At the end of inflation, the slow-roll condition breaks down and 
the universe undergoes reheating. At the reheating stage, the infla-
ton oscillates around the potential minimum, and gradually decays 
to radiation. The potential is expanded around the minimum as

V (φ) � 1

2
M2φ2 + · · · , (17)

where M is the mass of the inflaton during reheating and the dots 
stand for higher order corrections which are irrelevant at low en-
ergy scale. Asymptotically for large Mt � 1, we have

φr � φ∗√
3π Mt

sin (Mt)exp

(
−1

2
�Mt

)
, (18)

where subscript “r” stands for “reheating”. The Einstein equations 
tell us H � 2

3t at this stage. To include the effect of decaying infla-
ton, we have simply added a decaying factor e−�Mt into the above 
solution, without specifying the detailed model of reheating.

During the reheating stage, we have

φr 
 φ∗, and thus m2
g � λφ2

r . (19)

The equation of motion of gravitational waves (12) becomes a 
Mathieu-type equation,

d2γk

dx2
+ 2

x

dγk

dx
+ ξ · e−�x

x2
sin2(x)γk = 0, (20)

where x ≡ Mt and ξ ≡ λφ2∗
3π M2 . Note that we have neglected the spa-

tial gradient term since we are interested in the long wavelength 
modes.
It is well known that the Mathieu equation has a very efficient 
and broad parametric resonance if ξ ·e−�x

x2 � 1, i.e. the graviton 
mass must be much greater than Hubble parameter during re-
heating. Let us check whether this condition can be satisfied. Note 
that the Friedmann equation tells us M2

p H2
r ∼ M2φ2

r , where Hr is 
the Hubble parameter during reheating. Generally we expect that 
M2 ∼ H2

I due to the breaking of the slow-roll condition at the end 
of inflation. We thus get

m2
g � λφ2

r ∼ λ · M2
p

H2
I

· H2
r . (21)

Demanding that the graviton mass be much greater than the Hub-
ble parameter during reheating yields the condition,

λ
M2

p

H2
I

� 1. (22)

Combining conditions (14) and (22), we get

H2
I

M2
p


 λ 
 H2
I

M2
p

· M2
pφ2

I

φ4∗
. (23)

Thus M2
pφ2

I

φ4∗
� 1, i.e. φ∗ 
 Mp is required for the self-consistency 

of the above inequality. Note that φ∗ 
 Mp is also the condition 
of the validity of our effective field theory, which is automatically 
satisfied for many small field inflationary models.

We have numerically solved Eq. (20). The results are plotted in 
Figs. 1 and 2. The resonant amplification factor depends on the 
value of ξ and the decay rate �. We can also read off the thresh-
old for a significant resonant amplification is roughly ξ > 103. The 
tensor modes stop growing in the large Mt limit due to the decay 
of the inflaton. For those long wavelength modes whose gradient 
term is always negligible during reheating, the final power spec-
trum is still almost scale-invariant, as long as the graviton mass 
during inflation is small enough and thus the tensor tilt in Eq. (16)
is small.

Note that the kinetic term of inflaton field is canonical at lead-
ing order, which implies that in the massless limit m2

g → 0, scalar 
and tensor just simply decouple. On the other hand, it has been 
previously proven that this theory smoothly reduces to GR in the 
massless limit due to the absence of vDVZ discontinuity [12]. After 
reheating, φ → 0, the graviton becomes massless and we recover 
GR.

4. Vector perturbation

To calculate the vector perturbation, we adopt the unitary 
gauge, in which the fluctuations of SO(3) Stückelberg scalar fields 
are fixed to be zero, i.e. δϕ i = 0. The quadratic action of the vector 
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Fig. 2. The parameter dependence of the resonant amplification. The horizontal axis is � for the upper panels and ξ for the lower panels. The vertical axis is Log10(γk/γk∗)
evaluated at x = 1000.
perturbation reads (in momentum space)

S(2)
V = M2

p

16

∫
a3k2

[
Ḟ i Ḟ i − m2

g Fi Fi − 4Si Ḟ i

a
+ 4Si Si

a2

]
. (24)

After integrating out Si , we get

S(2)
V = − 1

16
M2

pm2
g

∫
a3k2 Fi Fi . (25)

This clearly shows that the kinetic term for vector perturbation 
was canceled out. It is by no mean of an accident, because the 
kinetic terms of vector modes are prohibited by internal symmetry 
ϕ i → ϕ i + �i

(
ϕ0

)
.

5. Scalar perturbation

In the scalar sector, α, β and E are non-dynamical. After inte-
grating them out, the quadratic action for the scalar perturbation 
in the uniform φ gauge (i.e. δφ = 0) reads

S(2)
s = M2

p

∫
a3ε

(
ψ̇2 − k2

a2
ψ2

)
. (26)

This is exactly the same as the one in GR with a single scalar 
field. In this gauge, ψ is identical to the curvature perturbation 
on the comoving slicing, Rc , and the power spectrum is given by 
the same formula [22,23],

PR = H2

8π2εM2
p
. (27)

Thus the tensor-to-scalar ratio we observe today is

r = A × Pγ

PR
= 16ε × A, (28)

where Pγ is the power spectrum of tensor perturbation produced 
in inflation, which is given by Eq. (15) with graviton mass correc-
tion on the tilt. A is the resonant amplification factor of the tensor 
modes during reheating. For instance, with the parameters choice 
in Fig. 1, the factor A could be of the order of 1011. The variation 
of the inflaton per e-fold is

dφ = φ̇ = ±
√

r
. (29)
dN H 8A
Thus during 60 e-folds, φ traverses a distance �φ � 15Mp
√

2r/A. 
Hence a sizeable tensor-to-scalar ratio is possible even for a sub-
Planckian excursion. We conclude that the Lyth bound can be ex-
plicitly evaded.

6. Conclusion and discussion

In this letter, we have minimally extended GR to a theory with 
a non-vanishing graviton mass term and proposed a mechanism 
to enhance the inflationary tensor perturbation. In our model, only 
the tensor perturbation is affected, while the scalar and vector per-
turbations remain the same as the ones in GR. The graviton mass 
is assumed to be proportional to the inflaton during reheating, 
and hence its coherent oscillations give rise to a significant reso-
nant amplification for all long wavelength modes on super-horizon 
scales. Then we have numerically studied the dependence of the 
amplification factor on the graviton mass and the decay rate of 
inflaton during reheating. We find that the Lyth bound can be ex-
plicitly evaded in our model.

Our model contains three non-dynamical spacelike Stückel-
berg fields ϕ i , which may formally become dynamical if we in-
clude higher order derivative terms. During inflation, however, the 
would-be new degrees of freedom are supermassive and exponen-
tially decay away. Thus we can safely integrate out these modes 
at low energy scale. On the other hand, to screen these would-be 
new degrees at late time, if necessary, we can simply add a tiny 
but non-zero constant to the mass term in Eq. (6). The current 
upper bound of the graviton mass mg is about 10−20 eV, from ob-
servation of Hulse–Taylor binary pulsar, PSR B 1913 + 16 [24].

Note that our results do not crucially depend on the assumption 
of Eq. (6). The broad parametric resonance of Mathieu equation re-
quires only that graviton mass must be much greater than Hubble 
constant at the beginning of reheating. In this sense, the possibil-
ities of functional dependence of m2

g on inflaton are very rich. It 
would be very interesting to ask what types of functional depen-
dence of m2

g could be naturally induced from some more funda-
mental physics. However, this question is beyond the scope of this 
paper and we will leave it as one of possible directions to explore.

At the nonlinear perturbation level, we expect that the gravi-
ton mass term will introduce several new interaction terms. It 
will be interesting to study its possible imprints in, e.g. the non-
Gaussianity of CMB anisotropies. As for models beyond the min-
imal model, a massive graviton generically induces non-trivial 



88 C. Lin, M. Sasaki / Physics Letters B 752 (2016) 84–88
scalar and vector perturbations. We plan to study such possibili-
ties and their possible observational effects in future.
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