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Shape-Related Useful Properties of Nanostructured Thin 

Films 

Motofumi Suzuki 

Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan 

Abstract. The recent status of practical applications of obliquely deposited thin films is reviewed. Owing to the 

anisotropy in polarizability of elongated nanocolumns, obliquely deposited thin films in the form of assemblies of aligned 

nanocolumns show anisotropies in various properties, such as birefringence, dichroism, and magnetism. In addition, we 

introduce examples of practical applications: thin film waveplates, angular selective coatings, Au nanorod arrays for 

surface-enhanced Raman scattering, and low-reflectivity wire-grid polarizers. 

Keywords: glancing angle deposition; practical applications; shadowing growth. 

PACS: 68.55.-a, 68.70.+w, 78.20.Fm, 78.67.Bf, 78.67.Rb 

INTRODUCTION 

According to elementary electromagnetic theory, dielectric and magnetic polarization phenomena are strongly 

influenced by the shape of a body, i.e., easy polarization along the elongated side [1, 2]. The collective response of 

well-aligned elongated elements shows various anisotropies in optical [3-5], electrical [6], magnetic [7, 8], and 

mechanical properties [9] resulting from the shape of the constituent elements. For example, a photonic 

metamaterial with elongated elements that are much smaller than the optical wavelength exhibits optical 

anisotropies such as birefringence [3, 4] and dichroism [10, 11], regardless of the crystallinity of each element. One 

of the most powerful methods to prepare such metamaterials having shape-related useful properties is the so-called 

dynamic oblique deposition (DOD) technique [12, 13], in which a substrate is set obliquely or sometimes rotated in-

plane. Through DOD, unique nanocolumnar structures have been prepared by means of the self-shadowing effect 

and the limited mobility of adatoms. Considerable progress has recently been made in developing products by the 

DOD technique. 

In this presentation, we will discuss the fundamentals of shape-related properties and the DOD technique. We 

will also introduce our recently commercialized products developed by DOD, namely surface-enhanced Raman 

substrates [14, 15], thin-film waveplates [16], and low reflectivity wire-grid polarizers [11]. Because DOD films 

exhibit great potential to overcome the energy and environmental problems confronting humankind, the use of these 

films in industries should be encouraged by eliminating any negative prejudice against these films. 

ORIGIN OF ANISOTOROPY 

Figure 1 shows typical examples of DOD thin films [17]. During conventional PVD, the vapor is deposited on a 

substrate from the normal direction in vacuum so that flat, uniform thin films are produced. In contrast, during 

DOD, the substrate is set obliquely and sometimes rotated in-plane, as shown in Fig. 1(g). If the substrate 

temperature is sufficiently low, unique nanocolumnar structures such as zigzags, helixes, posts, and complex hybrid 

structures are created [Fig. 1(a)–1(e)]. The physical origins of the columnar structure in DOD thin films are self-

shadowing effects and the limited mobility of the deposited atoms. When the vapor flux is obliquely incident on the 

substrate surface, atoms in the growing films shadow unoccupied sites from the direct sticking of incident atoms 

(“shadowing effect”). Moreover, owing to limited mobility, the unoccupied sites are not filled later. As a result, 

oblique columns grow in the direction of the incident vapor beam. 

The columnar structures can be modeled as an assembly of elongated nanoellipsoids as shown in Fig. 2(a) [5]. 

Let us consider polarization properties of each nanoellipsoid (Fig. 2(b)) as expressed by the following equation, 
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When an ellipsoid with dielectric contestant p  is embedded in a medium with dielectric constant m  and a 

uniform electric field is applied, the polarizability i  ( 3 ,2 ,1i ) is written as [1, 2] 
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where Li is the geometric factor and is written as 
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In the case of a needle-like nanospheroid ( 321   ), 01 L  and 2/132  LL , so the nanospheroid is 

easy to polarize along the elongated direction. Therefore, in the form of an assembly of unidirectionally aligned 

nanospheroids, nanocolumnar thin films show biaxial anisotropy in their optical, electrical, and magnetic properties. 

 

 
 

FIGURE 1.  (a)–(f) Typical examples of the nanocolumnar structures of oblique-angle deposited (OAD) thin films, (g) a 

schematic drawing of the deposition geometry [17]. 

 

 

 
 

FIGURE 2.  (a) Oblique columnar structure as an assembly of elongated spheroids, (b) dielectric spheroid. 
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PRACTICAL APPLICATIONS OF SHAPE-RELATED USEFUL PROPERTIES 

Thin Film Waveplates [16, 18] 

Oblique columnar thin films of a transparent material show large birefringence ( 5.0~n  or larger) at a 

deposition angle of around 70° [4]. This property is quite useful for application in thin film waveplates. Fig. 3 shows 

photographs of a Ta2O5 waveplate deposited in 1998 [18] and kept in ambient conditions in the author’s office for 

more than 10 years. This film was deposited by using the Motohiro-Taga process [4] at a deposition angle of 70° 

and has a chevron-shaped columnar cross section. As indicated in Fig. 3(a), the film is completely transparent. From 

the photograph taken through polarizers shown in Fig. 3(b), it is clear that the retardation properties are quite 

uniform. Therefore, the film is very durable and exhibits high uniformity over an area of 100 cm
2
. In addition, such 

a film is well reproducible because it was prepared by physical processes. Hodgkinson and Wu [19] succeeded in 

enhancing the birefringence by using a so-called serial bideposition technique, and very recently, Koike et al. [16] 

have developed practical thin film waveplates for optical pickups and liquid crystalline projectors. 

 

 
 

FIGURE 3.  Visual appearance of a waveplate of an oblique-angle deposited (OAD) Ta2O5 thin film [18] taken (a) without and 

(b) with commercial sheet polarizers. 

Angular Selective Coatings [10] 

For the obliquely codeposited thin films with small metal particles are expected for the angular-selective coatings 

[10]. Oblique columnar thin films containing small metal particles show anisotropy in optical absorption depending 

on the polarization of the incident light and the angle of incidence. Small Ag particles can be embedded in the 

oblique columnar SiO2 by oblique codeposition [10]. The anisotropic transmittance properties for the obliquely 

codeposited Ag-SiO2 are shown in Fig. 4(a). Measurements of the transmittance were performed in the plane of the 

vapor incidence as shown in Fig. 4(b). All spectra have absorption bands at wavelengths between 330 and 600 nm. 

This large optical anisotropy in the obliquely codeposited Ag-SiO2 thin films was explained in terms of the plasma 

resonance of Ag particles embedded in an anisotropic medium. Figures 4(c) and (d) are the visual appearances of 

Ag-SiO2 thin films viewed from  45  and  45 . They show clear, significant angular selectivity and may 

be useful for the coatings of inclined windows. 

Noble Metal Nanorod Arrays for SERS [14, 15] 

Much attention has been devoted to surface-enhanced Raman scattering (SERS) in the near-IR (NIR) region 

from the viewpoint of biochemical sensor applications. For application to biological materials, excitation in the NIR 

region is appropriate because this region is compatible with biological tissues’ transparency window. Elongated 

nanoparticles (so-called nanorods) are strong candidates for NIR SERS substrates because the local field can be 

significantly enhanced at their ends. We have succeeded in aligning the nanorods end to end by using DOD [20]. 

Figure 5(a) shows the morphology of our Au nanorod arrays. Au nanorods were aligned on a SiO2 template layer 

(called the “shape control layer”) having an anisotropic surface morphology prepared by oblique angle deposition 

(OAD) [15]. The shape control layer of SiO2 as the template for Au nanorods is prepared by a serial bideposition 

(SBD) technique. The surface of the shape control layer prepared by SBD is corrugated anisotropically. On the 

anisotropic shape control layer, Au is also evaporated obliquely in vacuum. The deposited Au is only around 10 nm 

thick on average. The Au sticks only to the top of the columns, owing to shadowing, and forms elongated 
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nanoparticles (nanorods). Due to the in-line alignment of nanorods, the nanorod arrays show large dichroism in the 

NIR region corresponding to the local plasmon resonance, as shown in Fig. 5(b). Excellent SERS properties are 

observed, as indicated in Fig. 5(c), when Raman spectra are measured on Au nanorod arrays immersed in a solution 

of 4,4’-bipyridine. The SERS spectra can be detected down to 1 μM of solution within a few minutes after the 

immersion of samples. In our measurement system, the spot size of the laser is around 1 μm
2
. The thickness of the 

nanorod array is of the order of 10 nm. Therefore, at 1 μM, the number of molecules existing inside the SERS active 

volume is estimated to be fewer than 10 molecules. Thus, our nanorod arrays are nearly sensitive enough to detect a 

single molecule. The high sensitivity can be attributed to the high number density of nanorods and effective field 

concentration between in-line aligned nanorods. 

In addition to the high sensitivity, our nanorod arrays are well reproducible, and no contamination occurs during 

deposition. Moreover, they maintained high SERS sensitivity for more than one year. These are the advantages of 

the OAD technique. Fortunately, a Japanese coating company recently began to produce our nanorod arrays. These 

are already available on the market today. 

 

 
 

FIGURE 4.  (a) Transmittance spectra of the Ag-SiO2 angular selective coating, (b) definition of measurement geometry, (c) and 

(d) visual appearances at +45° and -45°, respectively [10].  

 

 

 
 

FIGURE 5.  (a) Scanning electron microscopy image of the surface, (b) polarization-dependent absorbance spectra, and (c) 

surface-enhanced Raman scattering spectra of the Au nanorod array [15]. 
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Low-Reflectivity Wire-Grid Polarizers [11] 

Recent liquid-crystal (LC) projectors require high thermal durability for their optical elements. Metal wire-grid 

(WG) polarizers are quite suitable because they are not degraded by heat and light. In addition, high reflectivity of 

the wire-grid polarizers is useful for recycling the light near the light source. However, highly reflective polarizers 

downstream might generate stray light, which might degrade image quality. Thus, improving the brightness and 

durability of projectors requires the development of low-reflectivity (LR) WG polarizers. 

From considerations based on optical admittance, we found that the reflectivity of conventional WG polarizers 

can be reduced if we fabricate the multilayered wires of absorptive and dielectric materials on highly reflective Al 

wires. At first, we prepare aluminum WG polarizers by interference lithography and dry etching. The dielectric layer 

of SiO2 is deposited by ordinary sputtering. The absorptive layer of FeSi2 is then deposited by ion beam sputtering at 

a glancing deposition angle of 87° from the surface normal. Because of the shadowing effect, the sputtered FeSi2 

adheres only to the top of the WGs covered with SiO2. 

Figures 6(a) and (b) indicate the reflectance and transmittance spectra of a WG and an LR-WG polarizer. The 

reflectance of TE waves for the LR-WG polarizer is clearly much smaller than that for the WG polarizer. No 

significant degradation of the transmission properties is recognized. In Figs. 6(c) and (d), the visual appearances of 

these polarizers are displayed. These photos are taken through a commercial sheet polarizer of which the 

polarization axis is perpendicular (Fig. 6(c)) or parallel (Fig. 6(d)) to wires. The LR-WG polarizer clearly looks 

much darker than the WG polarizer. The durability of the LR-WG polarizers is basically identical to that of the 

conventional WG polarizers. Our LR-WG polarizers are now used in commercial LC projection displays that require 

high thermal durability. 
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FIGURE 6.  (a) and (b) Transmittance/reflectance spectra of wire-grid (WG) and low-reflectivity WG (LR-WG) polarizers, 

respectively. (c) and (d) Visual appearances of WG/LR-WG polarizers taken through a commercial sheet polarizer, the 

polarization axis of which is perpendicular (c) and parallel (d) to the wire grids [11]. 

SUMMARY 

Unique nanocolumnar morphologies can be tailored by the DOD technique. Many of the shape-related useful 

properties of DOD thin films originate from the anisotropy in polarizability of elongated nanocolumns. In this article, 

examples of such shape-related properties have been reviewed. Applications include thin film waveplates, angular 

selective coatings, and noble metal nanorod arrays for SERS and LR-WG polarizers. Because tailoring 

nanomorphology by DOD is robust in selection of materials, more advanced applications are expected by integrating 

the functions of nanoshapes as well as functions of materials. 
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