Regular subrings of a polynomial ring

§ 1. Introduction. Throughout this article, k denotes an algebraically closed field of characteristic zero, which we fix as the ground field. Let $R:=k[u_1,\ldots,u_r]$ be a polynomial ring in r variables defined over k, and let A be a finitely generated, regular subalgebra of R. If $\dim(A) = 1$, A is isomorphic to a one-parameter polynomial ring over k. However, if $\dim A \geq 2$ there are many examples of A which are not isomorphic to a polynomial ring over k. The purpose of this article is to discuss two-dimensional, regular subalgebras contained in R. We shall recall some of necessary definitions and results.

Let V be a nonsingular projective surface defined over k and let D be a reduced effective divisor on V such that D has only normal crossings as singularities. Let X:=V-Supp(D). The logarithmic Kodaira dimension $\overline{K}(X)$ is defined as

$$\overline{\kappa}(X) = \begin{cases} \sup_{n>0} \dim \Phi_{\mid n(D+K_{V})\mid}(V) & \text{if } \mid n(D+K_{V})\mid \neq \emptyset \\ & \text{for some } n>0 \\ -\infty & \text{if otherwise.} \end{cases}$$

By definition, $\overline{\kappa}(X) = -\infty$, 0, 1, 2. We can then state the following:

THEOREM (Miyanishi-Sugie [5] and Fujita [1]). Let V, D and X be as above. Assume that D is connected and that X contains no exceptional curves of the first kind. Then $\overline{K}(X) = -\infty$ if and only if X contains a cylinderlike open set U \cong U₀ \times \mathbf{A}_k^1 , where U₀ is a curve.

THEOREM (Miyanishi [2]). Let $X = \operatorname{Spec}(A)$ be a nonsingular affine surface defined over k. Then X is isomorphic to the affine plane \mathbb{A}_k^2 if and only if $A^* = k^*$, A is a unique factorization domain, and $\overline{k}(X) = -\infty$.

Let X be a nonsingular affine surface and let C be a nonsingular curve. We say that X has an \mathbf{A}^1 -fibration over C if there exists a surjective morphism $f: X \longrightarrow C$ such that general fibers of f are isomorphic to the affine line \mathbf{A}^1_k . Then the following conditions are equivalent to each other:

- (i) $\overline{\kappa}(X) = -\infty$,
- (ii) X contains a cylinderlike open set,
- (iii) X has an A^1 -fibration over a curve C.

§ 2. Affine surfaces with A -fibrations

- 2.1. Let $X = \operatorname{Spec}(A)$ be a nonsingular affine surface. Then A is contained in a polynomial ring (defined over k) if and only if there exists a dominant morphism $\rho: \mathbb{A}_k^2 \longrightarrow X$. Assume that A is contained in a polynomial ring. Then we know that:
 - (1) A^* (= the set of invertible elements of A) = k^* ,
- (2) there is an $\textbf{A}^1\text{-fibration}$ f : X \longrightarrow C, where C $\overset{\cdot}{\underline{\,}}$ \textbf{A}^1_k or C $\overset{\cdot}{\underline{\,}}$ \textbf{P}^1_k .

Let $f: X \longrightarrow C$ be an A^1 -fibration such that $C \cong A_k^1$ or $C \cong \mathbb{P}^1_k$. Let F be a fiber. If F is irreducible and reduced, then $F \cong A_k^1$. Otherwise, F_{red} is a disjoint union of irreducible components, each of which is isomorphic to A_k^1 . For every point P of C, let μ_P be the number of irreducible components of

the fiber f*(P). Then we have:

$$\operatorname{rank}_{\mathbf{Q}}\operatorname{Pic}\left(\mathbf{X}\right)\underset{\mathbf{Z}}{\otimes}\mathbf{Q} = \left\{ \begin{array}{ll} 1 + \sum\limits_{P \in \mathbf{C}} (\boldsymbol{\mu}_{P} - 1) & \text{if } \mathbf{C} & \underset{=}{\sim} \mathbf{P}_{k}^{1} \\ \\ \sum\limits_{P \in \mathbf{C}} (\boldsymbol{\mu}_{P} - 1) & \text{if } \mathbf{C} & \underset{=}{\sim} \mathbf{A}_{k}^{1} \end{array} \right..$$

2.2. THEOREM. Let A be a regular subalgebra of R:= k[u₁,u₂] such that R is a finite A-module. Then A is isomorphic to a polynomial ring in two variables over k.

Proof. There are an \mathbb{A}^1 -fibration $f: X \longrightarrow C$ and a dominant morphism $\rho: \mathbb{A}^2_k \longrightarrow X$ induced by the inclusion $A \hookrightarrow R$. Then $nD \sim 0$ for every divisor D on X, where $n:=\deg(\rho)$. Hence $C \supseteq \mathbb{A}^1_k$, and if $f^*(P)$ is singular, i.e., $f^*(P)$ is reducible or non-reduced, then $f^*(P) = n_p C_p$, where $C_p \supseteq \mathbb{A}^1_k$, $n_p \ge 2$ and $n_p \mid n$. Suppose f has a singular fiber $f^*(P) = n_p C_p$. Choose an inhomogeneous coordinate $f^*(P) = n_p C_p$. Choose an inhomogeneous coordinate $f^*(P) = n_p C_p$. Choose an inhomogeneous coordinate $f^*(P) = n_p C_p$. Let $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$. Let $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$. Let $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Let $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Let $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Let $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$. Then $f^*(P) = n_p C_p$ for $f^*(P) = n_p C_p$ fo

where \hat{X} is a nonsingular affine surface with an A^1 -fibration $\hat{f}:\hat{X}\longrightarrow\hat{C}$, and \hat{f} has a singular fiber with n_p irreducible components. This is a contradiction. Hence $f:X\longrightarrow C$ is an A^1 -bundle over A^1_k . Thus, $X \cong A^2_k$. Q.E.D.

2.3. Let $f: X \longrightarrow C$ be an A^1 -fibration over a curve C. Let $f^*(P) = \sum_{i=1}^{S} n_i C_i$ be a singular fiber. $f^*(P)$ is called a <u>singular</u>

fiber of the first kind if $s \ge 2$ and $n_i = 1$ for some i; $f^*(P)$ is called a singular fiber of the second kind if $n_i \ge 2$ for every i. The integer $\mu := G.C.D.(n_1, \ldots, n_s)$ is called the multiplicity of $f^*(P)$. If $\mu > 1$, $f^*(P)$ is called a multiple fiber.

THEOREM. Let $X = \operatorname{Spec}(A)$ be a nonsingular affine surface with an A^1 -fibration $f: X \longrightarrow C$, where $C \cong A_k^1$. Then A is contained in a polynomial ring if and only if f has at most one singular fiber of the second kind.

For the proof, we use the following:

LEMMA. Consider a Diophantine equation

(*)
$$x_1^{a_1} \dots x_m^{a_m} - y_1^{b_1} \dots y_n^{b_n} = 1$$
,

where a_i 's and b_j 's are integers ≥ 2 . Then a non-constant solution of (*) in $R = k[u_1, \dots, u_r]$ is one of the following:

- (1) $x_i = 0$ for some i and $y_j = c_j \epsilon k$ for every j, where $c_1^{b_1} \dots c_n^{b_n} = -1$;
- (2) $y_j = 0$ for some j and $x_i = c_i \in k$ for every i, where $c_1^{a_1} \dots c_m^{a_m} = 1$.

<u>Proof of Theorem</u>. The "only if" part. Suppose $f^*(P)$ and $f^*(Q)$ are singular fibers of the second kind. Let $\rho: \mathbf{A}_k^2 \longrightarrow X$ be a dominant morphism. Then $\rho * f^*(P)$ and $\rho * f^*(Q)$ are defined by

$$f_1^{a_1} \dots f_m^{a_m} = 0$$
 and $g_1^{b_1} \dots g_n^{b_n} = 0$,

respectively, where a_i , $b_j \ge 2$ and f_i , $g_j \in k[u_1,u_2]-k$ for

every i and j. Choose a coordinate t of C so that P, Q are defined by t = 0, 1, respectively. Then we have

$$f_1^{a_1} \dots f_m^{a_m} - g_1^{b_1} \dots g_n^{b_n} = 1$$
.

This is a contradiction. The "if" part. Replacing X by an affine open subset, we may assume that f has no singular fibers of the first kind and that the unique singular fiber of the second kind (if any) is of the form $f^*(P) = n_p C_p$, where $n_p \ge 2$. Let $C = \operatorname{Spec}(k[t])$ and let $\widetilde{C} = \operatorname{Spec}(k[\tau])$, where P is given by t = 0 and $t = \tau$. Let \widetilde{X} be the normalization of $X \times \widetilde{C}$.

Then \widetilde{X} is nonsingular, and the projection $f: X \longrightarrow X \times \widetilde{C}$.

Then \widetilde{X} is nonsingular, and the projection $f: X \longrightarrow X \times \widetilde{C}$.

Then \widetilde{X} is nonsingular, and the projection $f: X \longrightarrow X \times \widetilde{C}$.

Then \widetilde{X} is nonsingular, and the projection $f: X \longrightarrow X \times \widetilde{C}$.

Change \widetilde{C} is an A^1 -fibration such that $\widetilde{f}^*(\widetilde{P})$ is the unique singular fiber, where \widetilde{P} lies over P and $\widetilde{f}^*(\widetilde{P})$ is of the first kind. Then \widetilde{X} contains an open set which is an A^1 -bundle over $\widetilde{C} \cong A_k^1$. Thus we obtain a dominant morphism $\rho: A_k^2 \longrightarrow X$.

Q.E.D.

Under the situation of Theorem, Pic(X) tor is a cyclic group.

- 2.4. THEOREM. Let X = Spec(A) be a nonsingular affine surface with an A^1 -fibration $f: X \longrightarrow C$, where $C \subseteq P_k^1$. Then we have:
- (1) Assume that A is contained in a polynomial ring. Then f has at most three multiple fibers. If f has three multiple fibers their multiplicities $\{\mu_1, \mu_2, \mu_3\}$ are, up to permutations, $\{2,2,n\}$ $(n \geq 2)$, $\{2,3,3\}$, $\{2,3,4\}$ and $\{2,3,5\}$.
 - (2) Assume that f satisfies the conditions:
- (i) f has no singular fibers of the second kind but at most three multiple fibers with single irreducible components;

(ii) if f has three multiple fibers, their multiplicities $\{\mu_1, \mu_2, \mu_3\}$ are, up to permutations, $\{2, 2, n\}$ $(n \ge 2)$, $\{2, 3, 3\}$, $\{2, 3, 4\}$ and $\{2, 3, 5\}$.

Then A is contained in a polynomial ring.

For the proof, we need the following:

LEMMA. (1) Let $S:=S_{p_1,p_2,p_3}$ be a hypersurface in \mathbf{A}_k^3 := Spec($k[x_1,x_2,x_3]$) defined by

$$x_1^{p_1} + x_2^{p_2} + x_3^{p_3} = 0$$
,

and let $S^* := S^-(0,0,0)$, where p_1 , p_2 and p_3 are integers ≥ 2 .

If $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \leq 1$ then there are no non-constant morphisms

from \mathbf{A}_k^r to S^* . If $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} > 1$ then there is a dominant morphism from \mathbf{A}_k^2 to S^* .

(2) Let $\Sigma := \Sigma_{p_1, p_2, p_3, p_4}$ be a subvariety in $\mathbb{A}_k^4 := \operatorname{Spec}(k[x_1, x_2, x_3, x_4])$ of codimension 2 defined by

$$x_1^{p_1} + x_2^{p_2} + x_3^{p_3} = ax_1^{p_1} + x_2^{p_2} + x_4^{p_4} = 0$$
,

and let $\Sigma^*:=\Sigma^-(0)$, where p_i $(1 \le i \le 4)$ is an integer ≥ 2 and a ε k- $\{0,1\}$. If $\{p_1,p_2,p_3,p_4\}$ is one of the following quadruplets: $\{2,2,2,n\}$ $(n \ge 2)$, $\{2,2,3,3\}$, $\{2,2,3,4\}$ and $\{2,2,3,5\}$, then there are no non-constant morphisms from \mathbb{A}_k^r to Σ^* .

<u>Proof of Theorem</u>. (1) Suppose f has three or more multiple fibers, and let $f^*(P_i)$ $(1 \le i \le 3)$ be multiple fibers with

respective multiplicities $\mu_i \geq 2$. Let $\rho: \mathbb{A}_k^2 \longrightarrow X$ be a dominant morphism. Then $f \cdot \rho(\mathbb{A}_k^2)$ is isomorphic to \mathbb{A}_k^1 or \mathbb{P}_k^1 . If $f \cdot \rho(\mathbb{A}_k^2) \cong \mathbb{A}_k^1$, then two of \mathbb{P}_i 's are in $f \cdot \rho(\mathbb{A}_k^2)$. This leads to a contradiction by Theorem 2.3. Hence $f \cdot \rho(\mathbb{A}_k^2) = \mathbb{C}$. Write $f \cdot (\mathbb{P}_i) = \mu_i \mathbb{F}_i$. Then $\rho \cdot \mathbb{F}_i$ is defined by $f_i = 0$ in \mathbb{A}_k^2 , where $f_i \in k[u_1, u_2]$. Then we have

$$\frac{f_3^{\mu}}{f_1^{\mu}} = a \frac{f_2^{\mu}}{f_1^{\mu}} + b \quad \text{with } a, b \in k^*.$$

Since $\rho^*(F_i) \cap \rho^*(F_j) = \phi$ if $i \neq j$, we have a non-constant morphism

$$\varphi: \mathbb{A}^2_{k} \longrightarrow S^*_{\mu_1,\mu_2,\mu_3}$$
.

Hence $\frac{1}{\mu_1} + \frac{1}{\mu_2} + \frac{1}{\mu_3} > 1$. Then $\{\mu_1, \mu_2, \mu_3\}$ is, up to permutations, one of the triplets: $\{2,2,n\}$ $(n \ge 2)$, $\{2,3,3\}$, $\{2,3,4\}$ and $\{2,3,5\}$. Suppose f has four multiple fibers $f^*(P_i) = \mu_i F_i$ $(1 \le i \le 4)$ with $\mu_i \ge 2$. Then we obtain relations of the form $f_1^{\mu_1} + f_2^{\mu_2} + f_3^{\mu_3} = af_1^{\mu_1} + f_2^{\mu_2} + f_4^{\mu_4} = 0$, a ϵ k- $\{0,1\}$,

where $f_i \in k[u_1, u_2] - \{0\}$. Then we have a non-constant morphism

$$\psi: \mathbf{A}_{k}^{2} \longrightarrow \Sigma_{\mu_{1},\mu_{2},\mu_{3},\mu_{4}}^{*}$$

which is a contradiction.

(2) Replacing X by an affine open subset, we may assume that f has no singular fibers of the first kind. Suppose f has at most two multiple fibers, say, for example, two multiple fibers $f^*(P_i)$ (i = 1, 2). Let $X' := X - f^{-1}(P_2)$ and $C' := C - \{P_2\}$.

Then $f' = f|_{X'}: X' \longrightarrow C'$ is an A^1 -fibration over $C' \cong A^1_k$ with one singular fiber $f^*(P_1)$ of the second kind. Then we are done by Theorem 2.3. Suppose f has three multiple fibers $f^*(P_1) = \mu_1 F_1$ with $\{\mu_1, \mu_2, \mu_3\}$ as specified in the statement. Consider the case where $\{\mu_1, \mu_2, \mu_3\} = \{2, 2, n\}$. Let $\tau: C' \longrightarrow C$ be a double covering ramified over P_1 and P_2 , let X' be the normalization of $X \times C'$, and let $f': X' \longrightarrow C'$ be the natural A^1 -fibration over $C' \cong P^1_k$. Then f' has only two multiple fibers $f'^*(Q_1)$ (i=1,2) of multiplicity $f'^*(Q_1)$ and $f'^*(P_2)$ are $f'^*(P_3) \approx \{Q_1, Q_2\}$. Then we are done by the former case. The cases where $\{\mu_1, \mu_2, \mu_3\} = \{2, 3, 3\}$ or $\{2, 3, 4\}$ are dealt with by a similar fashion;

$$\{\mu_1, \mu_2, \mu_3\} = \{2,3,3\} \xrightarrow{\text{triple}} \{2,2,2\} \longrightarrow \text{the former case,}$$

$$\{\mu_1, \mu_2, \mu_3\} = \{2,3,4\} \xrightarrow{\text{double}} \{2,3,3\} \longrightarrow \text{the former case.}$$

In the case where $\{\mu_1,\mu_2,\mu_3\}=\{2,3,5\}$, we know by the theory of Kleinian singularities that there exists a ramified covering $\tau:C'\longrightarrow C$ of degree 60 with 30 points over P_1 with ramification index 2, 20 points over P_2 with ramification index 3 and 12 points over P_3 with ramification index 5, where $C' \supseteq \mathbb{P}^1_k$. Let X' be the normalization of $X \times C'$ and C f': $X' \longrightarrow C'$ be the natural \mathbb{A}^1 -fibration. Then f' has no multiple fibers of the second kind. So, we are done. Q.E.D.

§ 3. Surfaces with A_{*}-fibrations

3.1. We denote by ${\bf A}^1_\star$ the affine line ${\bf A}^1_k$ with one point

deleted off. Let X be a nonsingular surface and let C be a nonsingular curve. An \mathbf{A}_{\star}^1 -fibration on X over C is a surjective morphism $f: X \longrightarrow C$ such that general fibers of f are isomorphic to \mathbf{A}_{\star}^1 and every singular fiber (if any) is of the form $f^*(P) = n_P C_P$, where $n_P \ge 2$ and $C_P \supseteq \mathbf{A}_{\star}^1$. The morphism f (or X itself) is called also an \mathbf{A}_{\star}^1 -fiber space. A normal compactification of X is a nonsingular projective surface V containing X as a dense open set such that V-X consists of nonsingular irreducible curves crossing normally each other.

An ${\bf A}_{\star}^1$ -fiber space f : X \longrightarrow C has the following normal compactification ${\cal G}: {\bf V} \longrightarrow {\bf Y}$ such that:

- (i) X and C are dense open subsets of V and Y, respectively;
 - (ii) φ is a \mathbb{P}^1 -fibration and $\varphi|_{Y} = f$;
- (iii) V-X contains no exceptional curves of the first kind contained in fibers of φ ;
- (iv) there are two cross-sections $M_{_{\rm O}}$, $M_{_{\infty}}$ such that $M_{_{\rm O}}$, $M_{_{\infty}} \subset V-X$, $M_{_{\rm O}} \cap M_{_{\infty}} = \phi$ and the other components of V-X are contained in fibers of φ .
- 3.2. LEMMA. Let X be a nonsingular, quasi-projective surface with an effective, separated G_m -action. Assume that X has no fixed points. Let $f: X \longrightarrow C:= X/G_m$ be the quotient morphism. Then we have:
- (1) C is a nonsingular curve, and X is an A_{*}^{1} -fiber space over C;

(2) f*(P) is a multiple fiber with multiplicity μ_P if and only if the stabilizer group σ_X is a cyclic group of order μ_P for a point x of f⁻¹(P).

3.3. Let $S = S_{p_1, p_2, p_3}$ be as in Lemma 2.4. Let d = L.C.M. (p_1, p_2, p_3) and define integers q_i by $d = p_i q_i$. Then G_m acts effectively on S^* by $t(x_1, x_2, x_3) = (t^{q_1}x_1, t^{q_2}x_2, t^{q_3}x_3).$ Let $f: S^* \longrightarrow C$ be the quotient morphism, where C is a complete curve. Define integers p_i^* $(1 \le i \le 3)$ by

$$p_1' = \frac{p_1}{(q_2, q_3)}$$
, $p_2' = \frac{p_2}{(q_1, q_3)}$ and $p_3' = \frac{p_3}{(q_1, q_2)}$.

Then we have:

LEMMA. (1) The genus g(C) of C is given as

$$g(C) = \frac{\mathrm{d}^2}{2 q_1 q_2 q_3} - \frac{\mathrm{d}}{2} \frac{(q_1, q_2)}{q_1 q_2} + \frac{(q_2, q_3)}{q_2 q_3} + \frac{(q_3, q_1)}{q_3 q_1} + 1.$$

(2) f has no multiple fibers but possibly $\frac{d(q_1,q_2)}{q_1q_2}$ fibers with multiplicity (q_1,q_2) , $\frac{d(q_2,q_3)}{q_2q_3}$ fibers with multiplicity

 (q_2,q_3) and $\frac{d(q_3,q_1)}{q_3q_1}$ fibers with multiplicity (q_3,q_1) .

(3)
$$g(C) \begin{cases} = 0 \\ = 1 \iff \frac{1}{p_1^!} + \frac{1}{p_2^!} + \frac{1}{p_3^!} \end{cases} \begin{cases} > 1 \\ = 1 \\ < 1 \end{cases}$$

(4)
$$\overline{k}(s^*) = \begin{cases} -\infty \\ 0 & \iff \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \end{cases} \begin{cases} > 1 \\ = 1 \\ < 1 \end{cases}$$

(5) Assume that k = C. Let U be the universal covering space of S*. Then we have:

$$U \stackrel{\sim}{=} \left\{ \begin{array}{c} \mathbb{C}^2 - (0) \\ \mathbb{C}^2 & \iff \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \\ \mathbb{C} \times D \end{array} \right\} \stackrel{?}{=} 1$$

where D is a unit disc.

(6) Suppose $p_1 \le p_2 \le p_3$. Then we have:

$$\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} > 1 \iff \{p_1, p_2, p_3\} = \{2, 2, n\} \ (n \ge 2), \{2, 3, 3\},$$

$$\{2, 3, 4\} \ \underline{or} \ \{2, 3, 5\}.$$

$$\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = 1 \iff \{p_1, p_2, p_3\} = \{2, 3, 6\}, \{2, 4, 4\} \ \underline{or}$$

$$\{3, 3, 3\}.$$

<u>Proof.</u> We prove only the assertion (4). Let $\mathcal{G}: V \longrightarrow C$ be the normal compactification of $f: S^* \longrightarrow C$ as described in 3.1, where $X = S^*$ and Y = C. Let Φ_1, \ldots, Φ_N exhaust all multiple fibers of \mathcal{G} . The following description of V is found in Orlik-Wagreich [6]. Let Φ be a multiple fiber of multiplicity α , say $\alpha = (q_1, q_2) > 1$. Define an integer β by the conditions: $0 < \beta < \alpha$ and $q_3\beta \equiv 1 \pmod{\alpha}$. Define positive integers b_1, \ldots, b_s (≥ 2) by a continued fraction

$$\frac{\alpha}{\alpha - \beta} = b_1 - \frac{1}{b_2 - \frac{1}{\vdots}}$$

$$-\frac{1}{b_s}$$

Define integers α_i , β_i for each fiber Φ_i , and let

$$b = \frac{d}{q_1 q_2 q_3} - \sum_{i=1}^{N} \frac{\beta_i}{\alpha_i}.$$

Then $(M_0^2) = -b-N$, $(M_\infty^2) = b$ and the dual graph of Φ is

where each irreducible component of $\,^{\varphi}\,$ is a nonsingular rational curve, $\,^{\varphi} \cap S^* = \alpha F$, $\overline{F}\,$ is the closure of $F\,$ in $\,^{\nabla} V$, and $\,^{\overline{F}}\,$ is the unique exceptional curve of the first kind in $\,^{\varphi}\,$.

Let D be the reduced effective divisor on V such that $\text{Supp}(D) = \text{V-S*.} \quad \text{If} \quad g(C) = 1, \ \mathcal{G} \quad \text{has no multiple fibers.} \quad \text{Hence} \\ D+K_V \sim 0, \text{ whence } \quad \overline{K}(S*) = 0. \quad \text{In general, we have}$

$$D+K_{V} \sim \sum_{i=1}^{N} \Phi_{i} - \sum_{i=1}^{N} \overline{F}_{i} + \mathcal{G}^{*}(K_{C}) \geq \sum_{i=1}^{N} (1-\frac{1}{\alpha_{i}}) \Phi_{i} + \mathcal{G}^{*}(K_{C}).$$

Let A:= $(\sum_{i=1}^{N} (1 - \frac{1}{\alpha_i}) \Phi_i + \varphi^*(K_C) M_o)$. Then we have

$$A = \left(\sum_{P \in C} (1 - \frac{1}{\alpha_P}) \varphi^* (P) + \varphi^* (K_C) \cdot M_0\right)$$
$$= \frac{d^2}{q_1 q_2 q_3} (1 - \frac{1}{p_1} - \frac{1}{p_2} - \frac{1}{p_3}).$$

Hence we obtain our conclusion.

Q.E.D.

3.4. Let $\Sigma = \Sigma_{p_1, p_2, p_3, p_4}$ be as in Lemma 3.4. Then Σ^* has an effective separated action of G_m defined by

$$t(x_1, x_2, x_3, x_4) = (t^{q_1}x_1, t^{q_2}x_2, t^{q_3}x_3, t^{q_4}x_4)$$
.

where $d = L.C.M.(p_1,p_2,p_3,p_4)$ and $d = p_iq_i$. Let $f : \Sigma^* \longrightarrow C$ be the quotient morphism. Then we have:

LEMMA. (1) C is a complete nonsingular curve of genus
$$g(C) = \frac{d^3}{q_1 q_2 q_3 q_4} - \frac{d^2}{2} \left\{ \frac{(q_1, q_2, q_3)}{q_1 q_2 q_3} + \frac{(q_1, q_2, q_4)}{q_1 q_2 q_4} + \frac{(q_1, q_3, q_4)}{q_1 q_3 q_4} + \frac{(q_2, q_3, q_4)}{q_2 q_3 q_4} \right\} + 1 .$$

(2) f has no multiple fibers but possibly
$$\frac{d^2(q_1,q_2,q_3)}{q_1q_2q_3} \xrightarrow{\text{fibers}}$$
with multiplicity (q_1,q_2,q_3) ,
$$\frac{d^2(q_1,q_2,q_4)}{q_1q_2q_4} \xrightarrow{\text{fibers with multiplicity}}$$

$$\frac{d^2(q_1,q_3,q_4)}{q_1q_3q_4} \xrightarrow{\text{fibers with multiplicity}}$$

$$(q_1,q_3,q_4) \xrightarrow{\text{and}} \frac{d^2(q_2,q_3,q_4)}{q_2q_3q_4} \xrightarrow{\text{fibers with multiplicity}} (q_2,q_3,q_4).$$

(3) We have the following table:

{p ₁ ,p ₂ ,p ₃ ,p ₄ }	g (C)	multiple fibers of f	
{2,2,2,2s}	1	4 fibers with multiplicity	5
{2,2,2,2s+1}	0	4 fibers with multiplicity 2	2s+1
{2,2,3,3}	2	no multiple fibers	
{2,2,3,4}	0	2 fibers with multiplicity 2	2
		4 fibers with multiplicity	3
{2,2,3,5}	0	2 fibers with multiplicity	5
		2 fibers with multiplicity	3

3.5. Proof of Lemma 2.4. (1) Let $\varphi: \mathbf{A}_k^r \longrightarrow S^*$ be a non-constant morphism (if it exists at all). Then $\varphi(\mathbf{A}_k^r)$ is not contained in a fiber of f. Thus $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \neq 1$ because g(C) = 1. Suppose $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} < 1$. If φ is dominant, we may assume r = 2. Then $-\infty = \overline{\kappa}(\mathbf{A}_k^2) \geq \overline{\kappa}(S^*) = 1$, which is a contradiction. Hence $\varphi(\mathbf{A}_k^r)$ is a rational curve with at most

one place at infinity. Let $\psi = f \cdot \mathcal{P}$. Then $\psi(\mathbf{A}_k^r) \stackrel{\sim}{\sim} \mathbf{A}_k^1$ or \mathbf{P}_k^1 , and $C \stackrel{\sim}{\sim} \mathbf{P}_k^1$. Then we can show that f has three or more multiple fibers. If $\psi(\mathbf{A}_k^r) \stackrel{\sim}{\sim} \mathbf{A}_k^1$, we obtain a contradiction by making use of Lemma 2.3. If $\psi(\mathbf{A}_k^r) \stackrel{\sim}{\sim} \mathbf{P}_k^1$, the Riemann-Hurwitz formula implies

$$\sum_{i=1}^{N} (1 - \frac{1}{\alpha_i}) \leq 2,$$

where N and α_i 's are as in the proof of Lemma 3.3. Hence $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \ge 1$, a contradiction.

- (1') Suppose $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} > 1$. Let $\{p_1, p_2, p_3\} = \{2, 2, 2\}$. Then we can easily find a solution $\{x_i = f_i; 1 \le i \le 3\}$ of $x_1^2 + x_2^2 + x_3^2 = 0$ in $R = k[u_1, u_2]$ such that $\text{tr.deg}_k k(f_1, f_2, f_3) = 2$. Then there is a dominant morphism $\mathcal{G}: \mathbf{A}_k^2 \longrightarrow S_{2,2,2}^*$. Since \mathbf{A}_k^2 is simply connected and there is a finite étale morphism $\pi: \mathbf{A}_k^2 (0) \longrightarrow S_{2,2,2}^*$, \mathcal{G} factors as $\mathcal{G} = \pi \cdot \hat{\mathcal{G}}$, where $\hat{\mathcal{G}}: \mathbf{A}_k^2 \longrightarrow \mathbf{A}_k^2 (0)$ is a morphism. In other cases, there is a finite etale morphism $\pi^*: \mathbf{A}_k^2 (0) \longrightarrow S_{1,2,2}^*$. Then $\mathcal{G}^* = \pi^* \cdot \hat{\mathcal{G}}: \mathbf{A}_k^2 \longrightarrow S_{1,2,2}^*$ is a dominant morphism.
- (2) The proof depends on Lemma 3.4, (3). Q.E.D.
- 3.6. In the rest of this section, we retain the assumptions and the notations of 3.1. We assume that $Y = C \cong \mathbb{P}^1_k$ and that the dual graph of a fiber $g^*(P)$ is a linear chain for every point P of C, where every irreducible component of $g^*(P)$ is a nonsingular rational curve. We assume that $(M_0^2) < 0$. Indeed, $(M_0^2) < 0$ or $(M_\infty^2) < 0$ provided f has multiple fibers. Let

 $\begin{array}{lll} f^{\star}\left(P_{\underline{i}}\right) &= \alpha_{\underline{i}} C_{\underline{i}} & (1 \leq \underline{i} \leq \underline{N}) & \text{exhaust all multiple fibers of} & f, \\ \text{where} & C_{\underline{i}} & \underline{\mathbf{A}}_{\star}^{1}, \; \alpha_{\underline{i}} \geq 2 & \text{and} & \alpha_{\underline{1}} \leq \alpha_{\underline{2}} \leq \ldots \leq \alpha_{\underline{N}}. \end{array}$

LEMMA. (1) $\overline{K}(X) = -\infty$ if and only if either $N \le 2$ or N = 3 and $\{\alpha_1, \alpha_2, \alpha_3\}$ is one of the following triplets: $\{2, 2, n\}$ $(n \ge 2)$, $\{2, 3, 3\}$, $\{2, 3, 4\}$, $\{2, 3, 5\}$.

(2) $\overline{\kappa}(X) = 0$ if and only if either N = 4 and $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ $= \{2,2,2,2\} \text{ or } N = 3 \text{ and } \{\alpha_1, \alpha_2, \alpha_3\} \text{ is one of the triplets:}$ $\{2,3,6\}, \{2,4,4\}, \{3,3,3\}, \text{ The logarithmic pluri-genera are}$ given as follows:

$$\overline{P}_{1}(X) = 0, \ \overline{P}_{2}(X) = 1 \quad \underline{if} \quad \{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\} = \{2, 2, 2, 2\};$$

$$\overline{P}_{1}(X) = 0 \quad (1 \leq i \leq 5), \ \overline{P}_{6}(X) = 1 \quad \underline{if} \quad \{\alpha_{1}, \alpha_{2}, \alpha_{3}\} = \{2, 3, 6\};$$

$$\overline{P}_{1}(X) = 0 \quad (1 \leq i \leq 3), \ \overline{P}_{4}(X) = 1 \quad \underline{if} \quad \{\alpha_{1}, \alpha_{2}, \alpha_{3}\} = \{2, 4, 4\};$$

$$\overline{P}_{1}(X) = 0 \quad (i = 1, 2), \ \overline{P}_{3}(X) = 1 \quad \underline{if} \quad \{\alpha_{1}, \alpha_{2}, \alpha_{3}\} = \{3, 3, 3\}.$$

$$(3) \quad \overline{K}(X) = 1 \quad \underline{if} \quad \underline{and} \quad \underline{only} \quad \underline{if} \quad N \geq 3 \quad \underline{and}$$

$$\frac{1}{\alpha_{1}} + \ldots + \frac{1}{\alpha_{N}} < N-2.$$

3.7. Let $\tau: V \longrightarrow \overline{V}$ be the contraction of V to a relatively minimal surface \overline{V} such that $(\overline{M}_0^2) = (M_0^2) < 0$ and $(\overline{M}_\infty^2) = (M_\infty^2) + N$, where $\overline{M}_0 = \tau(M_0)$ and $\overline{M}_\infty = \tau(M_\infty)$. Let $\rho: V \longrightarrow \widetilde{V}$ be the contraction of V to a relatively minimal ruled surface \widetilde{V} such that $(\widetilde{M}_0^2) = (M_0^2) + N$ and $(\widetilde{M}_\infty^2) = (M_\infty^2)$, where $\widetilde{M}_0 = \rho(M_0)$ and $\widetilde{M}_\infty = \rho(M_\infty)$. Then τ and ρ are uniquely determined.

THEOREM. Assume that N = 3, $m := (M_{\infty}^2) \ge 0$ and $\{\alpha_1, \alpha_2, \alpha_3\}$ is one of the triplets: $\{2, 2, n\}$ $(n \ge 2)$, $\{2, 3, 3\}$, $\{2, 3, 4\}$, $\{2, 3, 5\}$. Then $\overline{\kappa}(X) = -\infty$, but X contains no cylinderlike open sets.

3.8. There are examples of A_{\star}^{1} -fiber spaces over P_{k}^{1} with m < 0. For example, $X = S_{p_{1},p_{2},p_{3}}^{\star}$, where $\{p_{1},p_{2},p_{3}\}$ is one of the triplets: $\{2,2,n\}$ $(n \ge 2)$, $\{2,3,3\}$, $\{2,3,4\}$, $\{2,3,5\}$, for which m = -1.

THEOREM. (1) p_1, p_2, p_3 contains no cylinderlike open sets if $\{p_1, p_2, p_3\} \neq \{2, 2, n\}$ $(n \ge 2)$.

(2) $S_{2,2,n}^{*}$ $(n \ge 2)$ contains a cylinderlike open set.

REFERENCES

- T. Fujita: On Zariski problem. Proc. Japan Acad. 55, Ser.A (1979), 106-110.
- M. Miyanishi: An algebraic characterization of the affine plane. J. Math. Kyoto Univ. 15 (1975), 169-184.
- M. Miyanishi: Regular subrings of a polynomial ring.
 Osaka J. Math. 17 (1980).
- M. Miyanishi: Theory of non-complete algebraic surfaces.
 Forthcoming.
- M. Miyanishi and T. Sugie: Affine surfaces containing cylinderlike open sets. J. Math. Kyoto Univ. 20 (1980), 11-42.
- 6. P. Orlik and P. Wagreich: Algebraic surfaces with k*-action.

 Acta Math. 138 (1977), 43-81.