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Regular subrings of a polynomial ring

e & L A (frKIE)

§ 1. Introduction. Throughout this article, k denotes an
algebraically closed field of characteristic zero, which we fix
as the ground field. Let R:= k[ul,...,ur] be a polynomial ring
in r variables defined over k, and let A be a finitely
generated, regular subalgebra of R, If dim(aA) =1, A is
isomorphic to a one-~parameter polynomial ring over k. However,
if dim A > 2 there are many examples of A which are not iso-
morphic to a polynomial ring over k. The purpose of this article
is to discuss two-dimensional, regular subalgebras contained in
R. We shall recall some of necessary definitions and results.
Let V be a nonsingular projective surface defined over k
and let D be a reduced effective divisor on V¥V such that D
has only normal crossings as singularities. Let X:= V-Supp (D) .

The logarithmic Kodaira dimension k(X) is defined as

- sup dim ¢ (V) if |n(D+k )| # ¢
30 In(D+Ky) | X
C(X) = for some n > 0
- if otherwise.
By definition, x(X) = -», 0, 1, 2. We can then state the follow-

ing:

THEOREM (Miyanishi-Sugie [5] and Fujita [1]). Let V, D and

X be as above. Assume that D is connected and that X contains

no exceptional curves of the first kind. Then K(X) = ~= if and

. . . . 1
only if X contains a cylinderlike open set U » U, x A, where

Uo is a curve.
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THEOREM (Miyanishi [2]). Let X = Spec(A) be a nonsingular

affine surface defined over k. Then X 4is isomorphic to the

affine plane Ai if and only if A* = k*, A is a unique

factorization domain, and K (X) = -,

Let X be a nonsingular affine surface and let C be a

nonsingular curve. We say that X has an Al—fibration over C

if there exists a surjective morphism £ : X —3 C such that
general fibers of £ are isomorphic to the affine line A;.
Then the following conditions are equivalent to each other:
(1) K(X) = =,
(ii) X contains a cylinderlike open set,

(iii) X has an Al—fibration over a curve C.

¢ 2. Affine surfaces with..ml—fibrations

2.1. Let X = Spec(A) be a nonsingular affine surface. Then

A 1is contained in a polynomial ring (defined over k) if and

only if there exists a dominant morphism p : mi —> X, Assume

that A 1is contained in a pelynomial ring. Then we know that:
(1} A* (= the set of invertible elements of A) = k*,

(2) there is an Al-fibration £f: X —>C, where C Ai

1
or CXP.
Let f : X —> C be an Al—fibration such that C ;;Ai or C2%
Pi. Let F be a fiber. If F is irreducible and reduced, then

F o Ai. Otherwise, F is a disjoint union of irreducible

red
components, each of which is isomorphic to Ai. For every point

P of C, let u be the number of irreducible components of

P
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the fiber f*(P). Then we have:
. 1
1+ (up—l) if C ‘—quk
PeC
rank, Pic(X) & Q =
Q z . 1
L (up-1) if Coaa .
PeC

2.2, THECREM. Let A be a regular subalgebra of R:= k[ul,u7]

such that R 1is a finite A-module. Then A 1is isomorphic to

a polynomial ring in two variables over k.

Proof. There are an Al—fibration f i1 X —>»C and a
dominant morphism o : Ai —> ¥ induced by the inclusion A &3> R.
Then nD v~ 0 for every divisor P on X, where n:= deg(p).
Hence C Q,Al,
= "k
reducible or non-reduced, then f£*(P) = nPC

and if £*(P) is singular, i.e., f*(P) is

1
p’ where CP N Ak’

n, » 2 and n_|n. BSuppose f has a singular fiber £*(P) =

p 2 p|
nPCP. Choose an inhomogeneous coordinate t of C so that P
n
is defined by t = 0. Then t =71 P for v ¢ R, Let A' =

A® kit] v alt] <R, let K be the normalization of A' and
k{t]

let §:= Spec(x). Then p : Ai —> X factors as
2 ny
p: A > X > X,
kopy Py

v . \ . 1 ., .
where X 1s a nonsingular affine surface with an A ~-fibration

% : % ——9~8, and % has a singular fiber with ng irreducible

components. This is a contradiction. Hence f : X —>C 1is an

2

Al—bundle over Ai. Thus, X l'ﬂk' Q.E.D.

2.3, Let f : X —>C be an Al-fibration over a curve C(C. Let

s
f*(p) = = nici be a singular fiber. f*(P) is called a singular
i=1 -
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fiber of the first kind if s > 2 and n, = 1 for some 1i;

f*(P) 1is called a sinqular fiber of the second kind if n, 2 2

for every i. The integer wu:= G.C.D.(nl,...,ns) is called the
multiplicity of £*(P). If p > 1, £*(P}) 1is called a multiple

fiber.

THEOREM. Let X = Spec(A) be a nonsingular affine surface
with an Al-fipration £ : X —> ¢, where C ;:Ai. Then A is

contained in a polynomial ring if and only if £ has at most

one singular fiber of the second kind.

For the proof, we use the following:

LEMMA. Consider a Diophantine equation

a; a. bl bn
{*) L STIEERE S PR AR

14

where a;'s and bj‘s are integers > 2. Then a non-constant

solution of (*) in R = k{u;,...,u.] is one of the following:

it

(1) %y 0= 0 for some i and yj c. € k for every 3,

J
b n
where €y eeeC, = ~-1;
(2) yj = 0 for some Jj and X, =c; € k for every i,
a a,
whexre Cy eeeCp < 1.

Proof of Theorem. The "only if" part. Suppose £f*(P) and

£*(Q) are singular fibers of the second kind. Let »p : Aﬁ — X

be a dominant morphism. Then p*£f*¥(P) and p*f*¥(Q) are defined

by
fa1 a b b
1

m _ 1 n _
...fm = 0 and gy .9, = 0,

respectively, where as s bj > 2 and fi, gj € k[ul,u2]~k for
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every i and j. Choose a coordinate t of C so that P, Q
are defined by t = 0, 1, respectively. Then we have

al a bl bn

m =
fl ...fm 9y -9, = 1.

This is a contradiction, The "if" part. Replacing X by an
affine open subset, we may assume that f has no singular fibers
of the first kind and that the unique singular fiber of the second

kind (if any) is of the form £*(p) = nPCP, where ng 2 2. Let

C = Spec(kit]) and let ¢ = Spec (k[t]), where P is given by
n
t =0 and t =71 P. Let % be the normalization of X X 8.
C
Then X is nonsingular, and the projection f : X —> X X% ¢
C

v
—> ¢ is an Al—fibration such that %*(P) is the unique
singular fiber, where ¥ lies over P and %*(%) is of the

first kind. Then ¥ contains an open set which is an Al—bundle

Thus we obtain a dominant morphism o : Az —> X.

over 8 ~ A X

1
x*
Q.E.D.

Under the situation of Theorem, Pic(X)tor is a cyclic group.

2.4, THEOREM. Let X = Spec{A) be a nonsingular affine surface
1
p
(1) Assume that A is contained in a polynomial ring. Then

with an al-fibration £ : x —> C, where C v P Then we have:

f has at most three multiple fibers. If f has three multiple

fibers their multiplicities {ul,uz,u3} are, up to permutations,
{2,2,n} (n > 2), {2,3,3}, {2,3,4} and {2,3,5}.

(2) Assume that f satisfies the conditions:

(i} £ has no singular fibers of the second kind but at most

three multiple fibers with single irreducible components;
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(ii) iﬁ f has three multiple fibers, their multiplicities

{ul,uz,u3} are, up to permutations, {2,2,n} (n2 2), {2,3,3},

{2,3,4} and {2,3,5}.

Then A is contained in a polynomial ring.

For the proof, we need the following:

be a hypersurface in A

LEMMA. (1) Let S:= 8
pl’p2'p3

:= Spec(klx,,x,,x;]) defined by

P p p
1 2 3 -
xl + Xy + x3 =0 ,

and let S*:= S~(0,0,0), where Py Py and p; are integers > 2.
1 1 1

If = + — + — < 1 +then there are no non-constant morphisms
— P & Py = —
1 2 3
from AT to s*. If 3 +-l— + N 1 then there is a dominant
— k = - P Py Py —_ e T T e

morphism from mi to s*.

ot

s . 4
L= s =
(2) Le z , , , be a subvarlety in A] Spec (k{xll

xz,x3,x4}) of codimension 2 defined by

P P p P P P
1 2 3 1 2 4 _
X + X, + Xy" = axy + x + X =90,

and let ZI*:= I-(0), where Py {1 <iZ< 4) 4is an integer > 2

and a e k-{0,1}. 1f {p;,p,,P5,p,} 1is one of the following

quadruplets: {2,2,2,n} (n > 2), {2,2,3,3}, {2,2,3,4} and

{2,2,3,5}, then there are no non-constant morphisms from Ai to

¥,

Proof of Theorem. (1) Suppose f has three or more multiple

fibers, and let f*(Pi) (1 < i £ 3) be multiple fibers with
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2

respective multiplicities Py 2 2. Let p : Ak —> X be a
dominant morphism. Then f-p(Ai) is isomorphic to Ei or Pi.
1f f-p(&i) v Ai, then two of Pi's are in f°p(mi). This
leads to a contradiction by Theorem 2.3. Hence f'D(Ai) = C.
, . . . 2
* = * =
Write f (Pi) uiFi. Then p Fi is defined by fi 0 in Ak,
where f. ¢ k[u,,u,]. Then we have
i 1" 72

U H

f33 f22

— =g —— + b with a, b e k* .,

My Uy

fl fl
Since p*(Fi){\p*(Fj) =¢ if i # j, we have a non-constant
morphism

) 2
: A —> S¥% .
Y k. HqrHorlig
1 1 1 . .
Hence —— + — + — > 1. Then {u,,p,,u,} 1is, up to permutations,
My My M 1'72'73

one of the triplets: {2,2,n} (n > 2}, {2,3,34, {2,3,4} and

{2,3,5}. Suppose f has four multiple fibers f*(Pi) = uiFi

(L < i £ 4) with My > 2. Then we obtain relations of the form

U H U U M U
1 2 3 . 1 2 4 _ -
£7+£,5+ £ =af,” + £,7 + £,7 =0, ac k-{o,1},

where fi € k[ul,uZ]—{O}. Then we have a non-constant morphism

2
: —_ ¥
v Ak ulru2ru3lu4 !

which is a contradiction.

(2) Replacing X by an affine open subset, we may assume that
f has no singular fibers of the first kind. Suppose f has at
most two multiple fibers, say, for example, two multiple fibers

1

£*(P;) (i =1, 2). Let X':= X-f (P and C':= C-{PZ}.

)
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Then f£' = f|x, : X' —>C' is an A;~fibration over C' Y Li

with one singular fiber f*(Pl) of the second kind. Then we are
done by Theorem 2.3. Suppose £ has three multiple fibers

x - . . o .
£ (Pi) “iFi with {ul,uz,uB} as specified in the statement.
Cconsider the case where {ul,u2,u3} ={2,2,n}. Let T : C' —>C

be a double covering ramified over P1 and P2, let X' be the

normalization of X x C', and let £' : X' —3> C' be the

C
natural Al-fibration over c' Y Pi. Then f£' has only two
multiple fibers f'*(Qi) (i =1, 2) of multiplicity n, where

T‘l(P ) = {QI’QZ}' Then we are done by the former case. The

3
cases where {ul,uz,uB} =1{2,3,3} or {2,3,4} are dealt with
by a similar fashion;
triple

{“1’“2'“3} = {2,3,3} —_— {2,2,2} —> the former case,
covering

double
{ul:uz.u3} ={2,3,4} ————> {2,3,3} —3 the former case.
covering

In the case where {ul,uz,u3} = {2,3,5}, we know by the theory
of Kleinian singularities that there exists a ramified covering
T : C' —>C of degree 60 with 30 points over Pl with
ramification index 2, 20 points over P2 with ramification
index 3 and 12 points over P3 with ramification index 35,
1 Let X’ be the normalization of X X C' and

where C' o @k.
B c

ft : X' —> C' be the natural Al-fibration. Then £' has no

multiple fibers of the second kind. So, we are done. Q.E.D.

$ 3. Surfaces with Ai—fibrations

3.1. We denote by A& the affine line Ai with one point
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deleted off. Let X be a nonsingular surface and let C be a
nonsingular curve. An ‘Ai—fibration on X over C is a
surjective morphism £ : X —3> C such that general fibers of

f are isomorphic to Ai and every singular fiber (if any) is
of the form £*(P) = n,C,, where n, > 2 and C, Ai. The
morphism f (or X itself) is called also an Ai—ﬁiggg space.

A normal compactification of X is a nonsingular projective

surface V containing X as a dense open set such that V-X
consists of nonsingular irreducible curves crossing normally each
other. |

An Ai—fiber space f : X —> C has the following normal
compactification ¥ : V —> Y such that:

(i) X and C are dense open subsets of V and Y,
respectively;

(ii) ¢ is a pl-fibration and ?|X = f;

(iii) V-X contains no exceptional curves of the first kind
contained in fibers of ¢ ;

(iv) there are two cross-sections Mo’ M, such that Mo’
M, < V-X, M M, = ¢ and the other components of V-X are

contained in fibers of ?.

3.2. LEMMA. Let X be a nonsinqgular, quasi-projective surface

with an effective, separated Gm-action. Assume that X has no

fixed points. Let £ : X —> C:= X/G be the guotient morphism.

Then we have:

(1) ¢C iﬁ a nonsingular curve, and X ig an B&~fiber space

over C;
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(2) £*{(P) is a multiple fiber with multiplicity Hp if and

only if the stabilizer group o is a cyclic group of order

for a point x of f-l(P).

Hp
3.3. Let 85 =58 be as in Lemma 2.4. Let d = L.C.M.

PP, /P

1'%727%3
(pl,pz,pB) and define integers a; by d = P;q;- Then Gm

. . 9. 92 .93

acts effectively on S by t(xl,xz,x3) = (t xl,t Xz’t x3).
Let f : 8* —3> C be the quotient morphism, where C 1is a
complete curve. Define integers pi (1 £1ix 3) by

P P P
L 1 ' = 2 ' = ___“2__
PL = Tq.ay ' P2 T Torayy 2™ P37 TgLay

Then we have:

LEMMA. (1) The genus g(C) f C is given as

g(c) - dz _ g (qquz) . (qzlq3) + (q3:q1) + l
29,9593 2 939, 9,93 9,9,
d(qquz) M
(2) f has no multiple fibers but possibly —Sg fibers
1°2
: d(qz,q3)
with multiplicity (q,,q9,), —=—=—>— fibers with multiplicity
1772 9,93
dlagrqy) : .
(q2,q3) and —wa;az—— fibers with multiplicity (q3,q1).
(3) =0 > 1
1 1 1
C =1 - + = + = = 1
9 () S B TR TR
> ] < 1.
(4) - ‘ > 1
- 1 1 1
s* = - — e
K(s8*) 0 & p; "5, B, -1
1 <1.



11

(5) Assume that k = @. Let U be the universal covering

space of S*. Then we have:

- c?-(0) > 1
2 1 1 1
Ur { C & — v —+ = ! =1
Py Py, Pj3
C x D <1,

where D 1is a unit disc.

(6) - Suppose P; £ Py £ Py Then we have:

1 1 1 =

51— + g + P_3_ > 1 = {pl,pz,p3} ={2,2,n} (n22), {2,3,3} ,
{2,3,4} or {2,3,s}.

1 1 1 _ -

oo + By + by " 1 < {pyip,epgt = 12,3,6}, {2,4,4} or

{3,3,3}.

Proof. We prove only the assertion (4). Let ¢ : V — C
be the normal compactification of f : S* — ¢ as described in
3.1, where X = 8* and Y =C. Let él""' QN exhaust all
multiple fibers of . The following description of V is

found in Orlik-Wagreich [6]. Let ¢ be a multiple fiber of

multiplicity o, say o = (ql'q2) > 1, Define an integer B8 by

the conditions: 0 < B < a and q38 1 (mod o). Define positive

integers bis veny bs ( 2 2) by a continued fraction

o b. - 1
a~B ~ Y1 o 1
2
L
bs -

Define integers ay Bi for each fiber @i, and let
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- D |
2993 4=1 %4
. 2 2 .
Then (Mb) = -b-N, (M ) = b and the dual graph of ¢ is
O —0 2% R —O —O- -O s e e 0
M -b, b, ~bg F M,

where each irreducible component of ¢ 1is a nonsingular rational
curve, ¢ s* = oF, F is the closure of F in V, and F is
the unique exceptional curve of the first kind in ©.

Let D be the reduced effective divisor on V such that
Supp(D) = Vv-S*, If g(C) =1, ¥ has no multiple fibers. Hence
D+K, v 0, whence K(S*) = 0. 1In general, we have

-z I (1-Lye, + H(KL)
1t i= Ti=1 %07 ¢

N
.= _1 * .
Let A:= ( i (1 3 )¢i + ? (KC) Mo). Then we have

i=1 i
1
A= (X (1-=)6*(P) + ¢*(K.)*M )
pec %p § $7 ¥ o
2
=4 - _ 1 _ 1,

Hence we obtain our conclusion. Q.E.D.

4. Let I =1 b in L A4, T T*
3 e P /Py /PysP, e as in Lemma 3.4 hen has
an effective separated action of G, defined by
q q q q
t(xl,xz,x3,x4) = (t lxlpt 2x2,t 3x3,t 4x4)

where 4 = L.C.M.(pl,pz,p3,p4) and d4d = P9, Let f : I* —> C

be the quotient morphism. Then we have:
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LEMMA. (1) C is a complete nonsingular curve of genus

Pty

9999 2t 9199 ;9,9 91949, 53,4,
+1 .
2
d"(q;,9,,93)

(2) £ has no multiple fibers but possibly fibers

9199,
2
a (qqu25q4)

fib ith i~
qlq2q4 ibers wi multi

with multiplicity (ql aqz :q3) ’

2
. ) d (q1:q3rq4) \ . . . .
plicity (ql,qz,q4), 4,95, fibers with multiplicity

2
d"lap.a3:qy) : .
(ql,q3,q4) and ———azagaz——— fibers with multiplicity (qz,q3,q4).

(3) We have the following table:

{py/p,sP3/P,} | 9(C) | multiple fibers of f

{2,2,2,2s} 1 4 fibers with multiplicity s
{2,2,2,25+1} 0 4 fibers with multiplicity 2s+l
{2,2,3,3} 2 no multiple fibers

2 fibers with multiplicity 2
{2,2,3,4} 0

4 fibers with multiplicity 3

2 fibers with multiplicity 5
{2,2,3,5} 0

2 fibers with multiplicity 3 .

3.5. Proof g£ Lemma 2.4. (1) Let & : A; - S*  Dhe a non-

constant morphism (if it exists at all). Then ?(Ai) is not

contained in a fiber of f. Thus JL’+ L + JL-# 1 because
Py Py Pj
1 1 1 . .
g(c) = 1. Suppose = + — + — <1, If ¢ is dominant, we

P, P, Py
may assume r = 2., Then -% = Ekni) > K(8*) = 1, which is a

contradiction, Hence ?(Li) is a rational curve with at most

Y]
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one place at infinity. Let ¢ = £+9. Then w(A;) g Ai or Pi,
and C o Pi. Then we can show that £ has three or more
multiple fibers., If w(a;) ~ Li, we obtain a contradiction by

making use of Lemma 2.3. If w(a;) v Pi, the Riemann~-Hurwitz

formula implies

N
Il-gh <2,
i=1 i

where N and ai‘s are as in the proof of Lemma 3.3. Hence

JL‘+-JL + ;L-z 1, a contradiction.

Py P2 P37

(1') Suppose —+ 4+ + X > 1. ret {p,,p.,p.} = (2,2,2}.
Py P, P3 177273

Then we can easily find a solution {x; = £,; 1 < i < 3} of

i
2,.2,..2 . _ _
x1+x2+x3 =0 in R = k[ul,uz} such that tr.degkk(fl,fz,f3) = 2.

Then there is a dominant morphism ¢ : Ai —> 8% , ,- Since Ai
’ ’
is simply connected and there is a finite étale morphism 7w :
2_ * R S . a2
Ak (0) = 82'2’2, ¢ factors as ¢ = TP, where ¢ "Ak —
mi—(O) is a morphism. In other cases, there is a finite etale

. 2 ~ 2
* . - * * = e .
morphism 7* : Ak (0) —> Spl’ 5 3. Then ¢ THep Ak —
S* is dominant hism.
1'PyPs a ant morp

(2) The proof depends on Lemma 3.4, (3). Q.E.D.

3.6. In the rest of this section, we retain the assumptions and
the notations of 3.1. We assume that Y = C Pi and that the

dual graph of a fiber 9*(P) is a linear chain for every point

P of C, where every irreducible component of ¢*(P) is a

nonsingular rational curve. We assume that (Mg) < 0. 1Indeed,

(Mg) <0 or (Mi) < 0 provided £ has multiple fibers. Let

1S
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f*(Pi) =a.C, (1 £ i< N) exhaust all multiple fibers of ¢,

i
1
. VA a, > 2 a, < a. < ... < 0
where Cl L T and 1 2 hY hS

.

2 N

LEMMA. (1) ¥k (X) = -» if and only if either N < 2 or

N = 3 and {al,az,a3} is one of the following triplets:

{ztzln} (n__>= 2), {2:313}1 {2s3s4}: {21315}-

(2) k(X)) = 0 Aif and only if either N = 4 and oy ,a,,0,,0,)

= {2,2,2,2} or N=3 and f{o is one of the triplets:

1795003}
{2,3,6}, {2,4,4}, {3,3,3}, The logarithmic pluri-genera are

given as follows:

ﬁi(X) = 0, ﬁé(x) =1 Aif {ul,az,u3,a4} = {2,2,2,2};

P.(x) =0 (121iz5), ?g(X) =1 if {aj,0,,a3} = {2,3,6};
P, (X) =0 (12izg3), P(x)=1 if {a;,0,,0,.} = {2,4,4};
Ei(X) =0 (i=1,2), Pj(x) =1 if {al,az,a3} = {3,3,3}.
(3) k(X) =1 4if and only if N > 3 and
S= 4 ..+ < N-2,
1 N

3.7. Let T : V—>V be the contraction of V +to a relatively
minimal surface V such that (ﬁg) = (Mg) < 0 and (ﬁi) = (Mi)
+N, wnere M = T(M)) and M_ = T(M). Let p :V —> ¥V be

the contraction of V to a relatively minimal ruled surface v
such that (ﬁi) = (M§)+N and (ﬁi) == (Mi), where ﬁo = p(Mo)

and ﬁw =p{M_). Then T and p are uniquely determined.

THEOREM. Assume that N = 3, m:= (Mi) 20 and {og,0,,0,}

is one of the triplets: {2,2,n} (n > 2), (2,3,3}, {2,3,4},

{2,3,5}. Then K(X) = -», but X contains no cylinderlike open
sets.
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3.8. There are exampleg of A%-fiber spaces over Pi with

m < 0. For example, X = , where {pl,pz,pB} is one

S¥%
Pl rP2 rp3
of the triplets: {2,2,n} (n > 2), {2,3,3}, {2,3,4}, {2,3,5},

for which m = -1.

THEOREM. (1) contains no cylinderlike open sets

*
®py:PyrPy
if {pl,pz,p3} # {2,2,n} (n > 2).

(2) s*

(n > 2) contains a cylinderlike open set.
2,2,n = =
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