Threefolds whose canonical bundles are not numerically effective by

Shigefumi Mori

In this note，we announce an application of the previous paper ［3］with some examples．The proof will be published elsewhere．
sl．Announcement．
We assume that k is an algebraically closed field of characteristic 0 and X is a non－singular projective 3－fold over k whose canonical bundle K_{X} is not numerically effective． We use the terminology of［3］．By Corollary \＆［3］，X has an extremal ray R ，which we fix in this section．

Theorem l．There exists a morphism $\phi: X \rightarrow Y$ to a projective variety Y ．such that（1）$\phi_{*} \theta_{X}=\theta_{Y}$ ，and（2）for any irreducible curve C in $X,[C] \varepsilon R$ if and only if $\operatorname{dim} \phi(C)=0$ ． Furthermore，such a ϕ is unique up to an isomorphism．

The structure of this ϕ is given by the following theorems．

Theorem 2．The extremal ray R is not numerically effective if and only if $\operatorname{dim} Y=3$ ．If these conditions are satisfied， then there exists an irreducible divisor D of X such that X is the blowing－up of Y by the ideal defining $\phi(D)$（given the reduced structure），and we have either
（1）$\phi(D)$ is a non－singular curve and Y is non－singular； $\left.\phi\right|_{D}: D \longrightarrow \phi(D)$ is a \mathbb{P}^{l}－bundle and $\left(D \cdot \phi^{-1}(\eta)\right)=-1$ for any $n \in \phi(D)$ ，
（2）$Q=\phi(D)$ is a point and Y is non－singular；$D \cong \mathbb{P}^{2}$
and $\theta_{D}(D) \cong \theta_{\mathbb{P}}(-1)$,
(3) $Q=\phi(D)$ is an ordinary double point of Y;
$D \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\theta_{D}(D) \cong p_{1}{ }^{*} \theta_{\mathbb{P}}(-1) \otimes p_{2}{ }^{*} \theta_{\mathbb{P}}(-1)$, where p_{i} is the i-th projection,
(4) $Q=\phi(D)$ is a double point of $Y ; D=$ an irreducible reduced singular quadric surface S in $\mathbb{P}^{3}, \theta_{D}(D) \cong \theta_{S} \otimes \sigma_{\mathbb{P}}(-1)$, or
(5) $Q=\phi(D)$ is a quadruple point of $Y ; D \cong \mathbb{P}^{2}$, $\theta_{D}(D) \cong \theta_{\mathbb{P}}(-2)$.

Let $\theta_{Y, Q}$ be the local ring of Y at Q for cases (3), (4), and (5) in Theorem 2. Then we have

Theorem 3. (1) The divisor class group of $\theta_{Y, Q}$ is 0 in cases (3) and (4), and $\mathbb{Z} / 2 \mathbb{Z}$ in case (5), and
(2) the completion $\theta_{Y, Q} \wedge$ of $\theta_{Y, Q}$ is given by

$$
\theta_{Y, Q} \wedge \begin{cases}k[[x, y, z, u]] /\left(x^{2}+y^{2}+z^{2}+u^{2}\right) & \text { case (3) } \\ k[[x, y, z, u]] /\left(x^{2}+y^{2}+z^{2}+u^{3}\right) & \text { case (4) } \\ k[[x, y, z]](2) & \text { case (5) }\end{cases}
$$

where $k[[x, y, z]]^{(2)}$ is the invariant subring of $k[[x, y, z]]$ under the action of the involution $(x, y, z) \longmapsto(-x,-y,-z)$.

The remaining cases are treated by

Theorem 4. If R is numerically effective, then Y is non-singular, $\rho(X)=\rho(Y)+1$, and we have either
(1) dim $Y=2$, and for an arbitrary geometric point n of Y, the scheme-theoretic fiber X_{η} is isomorphic to a conic of $\mathbb{P}^{2} k(n)$, where $k(n)$ is the field of n (i.e. X_{η} is isomorphic to either a smooth conic, a reducible conic, or a double line,)
(2) $\operatorname{dim} Y=1$, and for an arbitrary geometric point n of Y, X_{n} is an irreducible reduced surface such that ${ }^{\omega} X_{n}{ }^{-1}$ is ample, or
(3) $\operatorname{dim} Y=0$, and X is a Fano 3-fold, (these 3-folds are classified by Iskovski [2].)

§2. Exceptional divisors.

The most interesting part of section 1 is Theorem 2. Examples for Theorem 2 can be given by considering birational morphisms.

Theorem 5. Let $\pi: X \longrightarrow Z$ be a birational morphism (which is not an isomorphism) of non-singular projective 3-folds. Then X contains an extremal rational curve ℓ such that (l) dim $\pi(\ell)$ $=0$ and (2) ℓ is not numerically effective. Hence the exceptional set of π contains a divisor described in Theorem 2.

Examples 6. Let Z be a non-singular projective 3-fold.
(1): Let C_{1} and C_{2} be non-singular projective curves in Z intersecting transversally at 2 points P_{1} and P_{2}. If we operate Hironaka's twisted blowing-up to C_{1} and C_{2} (e.g. blowing up C_{1} first near P_{1} and C_{2} first near P_{2}, then the "blowing up" $\pi: X \longrightarrow Z$ does not have a divisor described in Theorem 2.

Z

However, this does not contradict our theorems, because our X is not projective.
(2): Let C be an irreducible projective curve in Z with one ordinary double point P as singularities. If we blow up C, then the blown-up variety Y has one ordinary double point Q lying over P as singularities. If we resolve the singularity by blowing up Q and get a smooth 3 -fold $X, \pi: X \longrightarrow Z$ and $\phi: X \longrightarrow Y$, then $D=\phi^{-1}(Q)$ is the divisor described in case (3) of Theorem 2.

We remark that we can not start with an arbitrary ordinary double point because of Theorem 3, (1).
(3): Let C be an irreducible profective curve in Z with one ordinary cusp P as singularities. If we blow up C, the blown-up variety Y has one double point Q lying over P as singularities which falls in case (4) of Theorem 2. If we blow up Q to get a smooth 3-fold $X, \phi: X \longrightarrow Y$ and $\pi: X \longrightarrow Z$, then $D=\phi^{-1}(Q)$ is the divisor described in case (4).

(4): Let C_{1}, C_{2}, and C_{3} be non-singular projective curves in Z intersecting transversally at one point P. If we operate projective Hironaka's modification in [1], we get a smooth 3 -fold X and $\pi: X \longrightarrow Z$, and D, the divisorial part of $\pi^{-1}(P)$, is the divisor given in case 5 of Theorem 2 .

We will finish this section by proving Theorem 5. The proof consists of a few easy lemmas. We keep the notation of Theorem 5 till the end of this section.

Lemma 7. $\pi_{*}: N(X) \longrightarrow N(Z)$ has the property $\pi_{*} \overline{N E}(X) \subseteq \overline{N E}(Z)$.

Indeed, we have $\pi_{*} N E(X) \subseteq N E(Z)$ by the definition of π_{*}, which implies Lemma 7 by continuity of π_{*}.

Lemma 8. There is an effective l-cycle C on X such that $\pi_{*} C=0$ and $\left(C \cdot c_{1}(X)\right)>0$.

Proof. Let E be the effective divisor on X such that Supp E is the exceptional set of π and $K_{X}=\pi{ }^{*} K_{Z}+E$. We treat two cases.

Case 1: $\operatorname{dim} \pi(\operatorname{Supp} E)=1$.
By Bertini's theorem, there is a smooth hyperplanesection L
of Z such that $\pi^{-1}(L)$ is irreducible and non-singular. Then we have

$$
\begin{aligned}
\left(K_{X} \cdot E \cdot \pi^{*} L\right) & =\left(\pi^{*} K_{Z} \cdot E \cdot \pi^{*} L\right)+\left(E^{2} \cdot \pi^{*} L\right) \\
& =\left(E \cdot \pi^{*}\left(K_{Z} \cdot L\right)\right)+\left(\vartheta_{\pi^{-1}(L)}(E)^{2}\right) \pi_{\pi^{-1}(L)} \\
& =\left(\pi_{*} E \cdot K_{Z} \cdot L\right)+\left(\Theta_{\pi^{-1}(L)}(E)^{2}\right)_{\pi^{-1}(L)} .
\end{aligned}
$$

Since $\pi_{*} E=0$, we have $\left(\pi_{*} E \cdot K_{Z} \cdot L\right)=0$. We have
$\left(\Theta_{\pi}^{-1}(L)(E)^{2}\right) \pi_{\pi^{-1}(L)}<0$ because $C=E \cdot \pi^{*} L(\neq 0$, since $\operatorname{dim} \pi(\operatorname{Supp} E)=I)$ is an exceptional divisor of $\pi^{-1}(L) \longrightarrow I$. Hence $\pi_{*} \mathrm{C}=0$ and $\left(\mathrm{K}_{\mathrm{X}} \cdot \mathrm{C}\right)<0$.

Case 2: $\operatorname{dim} \pi(\operatorname{Supp} E)=0$.
Let M be a smooth hyperplanesection of X, hence M and E intersect properly and M.E $\neq 0$. Then we have

$$
\begin{aligned}
\left(K_{X} \cdot E \cdot M\right) & =\left(\pi^{*} K_{Z} \cdot E \cdot M\right)+\left(E^{2} \cdot M\right) \\
& =\left(K_{Z} \cdot \pi_{*}(E \cdot M)\right)+\left(\theta_{M}(E)^{2}\right)_{M}
\end{aligned}
$$

Now $\pi_{*}(E . M)=0$ because $\operatorname{dim} \pi(\operatorname{Supp} E)=0$, and $\left(\theta_{M}(E)^{2}\right)_{M}<0$ because $E . M$ is an exceptional divisor of $M \longrightarrow \pi(M)$. Hence $C=E \cdot M$ has the required property. q.e.d.

Lemma 9. There is an extremal rational curve ℓ on X such that $\pi_{* \ell}=0$.

Proof. Let H be an arbitrary ample divisor on X and ε a small enough positive number so that [C] given in Lemma 8 does not belong to $\overline{N E}_{\varepsilon}(X, H)$. By Theorem 3 in [3], [C] is written as

$$
[C]=\sum_{i=1}^{r} a_{i}\left[\ell_{i}\right]+V
$$

where $a_{i} \geq 0, l_{i}$ are extremal rational curves for all i, and $V \varepsilon \overline{N E}_{\varepsilon}(X)$. Hence $\sum a_{i} \pi_{*}\left[l_{i}\right]+\pi_{*} V=0$ and $\pi_{*}\left[l_{i}\right], \pi_{*} V \varepsilon \overline{\mathrm{NE}}(Z)$ by Lemma 7. Since Z is projective, we have $a_{i} \pi_{*}\left[l_{i}\right]=0$ for all i and $\pi_{*} V=0$ by Kleiman's criterion of projectivity: $\overline{\mathrm{NE}}(Z) \cap\{-\overline{\mathrm{NE}}(Z)\}=\{0\}$. Since $[\mathrm{C}] \notin \overline{\mathrm{NE}}_{\varepsilon}(\mathrm{X})$, there is at least one j such that $a_{j} \neq 0$. Then l_{j} has the required property.
q.e.d.

Lemma 10. The curve $\&$ in Lemma 9 is not numerically effective.

If E is the effective divisor on X given in the proof of Lemma 8, then

$$
\begin{aligned}
(l \cdot E) & =\left(l \cdot K_{X}\right)-\left(l \cdot \pi * K_{Z}\right) \\
& =\left(l \cdot K_{X}\right)-\left(\pi * l \cdot K_{Z}\right)<0 .
\end{aligned}
$$

Thus Theorem 5 is proved, and it is easy to check the assertions in Examples 6.

References

[l] H. Hironaka, An example of non-Kaehlerian complex-analytic deformation of Kaehlerian complex structures, Ann. Math. Vol. 75 (1962), 190-208.
[2] V. A. Iskovskih, Fano 3-folds II, Math. USSR Izv. ll (1977).
[3] S. Mori, The cone of effective l-cycles, in the same volume.

