<table>
<thead>
<tr>
<th>Title</th>
<th>Threefolds whose canonical bundles are not numerically effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>森 靖文</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学城崎シンポジューム記録 (1980), 1980: 83-90</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980-7</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/212558</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Threefolds whose canonical bundles are not numerically effective
by Shigefumi Mori

In this note, we announce an application of the previous paper [3] with some examples. The proof will be published elsewhere.

§1. Announcement.

We assume that k is an algebraically closed field of characteristic 0 and X is a non-singular projective 3-fold over k whose canonical bundle K_X is not numerically effective. We use the terminology of [3]. By Corollary & [3], X has an extremal ray R, which we fix in this section.

Theorem 1. There exists a morphism $\phi : X \to Y$ to a projective variety Y, such that (1) $\phi^*\mathcal{O}_X = \mathcal{O}_Y$, and (2) for any irreducible curve C in X, $[C] \in R$ if and only if $\dim \phi(C) = 0$. Furthermore, such a ϕ is unique up to an isomorphism.

The structure of this ϕ is given by the following theorems.

Theorem 2. The extremal ray R is not numerically effective if and only if $\dim Y = 3$. If these conditions are satisfied, then there exists an irreducible divisor D of X such that X is the blowing-up of Y by the ideal defining $\phi(D)$ (given the reduced structure), and we have either

(1) $\phi(D)$ is a non-singular curve and Y is non-singular; $\phi|_D : D \to \phi(D)$ is a \mathbb{P}^1-bundle and $(D.\phi^{-1}(n)) = -1$ for any $n \in \phi(D),$

(2) $Q = \phi(D)$ is a point and Y is non-singular; $D \neq \mathbb{P}^2$.
and \(\mathcal{O}_D(D) \cong \mathcal{O}_{\mathbb{P}}(-1) \),

(3) \(Q = \phi(D) \) is an ordinary double point of \(Y \);
\(D \cong \mathbb{P}^1 \times \mathbb{P}^1 \) and \(\mathcal{O}_D(D) \cong \mathcal{O}_{\mathbb{P}}(-1) \otimes \mathcal{O}_{\mathbb{P}}(-1) \), where \(p_1 \) is the \(i \)-th projection,

(4) \(Q = \phi(D) \) is a double point of \(Y \); \(D = \) an irreducible reduced singular quadric surface \(S \) in \(\mathbb{P}^3 \), \(\mathcal{O}_D(D) \cong \mathcal{O}_{S} \otimes \mathcal{O}_{\mathbb{P}}(-1) \), or

(5) \(Q = \phi(D) \) is a quadruple point of \(Y \); \(D \cong \mathbb{P}^2 \), \(\mathcal{O}_D(D) \cong \mathcal{O}_{\mathbb{P}}(-2) \).

Let \(\mathcal{O}_{Y,Q} \) be the local ring of \(Y \) at \(Q \) for cases (3), (4), and (5) in Theorem 2. Then we have

Theorem 3.

1. The divisor class group of \(\mathcal{O}_{Y,Q} \) is 0 in cases (3) and (4), and \(\mathbb{Z}/2\mathbb{Z} \) in case (5), and
2. the completion \(\mathcal{O}_{Y,Q}^{\wedge} \) of \(\mathcal{O}_{Y,Q} \) is given by

\[
\mathcal{O}_{Y,Q}^{\wedge} \cong \begin{cases}
\mathcal{O}_{Y,Q}^{\wedge} \cong k[[x,y,z,u]]/(x^2 + y^2 + z^2 + u^2) & \text{case (3)}, \\
\mathcal{O}_{Y,Q}^{\wedge} \cong k[[x,y,z,u]]/(x^2 + y^2 + z^2 + u^3) & \text{case (4)}, \\
\mathcal{O}_{Y,Q}^{\wedge} \cong k[[x,y,z]]^{(2)} & \text{case (5)},
\end{cases}
\]

where \(k[[x,y,z]]^{(2)} \) is the invariant subring of \(k[[x,y,z]] \) under the action of the involution \((x,y,z) \mapsto (-x,-y,-z) \).

The remaining cases are treated by

Theorem 4.

If \(R \) is numerically effective, then \(Y \) is non-singular, \(\rho(X) = \rho(Y) + 1 \), and we have either

1. \(\dim Y = 2 \), and for an arbitrary geometric point \(\eta \) of \(Y \), the scheme-theoretic fiber \(X_\eta \) is isomorphic to a conic of \(\mathbb{P}^2_{k(\eta)} \), where \(k(\eta) \) is the field of \(\eta \) (i.e. \(X_\eta \) is isomorphic to either a smooth conic, a reducible conic, or a double line,
(2) $\dim Y = 1$, and for an arbitrary geometric point η of Y, X_η is an irreducible reduced surface such that $w_{X_\eta}^{-1}$ is ample, or

(3) $\dim Y = 0$, and X is a Fano 3-fold, (these 3-folds are classified by Iskovski [2].)

§2. Exceptional divisors.

The most interesting part of section 1 is Theorem 2. Examples for Theorem 2 can be given by considering birational morphisms.

Theorem 5. Let $\pi : X \rightarrow Z$ be a birational morphism (which is not an isomorphism) of non-singular projective 3-folds. Then X contains an extremal rational curve \mathcal{E} such that (1) $\dim \pi(\mathcal{E}) = 0$ and (2) \mathcal{E} is not numerically effective. Hence the exceptional set of π contains a divisor described in Theorem 2.

Examples 6. Let Z be a non-singular projective 3-fold.

(1): Let C_1 and C_2 be non-singular projective curves in Z intersecting transversally at 2 points P_1 and P_2. If we operate Hironaka's twisted blowing-up to C_1 and C_2 (e.g. blowing up C_1 first near P_1 and C_2 first near P_2), then the "blowing up" $\pi : X \rightarrow Z$ does not have a divisor described in Theorem 2.
However, this does not contradict our theorems, because our X is not projective.

(2): Let C be an irreducible projective curve in Z with one ordinary double point P as singularities. If we blow up C, then the blown-up variety Y has one ordinary double point Q lying over P as singularities. If we resolve the singularity by blowing up Q and get a smooth 3-fold X, $\pi: X \to Z$ and $\phi: X \to Y$, then $D = \phi^{-1}(Q)$ is the divisor described in case (3) of Theorem 2.

We remark that we can not start with an arbitrary ordinary double point because of Theorem 3, (1).

(3): Let C be an irreducible projective curve in Z with one ordinary cusp P as singularities. If we blow up C, the blown-up variety Y has one double point Q lying over P as singularities which falls in case (4) of Theorem 2. If we blow up Q to get a smooth 3-fold X, $\phi: X \to Y$ and $\pi: X \to Z$, then $D = \phi^{-1}(Q)$ is the divisor described in case (4).
(4): Let C_1, C_2, and C_3 be non-singular projective curves in Z intersecting transversally at one point P. If we operate projective Hironaka's modification in [1], we get a smooth 3-fold X and $\pi : X \to Z$, and D, the divisorial part of $\pi^{-1}(P)$, is the divisor given in case 5 of Theorem 2.

We will finish this section by proving Theorem 5. The proof consists of a few easy lemmas. We keep the notation of Theorem 5 till the end of this section.

Lemma 7. $\pi_* : N(X) \to N(Z)$ has the property $\pi_* \operatorname{NE}(X) \subseteq \operatorname{NE}(Z)$.

Indeed, we have $\pi_* \operatorname{NE}(X) \subseteq \operatorname{NE}(Z)$ by the definition of π_*, which implies Lemma 7 by continuity of π_*.

Lemma 8. There is an effective 1-cycle C on X such that $\pi_* C = 0$ and $(C.c_1(X)) > 0$.

Proof. Let E be the effective divisor on X such that $\operatorname{Supp} E$ is the exceptional set of π and $K_X = \pi^* K_Z + E$. We treat two cases.

Case 1: $\dim \pi(\operatorname{Supp} E) = 1$.

By Bertini's theorem, there is a smooth hyperplanesec...
of \(Z \) such that \(\pi^{-1}(L) \) is irreducible and non-singular. Then we have

\[
(K_{\pi}.E_{\pi}^{-1}(L)) = (\pi^{*}K_{Z}.E_{\pi}^{-1}(L)) + (E^{2}_{\pi} \cdot E_{\pi}^{-1}(L))
= (E^{*}(K_{Z}).E_{\pi}^{-1}(L)) + (\mathcal{O}_{\pi}^{-1}(L)(E)^{2})_{\pi}^{-1}(L)
= (\pi^{*}E_{Z}.L) + (\mathcal{O}_{\pi}^{-1}(L)(E)^{2})_{\pi}^{-1}(L).
\]

Since \(\pi^{*}E = 0 \), we have \((\pi^{*}E_{Z}.L) = 0 \). We have

\[
(\mathcal{O}_{\pi}^{-1}(L)(E)^{2})_{\pi}^{-1}(L) < 0 \text{ because } C = E \cdot E_{\pi}^{-1}(L) \neq 0, \text{ since}
\]

\(\dim \pi(\text{Supp } E) = 1 \) is an exceptional divisor of \(\pi^{-1}(L) \rightarrow L \).

Hence \(\pi^{*}C = 0 \) and \((K_{\pi}.C) < 0 \).

Case 2: \(\dim \pi(\text{Supp } E) = 0 \).

Let \(M \) be a smooth hyperplanesecion of \(X \), hence \(M \) and \(E \) intersect properly and \(M \cdot E \neq 0 \). Then we have

\[
(K_{\pi}.E_{M}) = (\pi^{*}K_{Z}.E_{M}) + (E^{2}_{M})
= (K_{Z}.\pi^{*}(E_{M})) + (\mathcal{O}_{M}(E)^{2})_{M}.
\]

Now \(\pi^{*}(E_{M}) = 0 \) because \(\dim \pi(\text{Supp } E) = 0 \), and \((\mathcal{O}_{M}(E)^{2})_{M} < 0 \) because \(E \cdot M \) is an exceptional divisor of \(M \rightarrow \pi(M) \). Hence \(C = E \cdot M \) has the required property. q.e.d.

Lemma 9. There is an extremal rational curve \(\epsilon \) on \(X \) such that \(\pi^{*}\epsilon = 0 \).

Proof. Let \(H \) be an arbitrary ample divisor on \(X \) and \(\epsilon \) a small enough positive number so that \([C] \) given in Lemma 8 does not belong to \(\overline{NE}_{\epsilon}(X, H) \). By Theorem 3 in [3], \([C] \) is written as

\[
[C] = \sum_{i=1}^{r} a_{i} [\epsilon_{i}] + V,
\]
where \(a_i > 0, \ell_1 \) are extremal rational curves for all \(i \), and \(V \in \overline{\text{NE}}_e(X) \). Hence \(\pi_*[\ell_1] + \pi_*V = 0 \) and \(\pi_*[\ell_1], \pi_*V \in \overline{\text{NE}}(Z) \) by Lemma 7. Since \(Z \) is projective, we have \(a_i \pi_*[\ell_1] = 0 \) for all \(i \) and \(\pi_*V = 0 \) by Kleiman's criterion of projectivity: \(\overline{\text{NE}}(Z) \cap \{-\overline{\text{NE}}(Z)\} = \{0\} \). Since \([C] \notin \overline{\text{NE}}_e(X)\), there is at least one \(j \) such that \(a_j \neq 0 \). Then \(\ell_j \) has the required property.

q.e.d.

Lemma 10. The curve \(\ell \) in Lemma 9 is not numerically effective.

If \(E \) is the effective divisor on \(X \) given in the proof of Lemma 8, then

\[
(\ell.E) = (\ell.K_X) - (\ell.\pi^*K_Z) \]

\[
= (\ell.K_X) - (\pi_*\ell_K_Z) < 0.
\]

Thus Theorem 5 is proved, and it is easy to check the assertions in Examples 6.
References

