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Threefolds whose canonical bundles are not numerically effective

by

Shigefumi Mori

In this note, we announce an application of the previous paper

[3] with some examples.

§1l. Announcement.

We assume that k

characteristic 0 and X

over k
We use the terminology

extremal ray R, which

Theorem 1. There
projective variety Y
irreducible curve C

Furthermore, such a ¢

The structure of this

Theorem 2.

if and only if dim Y

then there exists an irreducilble divisor D
X 1is the blowing-up of Y by the 1deal defining

the reduced structure),

(1)  ¢(D)
%D D — ¢(D) 1is a
ne ¢(D),

(2) Q = ¢(D) 1is

whose canonical bundle KX

in

The extremal ray R

is a non-singular curve and Y

The proof will be published elsewhere.

is an algebraically closed field of
is a non-singular projective 3-fold

is not numerically effective.

X
of [3]. By Corollary & [3], X has an
we fix 1in this section.
exlsts a morphism ¢ X—>Y toa

=O’Y,

X, [C] ¢ R 1if and only 1if dim¢(C) = 0.

such that (1) ¢465% and (2) for any

is unique up to an isomorphism.
¢ 1s given by the following theorems.

is not numerically effective
3. If these conditions are satisfied,

of X such that
$(D) (given
and we have either

is non-singular;
Pl (0.67 1)) = -1

-bundle and for any

~ 52

a poilnt and Y is non-singular; D =1
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and 65

{(3) Q = ¢$(D) is an ordinary double point of Y;

(D) ¥ (-1,

D IP~x IP and %(D) 1<} G’IP( 1)®p‘2 ]P( 1), where p; 1s

the i-th projection,

(4) Q = ¢(D) 1s a double point of Y; D = an irreducible

4

= 9'888']?(-1), or

(5) Q = ¢(D) 4is a quadruple point of Y; D ¥ ZPZ,

reduced singular quadric surface S in IEs, Gb(D)

G‘D(D) = O‘IP(-E) .

Let 6& Q be the local ring of Y at @ for cases (3), (4),
s

and (5) in Theorem 2. Then we have

Theorem 3. (1) The divisor class group of QY,Q is 0 in
cases (3) and (4), and Z/2% in case (5), and
(2) the completion G§,QA of Oy’Q is given by
K[(x,y,2,ull/(x° + y° + 22 + u®) case (3),
oy o" ¥4 KlIx,3,2,ull/(x° + y° + 2° + ud) case (4),
k[[x,y,23](2> case (5),

where k[[x,y,z]](z) is the invariant subring of k[[x,y,zl1]

under the actlon of the involution (x,y,2z) +—> (-x,-y,=2).
The remaining cases are treated by

Theorem 4, If R is numerically effective, then Y is
non-singular, p(X) = p(Y) + 1, and we have either

(1) dim Y = 2, and for an arbitrary geometric point n of Y,
the scheme-theoretic fiber Xn is isomorphic to a conic of :PZK(n)’
where k(n) 1is the field of n (i.e. Xn is isomorphic to either

a smooth conic, a reducible conic, or a double line,)
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(2) dim Y = 1, and for an arbitrary geometric point n of Y,

Xn is an irreducible reduced surface such that w is ample, or

X
n
(3) dim Y = 0, and X 1s a Fano 3~fold,(these 3-folds are

classified by Iskovski [2].)

§2., Exceptional divisors.
The most interesting part of section 1 is Theorem 2. Examples

for Theorem 2 can be given by considering birational morphisms.

Theorem 5., Let ¢ : X —> Z be a birational morphism (which
is not an isomorphism) of non-singular projective 3-folds. Then
X contains an extremal rational curve & such that (1) dim =(2)
= 0 and (2) & is not numerically effective. Hence the exceptional

get of 7 contalins a divisor described in Theorem 2.

Examples 6. Let Z be a non-singular projective 3-fold.
(1): Let Cl and 02 be non-singular projective curves in

1 and P2. If we

operate Hironaka's twisted blowing-up to Cl and C2 (e.g. blowing

up Cl first near P1 and C2 first near PQ)’ then the

Yblowing up* « : X —> 7 does not have a divisor described in

Z intersecting transversally at 2 points P

Theorem 2.
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However, this does not contradict our theorems, because our
X 1s not projective.

(2): Let C be an irreducible projective curve in Z with
one ordinary double point P as singularities. If we blow up C,
then the blown-up variety Y has one ordinary double point Q
lying over P as singularities. If we resolve the singularity

by blowing up Q and get a smooth 3~fold X, = : X —>Z and

$ : X —> Y, then D = ¢—1(Q) is the divisor described in case
(3) of Theorem 2. -
/ ?., -_—>

We remark that we can not start with an arbitrary ordinary
double point because of Theorem 3, (1).

(3): Let C be an irreducible projective curve in 272 with
one ordinary cusp P as singularities. If we blow up C, the
blown-up variety Y has one double point Q 1lying over P as
singularities which falls in case (4) of Theorem 2. If we blow up
Q to get a smooth 3-fold X, ¢ : X —> Y and = : X — Z, then
l

D=4 is the divisor described in case (4).

#)-@rD
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(4): Let ¢ Cz’ and C be non-singular projective curves

1’ 3

in Z 1intersecting transversally at one point P. If we operate
projective

Hironaka's modification in [1], we get a smooth,3~fold X and

r i X —> 7, and D, the divisorial part of = “(P), is the

divisor given in case 5 of Theorem 2.

,‘.L —

We will finish this section by proving Theorem 5. The proof
consists of a few easy lemmas. We keep the notation of Theorem 5

t111 the end of this section.

Lemma 7. Tg : N(X) —> N(Z) has the property
W*N-.E(X) C NE(z).

Indeed, we have w,NE(X) C NE(Z) by the definition of wmy,

which implies Lemma 7 by continuity of my.

Lemma 8. There is an effective l-cycle € on X such that

m4C = 0 and (C.cy(X)) > 0.

Proof. Let E be the effective divisor on X such that
Supp E is the exceptional set of « and KX = n*KZ + E. We
treat two cases.

Case 1: dim n(Supp E) = 1.

By Bertini's theorem, there is a smooth hyperplanesection L
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of 7 such that w_l(L) is irreducible and non-singular. Then

we have

(Ky-E.w¥L) = (n¥K,.E.7%L) + (B2 . 7%L)

7
7
(E.n¥(X_.L)) + ( (E))
sy Gt;l(L) -1

(L)

2
(ng E.K,.LY + ( (E)™)
Tt (%/"1@) L)

0. We have

i

Since wyE = 0, we have (myE.K,.L)

2 .
( &~ (E)Y®) < 0 because C = E.7¥L (# 0, since
v (L) L)

dim #(Supp E) = 1) is an exceptional diviscr of n”l(L) — L.
Hence w4,C = 0 and (KX.C) < 0.

Case 2: dim #(Supp E) = 0.

Let M be a smooth hyperplanesection of X, hence M and

E intersect properly and M.E # 0. Then we have

(Ky-E.M) = (r*K,.E.M) + (E2.M)

Z
=(K, . mg(E.M)) + (O3 (B)2).

Now wg(E.M) = 0 Dbecause dim «(Supp E) = 0, and ( OM(E)2)M < 0
because E.M 1is an exceptional divisor of M — 7(M). Hence

C = E.M has the required property. g.e.d.

Lemma 9. There is an extremal rational curve & on X

such that wge = 0,

Proof. Let H be an arbitrary ample divisor on X and ¢

small enough positive number so that [C] given in Lemma 8 does

not belong to NE (X, H). By Theorem 3 in [3], [C] 1is written as

[c] = ay [zi] + Vv,

10 o B B ]

i=1
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where a; > o, zi are extremal rational curves for all 1, and
Ve NE_(X). Hence zajmyle ]+ nyV =0 and wyle 3,7,V ¢ NE(Z)

by Lemma 7. Since Z 1is projective, we have ain*[ﬁi] =0 for

it

all 1 and w,V 0 by Kleiman's criterion of projectivity:

NE(Z) N {-NE{(Z)}

i

{0}. Since [C] ¥ NE;(X), there is at least one
J such that aj # 0. Then Lj has the required property.

g.e.d.

Lemma 10. The curve & in Lemma 9 1s not numerically

effective.

If E 1is the effective divisor on X given in the proof

of Lemma 8, then

I

(2.E) (l.KX) - (z.n*KZ)

(Q.KX) - (W*Q.KZ) < 0.

Thus Theorem 5 is proved, and it is easy to check the assertions

in Examples 6.

87



18

References
[1] H. Hironaka, An example of non-Kaehlerian complex-analytic
deformation of Kaehlerian complex structures, Ann. Math.
Vol. 75 (1962), 190-208.
[2] V. A. Iskovskih, Fano 3-folds II, Math. USSR Izv. 11 (1977).

[3] S. Mori, The cone of effective l-cycles, in the same volume.

90



