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The cone of effective l-cycles
by

Shigefumi Mori

Introduction. In this note, our subject is the cone NE(X) of
effective l-cycles on a non-singular projective variety X.
We will study how far this convex cone NE(X) is from
being polyhedral. If cl(X), the first Chern class, is ample,
then NE(X) is polyhedral (Theorem 1.) In general, NE(X)
is close to be "polyhedral" on the half space {Z e N(X) |
(z.cl(X)) > 0} (Theorem 3.) Theorem 3 (or even Lemma 5)
includes the assertion: KX’ canonical divisor, is numerically
effective if X contains no rational curves.

In the next paper, we will consider the application of

Theorem 3.

§1. Notation, definitions, and statements.

Let X ©be a non-singular projective variety of dimension
n defined over an algebraically closed field k of
characteristic p > 0, with a very ample divisor H. We will
keep these symbols throughout this paper.

By a l-cycle on X, we understand an element of the free
abelian group generated by all the irreducible reduced
subvarieties of dimension 1 of X. A l-cycle Z =1I n, C

C

(nC e Z ) 1is called effective if ne > 0 for all C. If two

l-cycles Z and Z are algebraically eguivalent (resp.

1 2
numerically eguivalent) in the usual sense [2], we express it

by ZlA“ Z2 (resp. lej Z2.) Let
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A(X)

({1-cycles on X}/X)®, Q,
N(X)

({l~cycles on X}/é)t&zZ IR, and
AE(X) (resp. NE(X)) the smallest convex cone in A(X) (resp.
N(X)) containing all effective l-cycles, closed under
multiplication by @, = {q ¢ @ | @ > 0} (resp. R, = {reR ]
r > 0}.) Via the intersection palring ( . ) of l-cycles and
divisors, N(X) 1is dual to NS(X)®?Z R, where ©NS(X) 1is the
Neron-Severi group, {divisors of X}/&. Thus N(X) 1is a real
vector space of finite dimension p(X), the rank of NS(X).
Let §| I be any norm of N(X). Then NE(X), the closure of
NE(X) for the metric topology, is dual to the pseudo-ample cone
of X (ef. [2]) by Kleiman's criterion for ampleness: a
divisor D on X 1is ample if and only if (D.Z) > 0 for all
Z e NE(X)N {Z ¢ N(X) | Nz = 1}.

This cone NE(X), which is interesting from various
viewpoints, is rational polyhedral if cl(X), the first Chern

class of X, is ample.

Theorem 1. If cl(x> is ample, then X contains finitely

many rational curves i, L5, ..., Ef‘ such that (2;.c (X)) <n+l
for all 1,

a) -AE(X) = m+tzl] + oL+ Q+[zr] if p > 0, and

b) NE(X) =IR+[21] S +ZR+[2r] if p > 0, where

[Z] denotes the class of l-cycle Z.

To be explicit, a rational curve means an irreducible

1

reduced curve defined over k whose normalization is IP K

This theorem enables us to improve our theorem 3 [5].
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Corollary 2. If ci(X) is ample, then

a) a divisor D on X 4is ample if D is numerically
positive,

b) p(X) = 1 1f every numerically effective divisor is
either numerically trivial or ample, and

c) p(X) = 1 if every non-zero effective divisor is ample
and if p = 0, where a divisor D 1s said numerically positive
(resp. numerically effective, numerically trivial) if (D.Z) > O

{(resp. (D.Z) > 0, (D.Z) = 0) for all irreducible curves Z.

Indeed (a) follows from NE(X) = NE(X) by virtue of
Kleiman's criterion. If p(X) > 1, then we can take a divisor
D such that D » 0 on the interior (# ¢) of NE(X) and D =0

for some 1
on IR+[£i],\as a real valued linear function on N(X), which-
implies that D 1s numerically effective, and not numerically
trivial, or ample.  This shows (b), and (c) follows from
(b) by Lemma 2, (2) [5].
To study NE(X) for general X, we need more definitions.

for an arbitrary positive real number ¢, let

AE(X, H) {z e A(X) | (Z.cq(X)) s(Z.H)},i

| A

H

I A

N_(X, H) = {2 ¢ N(X) | (z.cl(x)) e(Z.H)}, v
AES(X, H) = AE(X) AS(X, H), and NEE(X, H) = NE(X) n Ne(X’ H}.

If there is no danéer of confusion, AE(X, H), NE(X, H), AEE(X, H),
NEE(X, H) will be abbreviated to AE(X), NE(X), AEE(X), NEe(X),

respectively.

Theorem 3. For an arbitrary positive ¢, there exist a

2 in X

finite number r (> 0) of rational curves 21, cees R

such that (Ri.cl(x)) < n+l for all 1,
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a) AE(X) = Q+[£1] + ... + Q+[£r] + AEG(X) if p > 0, and
b) NE(X) =:m+[zl] + ... +:m+[zrj + NEE(X) if p > 0,

where EEE(X) = NE(X) N NE(X).

Now Theorem 1 follows from Theorem 3. Indeed, if cl(X)
is ample, then AEE(X) = NES(X) = 0, when 1/e¢ 1s a sufficiently
large integer such that (l/e)cl(x) - H 1is ample. Theorem 3 will

be proved in the next section.

§2. Proof of Theorem 3.

We will begin by reformulating Thoerems 4 and 5 in [3].

Theorem 4., For a non-singular projective curve C of
genus g over k and a morphism f : C —> X, there exist a
morphism h : ¢ — X and an effective l-cycle Z with the
properties; (a) (h*(C).cl(X)) < ng, (b) an arbitrary irreducible
component Z' of Z 1is a rational curve such that

(z'.cq(X)) < n+l, and (c) fu(C)= hy(C) + Z.

Proof. In the statement, f, 1s the cycle-theoretic
direct image; f,(C) = 0 if dim f(c) = 0, [C : f(C)] f£(Cc) 1if
dim f£(C) = 1. We will treat two cases. PFirst we assume g = O.
We use induction on (f (C).H). If (f*(C).cl(X)) < n+l,
then we can set h to be any constant map and Z = £, {(C).
ir (f*(C).cl(X)) > n+l, Theorem 4 [3] implies that f,(C) %
Zl + 22, where Z1 and 22 are non-zerc effective l-cycles
whose components are rational curves. Since (£ (C).H) =
(Zl'H) + (Z2.H), we can apply the induction hypothesis to

Z1 and 22, and the case g = 0 is done. We prove the case

g > 0 again by induction on (f£g(C).H). If (£4(C).c (X)) < ng,
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we can set h =f and Z 0. If (f*(C).cl(X)) > ng, it follows
from the proof of Theorem 5 [3] that f (C)=x f',(C) + U,

where f' : ¢ — X. and U is a non-zero effective l-cycle

whose components are rational curves. Since U # O,

(£14(C).H) < (£4(C).H). Now we have only to apply the induction

hypothesis to f' and the result on the case g = 0 to each

component of U. g.e.d.
Now Theorem 3, (a) is an easy corollary to Theorem 4,

Proof of Theorem 3, (a). Let us consider the set ¢ of

all the rational curves ¢ in X such that (Q-Cl(x))<in+1

and [] # AEE(X). These curves & form a bounded family, i.e.
parametrized by a quasi-projective scheme [1, n®221, 4],

because (g.H) < (m.cl(X))/e < (n+1)/e. Hence there exist
finitely many rational curves 21, ey zr which form a complete
set of representatives of ¢4 . We will show that the convex
cone V = Q+[zl] + ... 4+ m+[ﬁrj + AEE(X) is equal to AE(X).

We treat two cases. Let & be a rational curve in X. By
Theorem 4, ¢ 2 Z for some effective l-cycle 7 whose components

7' are rational curves such that (Z‘.cl(X)) n+l. Thus for

tA

each component Z' of Z, we have either Z' ¢ ¢ or Z' ¢ AEe(X).
Hence [2] ¢ V, and the rational curve case is done. Let C

be a non-singular projective curve of genus g > 0 and

f : C-—>X a morphism. Let Cy be the p *~th power of C
and ot Ci — Ci—l the p-th power morphism. We then
inductively find morphisms fi : Ci ~—3> X and its image Di =

f,4(C;) for i > 0 so that fy £, (Dyyq-¢7(X)) < ng, and

p[Di] - [Di+l] e V for all 1 > 0. Indeed, if we apply
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Theorem 4 to f1°“i+1 : Ci+1 —> X, then we get h = fi+1 and

h*(ci+l) = Dy, such that p[Di] - [Di+1] is equivalent to

a sum of rational curves which belong to V as we have seen
before. Now if [Da] e V for some a, then [DO] e 7 Dbecause

a~1 .
b, = t p 97D, - D

-a
D
0 3=0

3 j+1) +p a’

If [D;] £ AE_(X) for all i, then (D .H) < (Dj.c;(X))/e < ng/e
for all 1. Since (Di.H) is uniformly bounded, there are

numbers a and b such that Dajv Db and a <b [1, n°221].
Then
b-1
- 1)D,= p ~°D, - D = I
i=a

b-a b+1-i
p (

i+l
implies that [Da] e V, from which follows [DO] e V. g.e.d.

To prove a result in characteristic 0, we prove a variant

of Theorem 3, (b) which is actually equivalent to Theorem 3, (b).

Lemma 5. Let Z be an effective l-cycle on X such that
(Z.cl(X)) > 0, and M an arbitrary ample divisor on X. Then
there exists a rational curve Z' such that

N+l (eq(X).2")  (c(X).Z)
M.27) =~ (M.2°) > T (WM.2)

Proof. If we can prove the lemma in characteristic p > 0,
we can prove the lemma in characteristic 0 by using the arguments
on schemes over Spec Z because the inequality in the theorem
gives an upper bound of (M.Z'); (M.Z') < (n+l)(M.Z)/(cl(X).Z)
which is independent of p (see the proof of Theorem 6 in [3].)
Hence assuming that p > 0, we can apply Theorem 3, {(a). We

choose € so that 1/¢ 1s a natural number and
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(1/e)M - 2(M.Z)H 1is ample. Then there exist non-negative
rational numbers Bys eees Ay and Y ¢ NEE(X) such that
(2] = za,[e;] + Y. Since Y e NES(X) and (M.Y) »
2¢(M.Z)(H.Y), we see (cl(X).Y) < e(H.Y) < (M.Y)/2(M.Z).
Thus

(cl(x).z) zai(cl(X).zi) + (M.Y)/2(M.Z)

M. 2) he ray (M.27) + (M.Y)

and since a; > 0 and (M.Y) > 0, we have

(¢, (X).2) (c,(X).2.)
1 1 i 1
wzy o & Mex URx ey s ammzy
Since (cl(X).Z} > 1, we can take Z' = %, for some 1.

qg.e.d.

Let us prove Theorem 3, (b). As in the proof of Theorem
3, {a), the set ¢ of rational curves 2 in X such that
(Q.cl(X)) < n+l and {[r] £ NE (X) is bounded, and ¢/% has a

L. we claim

complete set of representatives 21, cees Ay

Lemma 6. The cone V =ZR+[£l} +:R+{£r] + NEE(X)

is closed in N(X) = ®°(X),

Proof. Let Z e N(X) be a limit of Z(i) = a(i, 1)i; +
+a(i, r)t + Y(1) (4 > 1), where a(i, j) eR, and
Y(i) € NE (X). Then the sequence (Z{(i).H) is bounded
because (7(i).H) —> (Z.H) as 1 —> ®. 8Since
a(i, J) = (Z(i)-H)/(RJ-H) and (Y(i).H) < (Z(1).H),
the numbers a(i, j), (Y(i).H), and hence ll Y(1)}| have a

uniform upper bound by Kleiman's criterion. Thus there exists

a subsequence Z(ni) such that a(ni, j) and Y(ni) converge
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as 1 —> =, whence 7 ¢ V. q.e.d.

Going back to the proof of Theorem 3, (b), we will assume
that V # NE(X) and show that this leads to a contradiction.
By the ampleness of H, NE(X)AN {Y ¢ N(X) | (Y.H) = 1} 1is
compact. Hence by the separation theorem for convex sets,
there 1s an element M ¢ NS(X)@)ZB% with the propertiles, (a)

M >0 on NE(X) and M(Z) = 0 for some non-zeroc Z 1in
NE(X), and (b) M > 0 on V - {0} considered as a real valued
function on N(X). By the above compactness, there exist a

sequence {Mj} of ample divisors and a sequence {mj}

320 30

of natural numbers such that M 4is the 1limit of Mj/mj in

NS(X)@)ZIR as j —> ». Let Z (given in the condition (a))
be the limit of [Zj]/nj, where Zj is an effective l-cycle and

ny a natural number. Since V; = VAN {Y e N(X) | (Y.H) = 1}

is compact, (cl(X).Y)/(Mj/mj.Y) converge uniformly to

(cl(X).Y)/(M.Y) when Jj —> « as functions on Vl' Hence

(cl(X).Y)/(Mj/mj.Y) (J >0, Y e V- {0}) are uniformly

bounded. We have (Cl(x)'zj)/(Mj/mj'Z ) —> +® as J —> o«

J
because (M.Z) = 0 and (cl(X).Z) >0 (Z £ V.) Hence for a

sufficiently large J, we have

(cl(x).zj) (cl(X).Y>

>
(Mj'zj) (Mj.Y)

for all Y e V - {0}.

If we apply Lemma 5 to these Zj and Mj (note that (cj(X).Zj)

> 0,) we get a rational curve & such that

(e, (X).2) (c.(X).2.)
+1 1 1
<§113..g> o 7MJ—‘ZJ—TJ—

This inequality (together with the above) means that 2 £ V
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and (cl(X).g) < n+l. Since V2 NEE(X), we have & £ NEE(X)
and 2 ¢ ¢. This implies [2] ¢ V, which 1s a contradiction.

Thus Theorem 3, (b) 1s proved.

§3. Concluding remarks.

A half line R =ZR+[Z] in N(X) 1is called an extremal ray

1 2

to R if Zl + Z2 ¢ R. A rational curve ¢ in X 1s an

extremal rational curve 1f (g.c;(X)) < ntl and R, [2] is an

if (1) (Z.c (X)) > 0, and (2) 2, and Z, in NE(X) belong

extremal ray.
It is not hard to restate Theorem 3 without wusing H and

€ (cf. [4].) Here we simply state an immediate corollary.

Corollary 7. X has an extremal rational curve if and only

if KX is not numerically effective.

Only if part 1s obvious. If KX is not numerically effective,
then NE(X) # NEE(X, H). Then at least one of 2,'s in Theorem 3

is an extremal rational curve.
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