The cone of effective 1-cycles

bу

Shigefumi Mori

Introduction. In this note, our subject is the cone NE(X) of effective 1-cycles on a non-singular projective variety X. We will study how far this convex cone NE(X) is from being polyhedral. If $c_1(X)$, the first Chern class, is ample, then NE(X) is polyhedral (Theorem 1.) In general, NE(X) is close to be "polyhedral" on the half space $\{Z \in N(X) \mid (z.c_1(X)) > 0\}$ (Theorem 3.) Theorem 3 (or even Lemma 5) includes the assertion: K_X , canonical divisor, is numerically effective if X contains no rational curves.

In the next paper, we will consider the application of Theorem 3.

§1. Notation, definitions, and statements.

Let X be a non-singular projective variety of dimension n defined over an algebraically closed field k of characteristic $p \geq 0$, with a very ample divisor H. We will keep these symbols throughout this paper.

By a 1-cycle on X, we understand an element of the free abelian group generated by all the irreducible reduced subvarieties of dimension 1 of X. A 1-cycle $Z = \Sigma n_C$ C ($n_C \in \mathbb{Z}$) is called effective if $n_C \ge 0$ for all C. If two 1-cycles Z_1 and Z_2 are algebraically equivalent (resp. numerically equivalent) in the usual sense [2], we express it by $Z_1 \approx Z_2$ (resp. $Z_1 \approx Z_2$.) Let

 $A(X) = (\{1-\text{cycles on } X\}/\approx) \otimes_{\mathbb{Z}} \mathbb{Q},$

N(X) = ({1-cycles on X}/ \lessapprox) \otimes_{π} IR, and

AE(X) (resp. NE(X)) the smallest convex cone in A(X) (resp. N(X)) containing all effective 1-cycles, closed under multiplication by $\mathbb{Q}_+ = \{q \in \mathbb{Q} \mid q \geq 0\}$ (resp. $\mathbb{R}_+ = \{r \in \mathbb{R} \mid r \geq 0\}$.) Via the intersection pairing (.) of 1-cycles and divisors, N(X) is dual to NS(X) $\otimes_{\mathbb{Z}}$ \mathbb{R} , where NS(X) is the Neron-Severi group, {divisors of X}/ \approx . Thus N(X) is a real vector space of finite dimension $\rho(X)$, the rank of NS(X). Let $\| \|$ be any norm of N(X). Then $\overline{\text{NE}}(X)$, the closure of NE(X) for the metric topology, is dual to the pseudo-ample cone of X (cf. [2]) by Kleiman's criterion for ampleness: a divisor D on X is ample if and only if (D.Z) > 0 for all $Z \in \overline{\text{NE}}(X) \cap \{Z \in \text{N}(X) \mid \|Z\| = 1\}$.

This cone NE(X), which is interesting from various viewpoints, is rational polyhedral if $c_1(X)$, the first Chern class of X, is ample.

Theorem 1. If $c_1(X)$ is ample, then X contains finitely many rational curves $\ell_1, \ell_2, \ldots, \ell_r$ such that $(\ell_i, c_1(X)) \le n+1$ for all i,

- a) $AE(X) = Q_{+}[l_{1}] + ... + Q_{+}[l_{p}]$ if p > 0, and
- b) NE(X) = $\mathbb{R}_+[\ell_1]$ + ... + $\mathbb{R}_+[\ell_r]$ if $p \ge 0$, where
- [Z] denotes the class of 1-cycle Z.

To be explicit, a rational curve means an irreducible reduced curve defined over k whose normalization is \mathbb{P}^1_{k} . This theorem enables us to improve our theorem 3 [5].

Corollary 2. If $c_1(X)$ is ample, then

- a) a divisor $\ensuremath{\mathsf{D}}$ on $\ensuremath{\mathsf{X}}$ is ample if $\ensuremath{\mathsf{D}}$ is numerically positive,
- b) $\rho(X)$ = 1 if every numerically effective divisor is either numerically trivial or ample, and
- c) $\rho(X) = 1$ if every non-zero effective divisor is ample and if p = 0, where a divisor D is said numerically positive (resp. numerically effective, numerically trivial) if (D.Z) > 0 (resp. (D.Z) \geq 0, (D.Z) = 0) for all irreducible curves Z.

Indeed (a) follows from NE(X) = $\overline{\text{NE}}(X)$ by virtue of Kleiman's criterion. If $\rho(X) > 1$, then we can take a divisor D such that D > 0 on the interior ($\neq \phi$) of NE(X) and D = 0 for some i on $\mathbb{R}_{+}[\ell_{1}]_{\Lambda}$ as a real valued linear function on N(X), which implies that D is numerically effective, and not numerically trivial, or ample. This shows (b), and (c) follows from (b) by Lemma 2, (2) [5].

To study $\overline{NE}(X)$ for general X, we need more definitions. for an arbitrary positive real number ϵ , let

$$\begin{split} &A_{\varepsilon}(X,\ H) = \{Z\ \varepsilon\ A(X)\ \big|\ (Z.c_1(X)) \le \varepsilon(Z.H)\},\\ &N_{\varepsilon}(X,\ H) = \{Z\ \varepsilon\ N(X)\ \big|\ (Z.c_1(X)) \le \varepsilon(Z.H)\},\\ &AE_{\varepsilon}(X,\ H) = AE(X) \ \ A_{\varepsilon}(X,\ H),\ and\ NE_{\varepsilon}(X,\ H) = NE(X) \ \ \ N_{\varepsilon}(X,\ H).\\ &If\ there\ is\ no\ danger\ of\ confusion,\ A_{\varepsilon}(X,\ H),\ N_{\varepsilon}(X,\ H),\ AE_{\varepsilon}(X,\ H),\\ &NE_{\varepsilon}(X,\ H)\ \ will\ be\ abbreviated\ to\ A_{\varepsilon}(X),\ N_{\varepsilon}(X),\ AE_{\varepsilon}(X),\ NE_{\varepsilon}(X),\\ &respectively. \end{split}$$

Theorem 3. For an arbitrary positive ϵ , there exist a finite number r (\geq 0) of rational curves ℓ_1 , ..., ℓ_r in X such that $(\ell_1, c_1(X)) \leq n+1$ for all i,

- a) $AE(X) = Q_{+}[l_{1}] + ... + Q_{+}[l_{p}] + AE_{f}(X)$ if p > 0, and
- b) $\overline{\text{NE}}(X) = \mathbb{R}_{+}[\ell_1] + \dots + \mathbb{R}_{+}[\ell_r] + \overline{\text{NE}}_{\epsilon}(X)$ if $p \ge 0$, where $\overline{\text{NE}}_{\epsilon}(X) = \overline{\text{NE}}(X) \cap N_{\epsilon}(X)$.

Now Theorem 1 follows from Theorem 3. Indeed, if $c_1(X)$ is ample, then $AE_{\epsilon}(X) = \overline{NE}_{\epsilon}(X) = 0$, when $1/\epsilon$ is a sufficiently large integer such that $(1/\epsilon)c_1(X) - H$ is ample. Theorem 3 will be proved in the next section.

§2. Proof of Theorem 3.

We will begin by reformulating Thoerems 4 and 5 in [3].

Theorem 4. For a non-singular projective curve C of genus g over k and a morphism $f: C \longrightarrow X$, there exist a morphism $h: C \longrightarrow X$ and an effective 1-cycle Z with the properties; (a) $(h_*(C).c_1(X)) \le ng$, (b) an arbitrary irreducible component Z' of Z is a rational curve such that $(Z'.c_1(X)) \le n+1$, and (c) $f_*(C) \approx h_*(C) + Z$.

<u>Proof.</u> In the statement, f_* is the cycle-theoretic direct image; $f_*(C) = 0$ if dim f(C) = 0, [C:f(C)] f(C) if dim f(C) = 1. We will treat two cases. First we assume g = 0. We use induction on $(f_*(C).H)$. If $(f_*(C).c_1(X)) \le n+1$, then we can set h to be any constant map and $Z = f_*(C)$. If $(f_*(C).c_1(X)) > n+1$, Theorem 4 [3] implies that $f_*(C) \approx Z_1 + Z_2$, where Z_1 and Z_2 are non-zero effective 1-cycles whose components are rational curves. Since $(f_*(C).H) = (Z_1.H) + (Z_2.H)$, we can apply the induction hypothesis to Z_1 and Z_2 , and the case g = 0 is done. We prove the case g > 0 again by induction on $(f_*(C).H)$. If $(f_*(C).c_1(X)) \le ng$,

we can set h = f and Z = 0. If $(f_*(C).c_1(X)) > ng$, it follows from the proof of Theorem 5 [3] that $f_*(C) \approx f'_*(C) + U$, where $f': C \longrightarrow X$ and U is a non-zero effective 1-cycle whose components are rational curves. Since $U \neq 0$, $(f'_*(C).H) < (f_*(C).H)$. Now we have only to apply the induction hypothesis to f' and the result on the case g = 0 to each component of U.

Now Theorem 3, (a) is an easy corollary to Theorem 4.

Proof of Theorem 3, (a). Let us consider the set of all the rational curves ℓ in X such that $(\ell.c_1(X)) \leq n+1$ and [1] ℓ AE_{ℓ}(X). These curves 1 form a bounded family, i.e. parametrized by a quasi-projective scheme [1, n°221, 4], because (1.H) < (1.c $_{\gamma}$ (X))/ ϵ < (n+1)/ ϵ . Hence there exist finitely many rational curves ℓ_1 , ..., ℓ_r which form a complete cone $V = \mathbb{Q}_{+}[l_1] + \dots + \mathbb{Q}_{+}[l_p] + AE_c(X)$ is equal to AE(X). We treat two cases. Let & be a rational curve in X. By Theorem 4, $l \approx Z$ for some effective 1-cycle Z whose components Z' are rational curves such that $(Z'.c_1(X)) \leq n+1$. Thus for each component Z' of Z, we have either Z' ϵ Φ or Z' ϵ AE (X). Hence [1] ϵ V, and the rational curve case is done. Let $\,$ C be a non-singular projective curve of genus g > 0 and $f: C \longrightarrow X$ a morphism. Let $C_{\underline{i}}$ be the $p^{-\underline{i}}$ -th power of Cand $\pi_i : C_i \longrightarrow C_{i-1}$ the p-th power morphism. We then inductively find morphisms $f_i:C_i\longrightarrow X$ and its image $D_i=$ $f_{i*}(C_i)$ for $i \ge 0$ so that $f_0 = f$, $(D_{i+1}.c_1(X)) \le ng$, and $p[D_i] - [D_{i+1}] \in V$ for all $i \ge 0$. Indeed, if we apply

Theorem 4 to $f_i \circ \pi_{i+1} : C_{i+1} \longrightarrow X$, then we get $h = f_{i+1}$ and $h_*(C_{i+1}) = D_{i+1}$ such that $p[D_i] - [D_{i+1}]$ is equivalent to a sum of rational curves which belong to V as we have seen before. Now if $[D_a] \in V$ for some a, then $[D_0] \in V$ because

$$D_0 = \sum_{j=0}^{a-1} p^{-j-1}(pD_j - D_{j+1}) + p^{-a} D_a.$$

If $[D_i] \not\in AE_{\epsilon}(X)$ for all i, then $(D_i \cdot H) \leq (D_i \cdot c_1(X))/\epsilon \leq ng/\epsilon$ for all i. Since $(D_i \cdot H)$ is uniformly bounded, there are numbers a and b such that $D_a \approx D_b$ and a < b [1, n°221]. Then

$$(p^{b-a} - 1)D_a \approx p^{b-a}D_a - D_b = \sum_{i=a}^{b-1} p^{b+1-i}(pD_i - D_{i+1})$$

implies that $[D_a] \in V$, from which follows $[D_0] \in V$. q.e.d.

To prove a result in characteristic 0, we prove a variant of Theorem 3, (b) which is actually equivalent to Theorem 3, (b).

Lemma 5. Let Z be an effective 1-cycle on X such that $(Z.c_1(X)) > 0$, and M an arbitrary ample divisor on X. Then there exists a rational curve Z' such that

$$\frac{n+1}{(\mathsf{M}.\mathsf{Z'})} \geq \frac{(\mathsf{c}_1(\mathsf{X}).\mathsf{Z'})}{(\mathsf{M}.\mathsf{Z'})} \geq \frac{(\mathsf{c}_1(\mathsf{X}).\mathsf{Z})}{(\mathsf{M}.\mathsf{Z})} \ .$$

<u>Proof.</u> If we can prove the lemma in characteristic p > 0, we can prove the lemma in characteristic 0 by using the arguments on schemes over Spec ZZ because the inequality in the theorem gives an upper bound of (M.Z'); $(M.Z') \leq (n+1)(M.Z)/(c_1(X).Z)$ which is independent of p (see the proof of Theorem 6 in [3].) Hence assuming that p > 0, we can apply Theorem 3, (a). We choose ϵ so that $1/\epsilon$ is a natural number and

 $(1/\epsilon)M - 2(M.Z)H$ is ample. Then there exist non-negative rational numbers a_1, \ldots, a_r and $Y \in NE_{\epsilon}(X)$ such that $[Z] = \Sigma a_1[\ell_1] + Y$. Since $Y \in NE_{\epsilon}(X)$ and $(M.Y) \geq 2\epsilon(M.Z)(H.Y)$, we see $(c_1(X).Y) \leq \epsilon(H.Y) \leq (M.Y)/2(M.Z)$. Thus

$$\frac{(c_1(X).Z)}{(M.Z)} \leq \frac{\sum a_i(c_1(X).l_i) + (M.Y)/2(M.Z)}{\sum a_i(M.l_i) + (M.Y)}$$

and since $a_i \ge 0$ and $(M.Y) \ge 0$, we have

$$\frac{(c_1(X).Z)}{(M.Z)} \leq \max_{i} \{\max_{i} \frac{(c_1(X).l_i)}{(M.l_i)}, \frac{1}{2(M.Z)} \}.$$

Since $(c_1(X).Z) \ge 1$, we can take $Z' = l_1$ for some i. q.e.d.

Let us prove Theorem 3, (b). As in the proof of Theorem 3, (a), the set Φ of rational curves ℓ in X such that $(\ell.c_1(X)) \leq n+1$ and $[\ell] \notin NE(X)$ is bounded, and Φ/\otimes has a complete set of representatives ℓ_1, \ldots, ℓ_r . we claim

Lemma 6. The cone $V = \mathbb{R}_+[\ell_1] + \dots + \mathbb{R}_+[\ell_r] + \overline{NE}_{\varepsilon}(X)$ is closed in $N(X) \simeq \mathbb{R}^{\rho(X)}$.

Proof. Let $Z \in N(X)$ be a limit of $Z(i) = a(i, 1)^{\ell}_{1} + \cdots$ $+ a(i, r)^{\ell}_{r} + Y(i)$ $(i \ge 1)$, where $a(i, j) \in \mathbb{R}_{+}$ and $Y(i) \in \overline{NE}(X)$. Then the sequence (Z(i).H) is bounded because $(Z(i).H) \longrightarrow (Z.H)$ as $i \longrightarrow \infty$. Since $a(i, j) \le (Z(i).H)/(\ell_{j}.H)$ and $(Y(i).H) \le (Z(i).H)$, the numbers a(i, j), (Y(i).H), and hence $\|Y(i)\|$ have a uniform upper bound by Kleiman's criterion. Thus there exists a subsequence $Z(n_{i})$ such that $a(n_{i}, j)$ and $Y(n_{i})$ converge

as $i \longrightarrow \infty$, whence Z ϵ V.

q.e.d.

Going back to the proof of Theorem 3, (b), we will assume that $V \neq \overline{NE}(X)$ and show that this leads to a contradiction. By the ampleness of H, $\overline{NE}(X) \cap \{Y \in N(X) \mid (Y.H) = 1\}$ is compact. Hence by the separation theorem for convex sets, there is an element $\mbox{ M } \mbox{ } \mbox{ NS(X)} \bigotimes \mbox{ }_{\mbox{\it Z\!\!\!/}} \mbox{ IR} \mbox{ with the properties, (a)}$ $M \ge 0$ on $\overline{NE}(X)$ and M(Z) = 0 for some non-zero Z in $\overline{\mathtt{NE}}(\mathtt{X})$, and (b) $\mathtt{M} > \mathtt{0}$ on $\mathtt{V} - \mathtt{\{0\}}$ considered as a real valued function on N(X). By the above compactness, there exist a sequence $\{M_j\}_{j>0}$ of ample divisors and a sequence $\{M_j\}_{j>0}$ of natural numbers such that M is the limit of M_j/m_j in $NS(X) \otimes_{\mathbb{Z}} \mathbb{R}$ as $j \longrightarrow \infty$. Let Z (given in the condition (a)) be the limit of $[Z_j]/n_j$, where Z_j is an effective 1-cycle and n_1 a natural number. Since $V_1 = V \cap \{Y \in N(X) \mid (Y.H) = 1\}$ is compact, $(c_1(X).Y)/(M_j/m_j.Y)$ converge uniformly to $(c_1(X).Y)/(M.Y)$ when $j \longrightarrow \infty$ as functions on V_1 . Hence $(c_1(X).Y)/(M_j/m_j.Y)$ $(j \ge 0, Y \epsilon V - \{0\})$ are uniformly bounded. We have $(c_1(X).Z_j)/(M_j/m_j.Z_j) \longrightarrow +\infty$ as $j \longrightarrow \infty$ because (M.Z) = 0 and $(c_1(X).Z) > 0$ $(Z \not\in V.)$ Hence for a sufficiently large j, we have

$$\frac{(c_1(X).Z_j)}{(M_j.Z_j)} > \frac{(c_1(X).Y)}{(M_j.Y)} \text{ for all } Y \in V - \{0\}.$$

If we apply Lemma 5 to these Z_j and M_j (note that $(c_j(X).Z_j)$ > 0,) we get a rational curve ℓ such that

$$\frac{n+1}{(M_{j},\ell)} \geq \frac{(c_{1}(X),\ell)}{(M_{j},\ell)} \geq \frac{(c_{1}(X),Z_{j})}{(M_{j},Z_{j})}.$$

This inequality (together with the above) means that $\ell \not\in V$

and $(c_1(X).\ell) \leq n+1$. Since $V \supseteq \overline{NE}_{\epsilon}(X)$, we have $\ell \notin \overline{NE}_{\epsilon}(X)$ and $\ell \in \Phi$. This implies $[\ell] \in V$, which is a contradiction. Thus Theorem 3, (b) is proved.

§3. Concluding remarks.

A half line $R = \mathbb{R}_+[Z]$ in N(X) is called an <u>extremal ray</u> if (1) $(Z.c_1(X)) > 0$, and (2) Z_1 and Z_2 in $\overline{NE}(X)$ belong to R if $Z_1 + Z_2 \in R$. A rational curve ℓ in X is an <u>extremal rational curve</u> if $(\ell.c_1(X)) \le n+1$ and $\mathbb{R}_+[\ell]$ is an extremal ray.

It is not hard to restate Theorem 3 without using H and ϵ (cf. [4].) Here we simply state an immediate corollary.

Corollary 7. X has an extremal rational curve if and only if K_χ is not numerically effective.

Only if part is obvious. If K_X is not numerically effective, then $\overline{\rm NE}(X) \neq \overline{\rm NE}_\epsilon(X,\, {\rm H})$. Then at least one of ℓ_i 's in Theorem 3 is an extremal rational curve.

References

- [1] A. Grothendieck, Fondements de la geometrie algebrique, Secretariat Math., 11 Rue Pierre Curie, Paris 5^e (1962).
- [2] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., 156, Springer-Verlag (1970).
- [3] S. Mori, Projective manifolds with ample tangent bundles, to appear in Annals of Math.
- [4] S. Mori, Threefolds whose canonical bundles are not numerically effective, to appear in Proc. Nat. Acad. Sci. U. S. A. (1980).
- [5] S. Mori and H. Sumihiro, On Hartshorne's conjecture,
 J. Math. Kyoto U., 18-3 (1978), 523-533.

NAGOYA UNIVERSITY, NAGOYA, JAPAN