Constrution of algebraic vector bundles of rank 2 on non-singular algebraic varieties of arbitrary dimensions

Hideyasu Sumihiro (Hiroshima Univ.)

As for construction of algebraic vector bundles on non-singular algebraic varieties, the following methods are wellknown.

- (1) J.P.Serre: 2-bundles associated to closed subschemes of codimension 2, locally complete intersection.
 - (2) R.Schwarzenberger:
 - (a) Ramified 2-coverings.
 - (b) Blowing-ups + Descents.
 - (3) G. Horrocks: Monads.
 - (4) M.Maruyama: Elementary transformations.

Using the methods (2), R.Schwarzenberger has constructed many indecomposable 2-bundles on algebraic surfaces. In this note, we shall report that we can generalize the method (2) (b) to algebraic varieties of arbitrary dimensions and obtain the following.

Theorem. Let X be a non-singular algebraic variety defined over an algebraically closed field k (char $k=p \ge 0$) and let $\{Y, Z\}$ be a pair of closed subschemes of X satisfying the following conditions:

- (a) D is a reduced divisor of X whose singular locus Sing(D) is either empty or of $codim_{\chi}Sing(D) = 4$.
- (b) Z is a smooth closed subscheme of D with $\operatorname{codim}_X^Z = 2$ and it contains $\operatorname{Sing}(D)$.
- (c) There is a rational map $f:D\longrightarrow P^1$ such that the regular domain D(f) of f contains D-Sing(D) and $Z=f^{-1}(0)$ scheme theoretically.

Then there are an algebraic 2-bundle $\,$ E $\,$ on $\,$ X $\,$ and a section $\,$ s of $\,$ E $\,$ satisfying the following properties :

- (1) Z coincides with $\mathrm{Z}(s)$, the scheme of zeros of s.
- (2) $O_{\chi}(D)$ is isomorphic to Λ^2E . Moreover,
 - (3) if $H^1(X, O_X) = 0$, then there exists another section t of E

such that D coincides with $Z(s \wedge t)$, the scheme of zeros of $s \wedge t$.

(4) if X is projective and Z is connected and if $H^1(X,O_X(-D))$ = 0, then E is determined uniquely up to isomorphisms.

As a corollary, we obtain the following.

$$0 \longrightarrow {}^{\raisebox{.5ex}{$\scriptscriptstyle{\circ}$}} {}_{X} \longrightarrow E \longrightarrow {}^{\raisebox{.5ex}{$\scriptscriptstyle{\circ}$}} {}_{X}(Y) \otimes I_{Z_{\underline{t}}} \longrightarrow 0$$

,where I $_{\rm Z}$ is the defining ideal sheaf of $\rm Z_{\rm t}$ in X and Sing(E) coincides $^{\rm t}$ with W.

The proof of the above theorem and corollary wil be published elsewhere: