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Every K3 surface is Kahler

Ma.Kato

§0. A K3 surface means a simply connected compact complex
manifold of complex dimension two whose canonical bundle is trivial,
Y.-T.Siu proved

Theorem [7,Theorem 3.33 Every K3 surface is Kihler.
The aim of this report is to introduce the reader to his proof.
In §1, we shall list up 4 facts which will be used to prove the
theorem. The first one is on the existence of a d-closed real
2-form whose (1,1)-part is positive definite, which we shall
call a Siu form. I heard that this fact is already known to
differential geometers. But Siu is the first who applied this
to studying K3 surfaces. The other three facts are known to
the specialists in K3 surfaces. In 82, the proof is described.
In 83, we shall discuss the existence of Siu forms in a slightly

generallized situation.

§1. Known facts used in the proof.

The following four facts are used to prove the theorem.

FACT 1.(The existence of Siu forms) Let M be a K3 surface

and k an integer 2 1. Then there exists a real Ck d-closed

_54_



2-form on M uhose (1,1)-part is positive definite at every

point on M.

This fact will be proved in 8§3.
Let X be a differentiable manifold which is diffeomorphic
to a K3 surface. Then, since X is simply connected, there

are natural inclusions

H*(X,Z2) c H*OXGRY € HA(X, ).
2

On {(X,2), the cup products define the inner products with

signature (3,19).

FACT 2. (i) Suppose that an element a € H2(X,C) satisfies

82 = 0 and a a > Q.

Put Ala) = ( ¢ € H3X,2) : @-c =0, c2 = -2 >.

2(X,R) satisfies a

(ii) Suppose that an element b € H
b=0,b°>0, and bec #0 for all c € A(a).

Then there is a kdhler K3 structure N on X, a Kdhler
form 4ys @ non-vanishing holomorphic 2-form Pye and an automorphism
Tt of HA(X,2) preserving cup products such that ToLP1 = a
and TCEaN] = b, where t.=71®C, and L 1 indicates the

cohomology class.

This fact is due to Todorow [8] and Looijenga [&]. Yau's result
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on the existence of Einstein-Kidhler metric is used prove this
fact.

Let M be a K3 structure on X, and ?M a non—-zero holomorphic
2-form. Put P = (H2(X,C) - <0)/€* = P?l. Since C-9, is a
complex 1-dimensionmal subspace in H2(X,C), and since PuAPy
= 0,{9,A%, > 0, 9 defines a point in

D=CzeP: ze2=0, =z.Z2>0)7,
where the product is the inner product defined by the intersection
form on H2(X,2Z). The point ay € 2 defined by ¢y is called
the period of the complex structure M., The mapping M b Ay
is called the period mapping. Every complex structure M on
X defines a Hodge structure
on H2(X,C)§
H2(x,C) = H2' Oy @ wl+lmy @ WO+ 2¢m),
Put
Hiatan = w2o,R) noubrtan,
The set
¢xe Halon i x® >0
is called the positive cone of M. Since the gignature of the
intersection form is (3,19), the positive cone has 2 connected
components. If M is Kihler, every Kihler metric on M is
contained in the same component of the positive cone, which is

called the Kihler component.
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FACT 3.(The local Torelli Theorem) All small deformations
of a K3 surface are parametrized effectively and completely by

the period mapping.
This is due to Andreotti-Weil, see Kodaira (3].

FACT 4.(The Torelli Theorem for Algebraic K3 surfaces)
Let M and N be algebraic K3 structures on X. Suppose that
there is an automorphism ¢ of H2(X,Z) preserving cup products
which satisfies the following three conditions;

(iii) g := 0 ® C sends HP'IN) to HP'IM), pta = 2,

(iv) OC preserves the Kidhler components,

(v) Every cohomology c]éss represented by an effective divisor
C on N with C2 = -2 1is sent by ¢ to a cohomology class
represented by an effective divisor on M,

Then there is a biholomorphic mapping

gt M-N

such that g* = g.
This fact is due to Burns—Rapoport [2].
§2. The proof of the theorem

Suppose that we are given a K3 structure M on X. M

admits a nowhere vanishing holomorphic 2-form ¢.
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STEP 1. By FACT 1, there is a Siu form 8 with respect
to M. Let L[¥) and [8]) denote the corresponding cohomology
classes in HZ(X,C) and H?(X,R). respectively. Since the equality
Wt = ¢ c e W2OGR) & £91:C = 0)
holds by definition, we see that
(2-1) [e)f := [8) - 1 [¥1 - 2 [
A = (CeJ-LPO/(CPI-LF1) € C
is an element of Hlél(M). Note that ® - 2P - 1% is also a
Siu form with respect to M. UWe replace ® by & - 19 - 9.
Thus we can assume in what follows that the equality

(2-2) ceu: = [8]
holds.

STEP 2. UWe want to apply FACT 2. Put a =[Pl and b
= (@], We check that a and b asatisfy the conditions (1)
and (ii). Since [P]1 is of type (2,0), we have a2 = [$1° =
(yPAP = 0. Similarly a.a = [91-L%] = [,®AP > 0. Thus (i) is

satisfied. Let us check (ii). It is clear by the definition

that a-b CPl-(@]1 = 0 holds. Since

ACPD) = Cc € Hlél(M) n HAX,Z) : 2 = -2 3,

every elements of A(a) 1s the Chern class of a line bundle.

Ala)

By the Riemann—Roch theorem, for every line bundle ¢ with

<c1<s))2 = -2, either & or ¢ 1 is defined by an effective
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divisor on M. Thus that b2 >0 and bc #0 for vc € Afla)

follow from (1) and (2) of the following proposition.

Proposition 1 ({7,Prop.3.11)

(1) [®])-C > 0, if C 1is represented by an effective divisor.

(2) (812 > 0.

(3) If M is Kdhler, then [8] is on the Kdhler component

of the positive cone of M.,

The last statement (3) is used in STEP 4 (see Prop.2 (6)).

The proof is an easy calculation of forms under type considerations.

Since the similar calculations also appear in STEP 4, we omit
the details here.

Now we can apply FACT 2 to our situation and obtain

Lemma 1. There is a Kahler K3 structure N on X, a Kihler

form @ on N, a non-vanishing holomorphic 2-form ¥ on N,
and an automorphism 1 of H2(X,Z) preserving cup products
such that

(2-3) tCij = {?] and rCEwJ = [@].

STEP 3. Let W and W be small open neighborhoods of
0 := ay and g7 = ay in D, respectively., Let m. = (MS)s

M= MO’ be the universal family of small deformations of M.
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Let M= (Nt}’t e w'* N=Ng-, be the univeral family of small
deformations of N of Lemma 1. By FACT 3, we can find such
families M and MN. Note that Te of Lemma 1 induces a holomorphic
automorphism T of DcbpP = P21, and that T(0°) = 0. Therefore
we can replace the parametrization t by s so that the equality
(2-4) t(qN ) = Ay

) s
holds for all s € W.

STEP 4. Let (?s}s e u be a family of non-zero 2-forms
such that Tg is holomorphic with respect to Ms,depends continuously
in s, and satisfies ETE]-E?SJ =1, For s € W, we define

# 1,1
EGDMS € H é (Ms) by
# _ e
(2-5) EGDMS = [@] USE?SJ HSE?SJ
PS = (EGD'E?SJ) e C.

Since W is sufficiently small, by continuity argument on s,
we can assume that both the (1,1)-part of ® with respect to

Ms and that of @ with respect to Ns are positive definite.

Proposition 2.

(4) EGD: ‘C >0, if C is represented by an effective divisor.

(5) ([83?1 »2 > 0.
s
(6) 1If Ms is Kahler, EGD: is on the Kahler component

s
of the positive cone of Ms’

Proof. (4) Let D be an effective divisor which represents
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C. Let ® = o + Ny + &S be the decomposition of ® into types,

where o is a (2,0)-form, and ng is a real positive (1,1)~
form. Since E?g]'D = C?SJ'D = 0, it follows from (2-5) that
# = . —
Cey -0 = [61°D = fon, > 0.

(5) Since
2 _ # = 2
(Ce@1H° = (XSE?SJ + EGDMS + l[?s])
= o1t HZ + 21212,
s s
we have

2-6) «renf H2 = em? - 211,12

S

i

2
(@ n®- 212

t

- 2
(ymghng + 2f o na_- 212,1%.
It is clear that ngSAvs > 0., Note that
2= [81-%.3 = {ya nP. and [,P AP, =1
hold. Therefore, by Schwarz lemma, we have
{ona, 2 |fyan® %= 12,12
Hence (L% )% > 0 follous from (2-6).
s
(6) Suppose that we are given a Kahler form fs with respect
to Ms. It is enough to show that, for any t € [0,1], the inequality
(¢Ce 1 + (1-orrent )2 > o
s Ms
holds, where E$53 is the corresponding cohomology class of
¢, in H2(OX,R). Note that
#

- _ #
M = EtEB + (1 t)@DN

tLE 1 + (1-£)[8]
s b= =

and that

tfs + (1-t)® is a Siu form for all t € [0,1] with respect
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to M_. Hence, by (5), (t[£_1 + (1~t)[®]: 32 > 0 holds for
=]

all t € [0,1]. Thus EGSJ and C@Ug are in the same component
s

of the positive cone.l

# #
lL.emma 2. tcCaﬂNs = E@JMS
Proof. Note that

# _ R
EwJNs = Lol vstwsl VBE¢53,

v Ew]-[@sj,

s
# _ -
E@]Ms = {@] v P v [P ], and

H

< E@J-E?s].

By the equations (2-3) and (2-4), we have rc{¢53 = msi?sj for
some K_ € C, |xs| = 1, Since Te Preserves cup products,

v, = xéus holds. Then the lemma follows immediately from (2-

Lemma 3, There is a dense subset A C W such that for
every s € A, both N3 and Ms are algebraic.

Proof. A K3 structure Y is algebraic if and only if there
is an element £ € Hléi(Y) n H2(Y,Z) such that 52 > 0. Since
this is a condition only on the periods and the intersection

forms, we infer that Ns is algebraic if and only if so is

M_.1
s

Now we want to check the conditions in FACT 4. Set M =
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Mg» N=N_, and o=t in FACT 4. Then o sends HP* N )
to Hp’q(Ms) by (2-4). Hence (11i) holds. For any point s
of A in Lemma 3, (iv) holds by Lemma 2 and Proposition 2 (6),

since @ 1is a Siu form on NS. Yo prove that (v) holds, take

any cohomology class represented by an effective divisor C

with C2 = -2 with respect to Ns‘ Since T preserves cup
products, r(C)2 = -2, Therefore, by the Riemann—-Roch theorem,
either (L) or ~t((C) 1s represented by an effective divisor

with respect to Ns‘ Suppose that -T(C) 1s represented by
an effective divisor. Then, by Proposition 2 (4), we have
cenl - c-wc»1 > o.

On the other hand, uz have, by Lemma 2,

[@1} - C-T(C)] = —tledfy - 10T =-Ladft - CCI < O,
because Z is a Siu form o: Ns' This ?s a contradiction.
Thus 1t(C) 1is represented by an effective divisor. This proves
(V).

Now we can apply FACT 4, For any s € A, there is a diffeomorphism
9 X =X with g: = 1 such that 9, is a biholomorphic

map of MS onto Ns‘ Then the graph Tg of 9 is a complex

analytic subvariety with respect to Ns x Ms'

Lemma 4, The volume of the graph r; is uniformly bounded
as s approches 0.

Proof. Since N = N0 is a Kahler structure, by Kodaira-
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Spencer [5], there is a differentiable family of 2-forms Cmg)s Y
such that every o, is a Kdhler form on NS. Then, for every
s € W, prwg + pé@ is a Siu form on X x X with respect to
Ns x Ms, where P, * X x X=X, v=1,2, are the projections
to the v-th component. Then the volume of rg can be measured
by the (1,1)-part of p;wé + p;@ with respect to NS X Ms‘
Thus
Vo1(r y = SF (plw + @ )
where Gg is the (1, 1) -part of p2® with respect to Ms‘ Letting

p;® = @g + ng + DS with a (2,0)-form » on N_ x Ms’ we have

s s
_ % X o= 42
vol<rg> = gr;(piwg + p2® 2 DS)
= * *o02 * * -
= frﬁ(piws + pa® 2fr5<p1ws ¥ Ry®INT, + )
+ (o g+ 72
Since pr and @ are (1,1)-forms on NS x Ms, we have

{I., (pla) + p2®)A(77 + )

oo

N

”~~

o) 3
3

> 4+
3

&

A d

Hence
Vol () = §r (Yo + py®)? - 2{r n AT
< ( r (pya, + p2®>2
= fx(w + (o @)% =1 1(se)
-1
e,

the value I1(s8) depends only on @ . Since O varies continuously

Since (9;1) 8 is a d-closed real 2-from which represents
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on s as s = 0, we conclude that Vol(ré) is uniformly bounded.}

By a theorem Bishop [13, it follows from Lemma 4 that the
limit set rb of Fa defines an analytic subvariety with respect
to N0 X MO. Choosing a suitable irreducible component of Fb,

we can prove the following

Proposition 3. There is a biholomorphic mapping of NO

onto MO'

The proof of the proposition is the same as Burns—Rapoport
[2,pp.248-2500. The details are omitted here. Since Nb is

Kahler, the theorem follows from Proposition 3.

§3. The outline of the proof of FACT 1

Let S be a compact complex surface. For k € Z, we let
Ak denote the real Hilbert space of all real 2-currents on
S whose coefficients are in the Sobolev k-space. Let | lk
be the norm on Ak which is defined by using partition of unity
and Fourier transformations on a torus. The pairing

ce,m = {gean

of 2-forms extends uniquely to a complete pairing on Ak x A—k’
By means of this pairing, we can identify (A*k’} ?_k) with the

dual space of (Ak,| |k) with the weak topology.
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1
lLet {UV}V = 1 and <<{U 2

Vv =1 be opne coverings of S

such that Uv is a relatively compact subset in Ut for all
v, Put
_ _ 2 . 2 2 _

S =4{( 1= (11,12) e ™ lllt + 1121 =1 2.

For 1 S vs&8l, pt¢ Uv’ and 1 € S, we denote by TV the
Py A
(1,1)~current on S such that
_ <2
Tv,p,i(?) = Zi,j

for all real smooth (1,1)-forms

¢ =1 32

i,

= 1%, P4

v, =V
- 1<Pi . jdzi/\dzj
on S. Since

2
¢ ezt
for all € > 0, we see easily from the definition that T

(A+1E12 724 ¢ 4 o

VsPs A

is an element of A—S' Hence Tv,p,l € A—k for all k 2 3.
Suppose that k 2 4 in what follows. From the resonance theorem,

it follows that

1= sup IT |
g! 1¢v<l, peu, 1es "Pik

is finite. We fix a positive definite hermitian form o on
So PUt
= inf : T (@)
2 1< v<l, peu,1es P4

Obviously, 12 is a finite positive number. Let P denote
the set of all positive semi—-definite (1,1)-forms. Put

(i) » 1is of type (1,1),

E = nEA, t (ii) Inl_ks,ll,
(ii1) ) 2 12,

-6 6~



Iz

L (iv) »(& 20 for VvEE P,
and
F=<{ne A~k : »=d{, where £ 1is a l-current >,
Then both E and F are convex and closed. Moreover E is

compact. Obviously, Tv o, 1 eE and 0 € E.

Lemma 5. If the first Betti number bl of & is even,
then E NnF = 0,
Proof. Suppose that u € E NnF. Since u € F, there is

df. Put € = 8 + B, where

a l-current { on S such that u
B is a (1,0)-current. Obviously wu = 38 + 8B, 88 = 3B = 0.

By the assumption b1 =0 mod 2 and by Kashiwara's lemma (see
C4,pp.124-1267), there is a distribution 7 on § such that

8B = 937, Hence u = {-18%37, where T ={-1(%» - ?»). Since

u is positive, T is a plurisubharmonic function. Since §

is compact, T reduces to a constant. Thus u = 0. This contradicts

0 € E.I

Lemma 6, If E nF = @, then there is a Siu form of class

Proof. Since E and F are closed convex with E NnF =

@, and since E is compact, there is a continuous linear functional
F:A“k—aR

such that
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supf s €4 < ey s infEf
for some real constants ¢4 and €y by the separation theorem.
F being a subspace, we have easily fIF = 0. Since (Ak,i lk)
is the dual space of (A-k’l I—k) with the weak topology, there
is an element ¢ € Ak such that f(» = (&,7) for all =72 €
A-k' Since k 2 4, we can assume that £ is a form of class

c®™3 by the Sobolev lemma. Obviously fIF = 0 implies dé¢

= 0. Let
1,1 _ Vv, =¥
RSN "
be the (1,1)-part of &. From Tv o, 1 € E it follows that
, _ isk
0 s <y < <o s 1nFEf -4 F(Tv’p’l) = Zj’kfj,k(p)l zZ
Thus & 1is a Siu form of class Ck—s‘l

FACT 1 follows from Lemmas 5 and 6. As an appendix, we

consider the converse question. We shall show

Lemma 7. If a compact complex surface S admits a Siu
form of class Cl, then the first Betti number b1 of S s
even.

Proof. Suppose that b1 is odd. Let @& denote the Siu
form. UWrite ® as @ = o+ 2 + a, where « is a (2,0)-form
and % 1is a real positive definite (1,1)-form. Suppose that
€ is a curve on S. Then

re1-ca = f.n >0
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Hence every effective divisor on S is not homologous to zero.

This imples that S 1is not of Class VI. Hence S 1is of Class

VII. Then the intersection form is negative definite.

have

Lel-rel

fs<a+ 7+ AN+ D+ &)

H

szaA& + vaAn >0

This 1s a contradiction.l

Thus we have the following

But we

Proposition 4. lLet S be a compact complex surface. Then

the followings are equivallent;
(1) the first Betti number of S is even,
(ii) ENnF =@,
(iii) there is a Siu form of class Ci,
(iv) there is a Siu form of class Ck, k 21,

(V) S is Kahler.

As a corollary to this proposition, we have

-

Proposition 5. Let S be a compact complex surface. Then

the followings are equivallent;
(1) the first Betti number of § 1is odd,

(i1) ENnF # 0,
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(iii) there is a non—-trivial d-exact positive (1,1)-current.

(iv) S is non—Kédhler.

I understand that similar fact as Proposition 5 is known

to I.Enoki earlier.
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