Crepant Blowing-Ups of Canonical Singularities and Its Application to Degenerations of Surfaces

Yujiro Kawamata (University of Tokyo)

Let X be a normal algebraic variety over $\mathbb C$, and let 'D be a Weil divisor on it. We would like to know when the sheaf of graded $\mathcal O_{\mathbf X}$ -algebras

$$\Re(\texttt{D}) := \oplus_{\texttt{m} \geq \texttt{O}} \mathcal{O}_{\texttt{X}}(\texttt{mD})$$

finitely generated, where the $\mathcal{O}_{\mathbf{X}}(\mathtt{mD})$ are reflexive sheaves of rank 1 corresponding to the mD. It is equivalent to saying that there exists a projective morphism $f: X' \longrightarrow$ X which is an isomorphism in codimension 1 and such that the strict transform D' ofD on X' is Q-Cartier and The problem is trivial in case $\dim X = 2$; f must be an isomorphism and the condition for the finite generatedness is simply that D is Q-Cartier. It is well known that a normal surface singularity X is (analytically) $\mathbb{Q} ext{-}factorial$, i.e., an arbitrary (analytic) Weil divisor on X is \mathbb{Q} -Cartier, if and only if X is a rational singularity. In this paper we announce a partial generalizaton of this fact to 3-dimensional case. (We refer the reader to [KMM] for definitions concerning minimal models.)

THEOREM 1. Let X be a 3-dimensional normal algebraic

variety over \mathbb{C} which has at most canonical singularities, and let D be a Weil divisor on it. Then $\Re(D)$ is finitely generated.

We note that a rational Gorenstein singularity is canonical. The theorem is proved in the following way. Let X be as in Theorem 1 and let $\mu: Y \longrightarrow X$ be a desingularization. Then we can write $K_Y = \mu^* K_X + \Sigma_i a_i F_i$ with $a_i \ge 0$ by definition, where the F $_{i}$ are exceptional divisors of $\mu.$ We define e(X) as the number of divisors $F_{\mathbf{j}}$ for which μ is crepant, i.e., $a_{i} = 0$ (it is easy to see that e(X) does not depend on the choice of μ). For example, e(X) = 0and only if X has at most terminal singularities. We define also $\sigma(X) := \dim_{\mathbb{Q}} Z_2(X)_{\mathbb{Q}}/\text{Div}(X)_{\mathbb{Q}}$, where $Z_2(X)_{\mathbb{Q}}$ and $\operatorname{Div}(\mathsf{X})_{\mathbb{Q}}$ are groups of $\mathbb{Q}\text{-divisors}$ and $\mathbb{Q}\text{-Cartier}$ divisors, respectively (one can prove that $\sigma(X)$ is finite). Thus XQ-factorial if and only if $\sigma(X) = 0$. Our theorem is proved by induction on e(X) and $\sigma(X)$ in the category consisting of varieties X' with projective birational morphisms $f: X' \longrightarrow X$ which are crepant, i.e., $K_{X'} = f^*K_{X'}$; e.g., an isomorphism in codimension 1 is crepant. Theorem 1 in case e(X) = 0 is proved by using Brieskorn's flips as in [R]. The termination of log-flips in case e(X') = nproduces the existence of the log-flip in case e(X') = n + 1(cf. [KMM]). In the course of the proof, the concept of the sectional decomposition, which is rather а generalization of the Zariski decomposition for surfaces (cf.

- [F]), plays an essential role. We employ a technique developed in [K] to deal with the difficulty concerning R-divisors which inevitably appear in higher dimensional sectional decompositions (cf. [C]). More precisely, we prove following Lemmas 2 to 5 in our inductive argument.
- LEMMA 2. Let X be a 3-dimensional variety with \mathbb{Q} -factorial canonical singularities such that $e(X) \geq 1$. Then there exists a projective birational morphism $f: X_1 \longrightarrow X$ such that
- (i) \mathbf{X}_1 has at most $\mathbb{Q}\text{-factorial}$ canonical singularities,
- (ii) the exceptional locus of f is a prime divisor, and
 - (iii) f is crepant.
- LEMMA 3. There is a function $b: \mathbb{N} \times (\mathbb{N} \cup \{0\}) \longrightarrow \mathbb{N}$ such that $b(r, e)Z_2(X) \subset Div(X)$ for an arbitrary 3-dimensional variety X with at most \mathbb{Q} -factorial canonical singularities of index r and e = e(X).
- LEMMA 4. Let $\varphi: X \longrightarrow Z$ be a projective morphism of 3-dimensional varieties and let D be a Cartier divisor on X. Assume that
- (a) X has at most $\mathbb{Q} ext{-}factorial$ canonical singularities,
 - (b) φ is an isomorphism in codimension 1,

- (c) $\dim N^1(X/Z) = 1$, and
- (d) $(K_X \cdot C) = 0$ and (D.C) < 0 for all curves C on X such that $\varphi(C)$ is a point.

Then there exists a projective morphism $\varphi^+: X^+ \longrightarrow Z$ which satisfies the following conditions.

- (i) \mathbf{X}^{+} has at most \mathbb{Q} -factorial canonical singularities,
 - (ii) φ^{\dagger} is an isomorphism in codimension 1,
 - (iii) $\dim N^1(X^+/Z) = 1$, and
- (iv) D^+ being the strict transform of D, $(K \ X^+) = 0$ and $(D^+, C^+) > 0$ for all curves C^+ such that $\varphi^+(C^+)$ is a point.

We call the procedure to obtain φ^+ from φ the log-flip with respect to D. Let $f: X \longrightarrow S$ be a projective surjective morphism with connected fibers such that $\dim X = 3$, X has at most \mathbb{Q} -factorial canonical singularities, and that $\mathrm{cl}(K_X) = 0$ in $\mathrm{N}^1(X/S)$. A Weil divisor D on X is called f-movable if $f_*\mathcal{O}_X(D) \neq 0$ and if the cokernel of the natural homomorphism $f^*f_*\mathcal{O}_X(D) \longrightarrow \mathcal{O}_X(D)$ has a support of codimension ≥ 2 . We let $\overline{\mathrm{Apl}}(X/S)$, $\overline{\mathrm{Big}}(X/S)$ and $\overline{\mathrm{Mov}}(X/S)$ denote closed convex cones in $\mathrm{N}^1(X/S)$ generated by the numerical classes of f-ample, f-big and f-movable divisors, and $\mathrm{Apl}(X/S)$, $\mathrm{Big}(X/S)$ and $\mathrm{Mov}(X/S)$ their interiors, respectively. The cone $\overline{\mathrm{Apl}}(X/S)$ \cap $\mathrm{Big}(X/S)$ is locally polyhedral in $\mathrm{Big}(X/S)$ by Cone Theorem (cf. [KMM]). A log-flip leaves $\overline{\mathrm{Mov}}(X/S)$ \cap $\mathrm{Big}(X/S)$ stable, while

 $\overline{\mathrm{Apl}}(\mathrm{X/S}) \cap \mathrm{Big}(\mathrm{X/S})$ is transformed to a neighboring cone $\overline{\mathrm{Apl}}(\mathrm{X}^+/\mathrm{S}) \cap \mathrm{Big}(\mathrm{X}^+/\mathrm{S})$. The sectional decomposition of an f-big R-divisor D, which always exists as far as X is Q-factorial, is an expression D = M + F in $\mathrm{Z}_2(\mathrm{X})_{\mathbb{R}}$ such that $\mathrm{cl}(\mathrm{M}) \in \overline{\mathrm{Mov}}(\mathrm{X/S})$, $F \geq 0$, and that the natural homomorphisms $f_{\bullet} \mathcal{O}_{\mathrm{X}}([\mathrm{mM}]) \longrightarrow f_{\bullet} \mathcal{O}_{\mathrm{X}}([\mathrm{mD}])$ are bijective for all $\mathrm{m} \in \mathbb{N}$.

LEMMA 5. Let $f: X \longrightarrow S$ be a projective surjective morphism of varieties with connected fibers and let M be an \mathbb{R} -divisor on X. Assume that

- (a) $\dim X = 3$ and X has at most \mathbb{Q} -factorial canonical singularities of index r and e = e(X),
 - (b) $cl(K_{\mathbf{x}}) = 0$ in $N^1(X/S)$,
 - (c) M is f-big and $cl(M) \in \overline{Mov}(X/S)$, and
 - (d) $D := {}^{\Gamma}M^{7} \in 2b(r, e).Z_{2}(X).$

Then there does not exist an infinite sequence of log-flips with respect to the strict transforms of D.

The following theorems are immediate applications of Theorem

1.

THEOREM 6. Let $f:X\longrightarrow S$ be a projective surjective morphism with connected fibers and let D be a Weil divisor on X. Assume that dim X=3, X has at most canonical singularities, $cl(K_X)=0$ in $N^1(X/S)$, and that D is f-big. Then the sheaf of graded O_S -algebras $\Re(X/S,D):=$

 $\oplus_{m>0}$ $f_{\bullet}O_{X}(mD)$ is finitely generated.

THEOREM 7. Let X_1 and X_2 be two Q-factorial terminal good minimal models of dimension 3 which are birationally equivalent. Then they are joined by a sequence of log-flips.

A singularity of a 3-dimensional normal variety Z is called flipping if it comes from a flipping contraction $\varphi: X \longrightarrow Z$ from a variety X with terminal singularities (cf. [KMM]). The existence of minimal models for algebraic 3-folds follows if the existence of the flips are proved, and the latter is equivalent to the finite generatedness of $\Re(K_Z)$ for flipping singularities of dimension 3. Theorem 1 gives a sufficient condition for this to hold; we construct a double covering $\pi: \tilde{Z} \longrightarrow Z$ by using a section s of $\mathcal{O}_Z(-2K_Z)$. If \tilde{Z} is a canonical singularity, then the finite generatedness of $\Re(\pi^*K_Z)$ implies that of $\Re(K_Z)$. In this way we obtain the following corollaries to Theorem 1.

COROLLARY 8. Let $\varphi: X \longrightarrow Z$ be a flipping contraction from a 3-folds with terminal singularities and let $\mu: Y \longrightarrow X$ be a desingularization whose exceptional locus is a simple normal crossing divisor $\Sigma_{\mathbf{j}} F_{\mathbf{j}}$. Let S be a Weil divisor on X which is the zeroes of a section in $H^0(X, \mathcal{O}_X(-2K_X))$ $\cong H^0(Z, \mathcal{O}_Z(-2K_Z))$. Write $K_Y = \mu^*K_X + \Sigma_{\mathbf{j}} a_{\mathbf{j}}F_{\mathbf{j}}$ and $\mu^*S = S' + \Sigma_{\mathbf{j}} s_{\mathbf{j}}F_{\mathbf{j}}$, where S' is the strict transform of S. Assume that $2a_{\mathbf{j}} + 1 \geq s_{\mathbf{j}}$ for all j. Then $\Re(K_Z)$ is

finitely generated.

COROLLARY 9. Let Z be a flipping singularity of dimension 3 and let S be a Weil divisor on Z which corresponds to a section of $O_Z(-K_Z)$. Assume that S has at most rational singularities. Then $\Re(K_Z)$ is finitely generated.

COROLLARY 10. Let Z be as in Corollary 9 and let H be an effective Cartier divisor on Z which contains Sing(Z). Assume that H is a normal surface and let $\tilde{H} \longrightarrow H$ be a double covering constructed by using the restriction of a section of $O_Z(-2K_Z)$ to H. If \tilde{H} has at most elliptic singularities, then $\Re(K_7)$ is finitely generated.

Finally, by using the criteria in Corollaries 9 and 10, we obtain an alternative proof of the following theorem of Tsunoda [T] (Shokurov and Mori also announced to have their proofs in private letters).

THEOREM 11. Let $f: X \longrightarrow S$ be a projective surjective morphism of smooth varieties with connected fibers such that $\dim X = 3$ and $\dim S = 1$. Assume that singular fibers of f are reduced and simple normal crossing while smooth fibers have non-negative Kodaira dimension. Then there exists a minimal model $f': X' \longrightarrow S$ of f, i.e., f' is a projective surjective morphism which is birationally equivalent to f, X' has at most \mathbb{Q} -factorial terminal

singularities, and that K_X , is f'-nef. In particular, smooth fibers of f' are minimal models of corresponding fibers of f.

By applying Nakayama's theory [N], we can extend our results to the case where the base space is a complex analytic space; X may be a germ of an analytic space in Theorem 1 and S a disc in Theorem 11.

REFERENCES

- [C] S. D. Cutkosky, Zariski decomposition of divisors on algebraic varieties, preprint, Brandeis Univ. 1985.
- [F] T. Fujita, On Zariski problem, Proc. Japan Acad. Ser. A 55(1979), 106-110.
- [K] Y. Kawamata, The Zariski decomposition of log-canonical divisors, preprint.
- [KMM] _____, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, preprint.
- [N] N. Nakayama, On the lower semi-continuity of plurigenera, preprint.
- [R] M. Reid, Minimal models of canonical 3-folds, in Algebraic Varieties and Analytic Varieties ed. by S. Iitaka, Advanced Studies in Pure Math. 1(1983), Kinokuniya, Tokyo, and North-Holland, Amsterdam, 131-180.
- [T] S. Tsunoda, Degeneration of surfaces, preprint.