Dual Graphs of Curves on Surfaces of Class VII 0

College of General Education
Hokkaido University
Iku NAKAMURA
§0 Introduction．A compact complex surface is in class VII ${ }_{0}$ if the first Betti number of it is equal to one and if it is minimal．We know many examples of surfaces of class VII 0 （in short VII_{0} surfaces）with curves－minimal surfaces with global spherical shells［2］，［6］，［7］．Some of them are characterized by the existence of certain curves［l］，［4］，［5］． Here we recall a table of classification of VII_{0} surfaces from［4］，［5］．
（0．1）Table．
curves
1）（more than） 3 elliptic curves
2）two elliptic curves
3）an elliptic curve，no cycles
4）an elliptic curve and a cycle
5）two cycles
6）a cycle C with $C^{2}=0$
7）a cycle C with $C^{2}<0$
7－1） $\mathrm{b}_{2}(\mathrm{~S})=\mathrm{b}_{2}(\mathrm{C}) \quad$ half Inoue surfaces
7－2） $\mathrm{b}_{2}(\mathrm{~S})>\mathrm{b}_{2}(\mathrm{C}) \quad$ examples exist
8）no elliptic curves，no cycles ？
structure of surfaces
elliptic VII 0 surfaces
Hopf surfaces
Hopf surfaces
parabolic Inoue surfaces hyperbolic Inoue surfaces $S_{n, \beta, t} \quad$（see［l］）

It is necessary to study the class 7) in the table in more detail in order to complete the classification of VII_{0} surfaces. The purpose of this note is to complete the LHS of 7) in (0.1) under the assumption that the VII ${ }_{0}$ surfaces has at least (in fact, then exactly) b_{2} rational curves. Here we make a brief review on curves on VII ${ }_{0}$ surfaces. An irreducible curve on $a^{V} V_{0}$ surface is either a nonsingular rational curve, or an elliptic curve, or a rational curve with a node. If a VII 0 surface has a cycle of rational curves, then it has positive b_{2} and no meromorphic functions except constants. The number of elliptic curves and cycles of rational curves on a VII 0 surface is at most two in total if the surface has no meromorphic functions except constants. If a VII ${ }_{0}$ surface has a cycle C of rational curves with $C^{2}<0$, then there are no elliptic curves on the surface. If moreover it has another cycle of rational curves, then (0.1) 5) asserts that it is a hyperbolic Inove surface. Therefore in (0.1) 7), any VII ${ }_{0}$ surface has a unique cycle C with $C^{2}<0$, but no elliptic curves.

Let s be a VII_{0} surface in (0.1) 7). Assume moreover that S has b_{2} rational curves. If the unique cycle C on s has no branches (see (2.1)), then S is a half Inoue surface (see (2.4)). If C has branches, then our main theorem asserts that the dual graph of all the curves on S is the same as one of those of known surfaces - minimal surfaces with global sphericall shells. We also give a uniform characterization of Inoue surfaces with $b_{2}>0$ by the Dloussky invariant (§3).

Table of contents.
Notations
§l Smoothability of cycle by deformations
§2 Dual graphs of curves
§3 A theorem
Bibliography

Notations.

O_{S}	the sheaf of germs over S of holomorphic functions
Ω_{S}	the sheaf of germs over S of holomorphic one forms
K_{S}	the canonical line bundle of S
$c_{1}(L)$	the first Chern class of a line bundle L
$b_{2}(E)$	$\#(i r r e d u c i b l e$ components of a reduced divisor E)
$b_{i}(S)$	the i-th Betti number of S
$H^{q}(S, F)$	$q-t h$ cohomology group of S with F coefficients
$h^{q}(S, F)$	dim $H^{q}(S, F)$
$X(S, F)$	$\sum_{q=0}^{\infty}(-1)^{q_{h}}(S, F)$

§l Smoothability of a cycle by deformations
(1.1) Theorem. Let S be VII $_{0}$ surface with $b_{2}>0$. Then $H^{2}\left(S, \theta_{S}\right)=0$.
Proof. Assume the contrary to derive a contradiction. By Serre duality, $H^{0}\left(S, \Omega \frac{1}{S}\left(K_{S}\right)\right) \neq 0, K_{S}$ being the canonical line bundle of S. Let D be the maximum effective divisor of S such that $H^{0}\left(S, \Omega_{S}^{l}\left(K_{S}-D\right)\right) \neq 0$ and let ω be a nonzero element of $H^{0}(S$, $\Omega_{S}^{l}\left(K_{S}-D\right)$. By definition, zero (ω) is isolated. Then we have,
(1.1.1) Lemma. The following is exact;

$$
0 \rightarrow o_{S}\left(K_{S}-D\right) \underset{f}{\rightarrow} \Omega_{\mathrm{S}}^{\mathrm{l}} \underset{\mathrm{~g}}{ } \quad o_{\mathrm{S}}\left(2 \mathrm{~K}_{\mathrm{S}}-\mathrm{D}\right)
$$

where $f(a)=a \omega, g(b)=b \wedge \omega$.
Proof. Clearly f is injective. Take $b \in \operatorname{Ker} g$. Then $b \sim \omega=0$. Hence $b=h w$ locally for a germ h of a meromorphic function. Then pole $(h) \subset$ zero $(\omega)=$ isolated, whence h is holomorphic. Hence h is contained in Im f.

Let H be Coker g. Then the following is exact; $0 \rightarrow O_{S}\left(K_{S}-D\right) \rightarrow \Omega_{S}^{l} \rightarrow O_{S}\left(2 K_{S}-D\right) \rightarrow H \rightarrow 0$

We remark that supp (H) is isolated points, so that
$H^{1}(S, H)=0$. We also see $h^{0}\left(S, \Omega_{S}^{1}\right)=h^{2}\left(S, \Omega_{S}^{1}\right)=0, h^{1}\left(S, \Omega_{S}^{1}\right)=b_{2}$ by [3], or [5,p.405]. Therefore by taking Euler-Poincare characterictics, we see

$$
\begin{aligned}
b_{2}=-\chi\left(S, \Omega_{S}^{1}\right) & =-\chi\left(S,-K_{S}+D\right)-\chi\left(S, 2 K_{S}-D\right)+h^{0}(S, H) \\
& =-2 \chi\left(S,-K_{S}+D\right)+h^{0}(S, H) \\
& =-2 K_{S}^{2}+3 K_{S} D-D^{2}+h^{0}(S, H) \\
& =2 b_{2}+3 K_{S} D-D^{2}+h^{0}(S, H) \quad\left(b y-K_{S}^{2}=b_{2}\right),
\end{aligned}
$$

and therefore,

$$
\mathrm{b}_{2}+3 \mathrm{~K}_{\mathrm{S}} \mathrm{D}-\mathrm{D}^{2}+\mathrm{h}^{0}(\mathrm{~S}, \mathrm{H})=0 .
$$

(1.1.2) Lemma. $K_{S} D \geqq 0, D^{2} \leqq 0$.

See [3] or [5,p. 399,(2.1.2) and (2.2)].
Consequently, $b_{2}=0, K_{S} D=D^{2}=h^{0}(S, H)=0$. This contradicts the assumption $\mathrm{b}_{2}>0$. q.e.d.
(1.2) Theorem. Let S be a VII ${ }_{0}$ surface with C a cycle of rational curves. Let E be a reduced divisor containing C. Then $H^{2}\left(S, \theta_{S}(-\log E)\right)=0$.

Proof. Assume the contrary. Then as in (1.1), we see

$$
4 \geq b_{2}(E)+\left(K_{S} E+E^{2}\right) / 2
$$

Let $\mathrm{E}=\mathrm{C}+\mathrm{H}, \mathrm{H}=\sum \mathrm{H}_{j}, \mathrm{H}_{j}$ irreducible. Then

$$
\begin{aligned}
\mathrm{b}_{2}(\mathrm{E})+\left(\mathrm{K}_{\mathrm{S}} \mathrm{E}+\mathrm{E}^{2}\right) / 2 & =\mathrm{b}_{2}(\mathrm{C})+\mathrm{CH}+\mathrm{b}_{2}(\mathrm{H})+\left(\mathrm{K}_{\mathrm{S}} \mathrm{H}+\mathrm{H}^{2}\right) / 2 \\
& =\mathrm{b}_{2}(\mathrm{C})+\mathrm{CH}+\sum_{i<j} \mathrm{H}_{i} \mathrm{H}_{j}
\end{aligned}
$$

whence $\quad 4 \geqq \mathrm{~b}_{2}(\mathrm{C})$. Take a fivefold unramified covering $\pi: S^{*} \rightarrow S$. Then since $H^{2}\left(S^{*}, \theta_{S^{*}}\left(-\log E^{*}\right)\right) \neq 0$ for $E^{*}=\pi * E$, we see $4 \geq b_{2}\left(C^{*}\right), C^{*}$ being $\pi * C$. However $b_{2}\left(C^{*}\right)=5 b_{2}(C)$ since π is fivesheeted. This is a contradiction. q.e.d.

A geometric consequence of this theorem is
(1.3) Theorem. Let S be a VII 0 surface with C a cycle of rational curves, H a reduced divisor with no common components with $C, E=C+H$. Then there is a smooth proper family $\pi: S \rightarrow \Delta$ with π-flat divisors C and H of S such that (1.3.1) $\left(S_{0}, C_{0}, H_{0}\right) \cong(S, C, H)$,
(1.3.2) $H_{t}=H$ (together with embeddings) for any $t \Delta$
(1.3.3) $\omega:=\left.\pi\right|_{C}: C \rightarrow \Delta$ is a versal deformation of C with natural isomorphism $\operatorname{Ext}^{1}\left(\Omega_{C}^{1}, O_{C}\right) \cong T_{0}(\Delta)$.
(1.3.4) S_{t} primary $\begin{gathered}\text { is either a blown-up Hopf surface or a blown-up }\end{gathered}$ parabolic Inoue surface if C_{t} is an elliptic curve.

We note that (1.3.4) is a consequence of (0.1). See [5,(12.1) and (12.2)]. Since any parabolic Inoue surface primary
is deformed into a blown-up Hopf surface, we may assume that S_{t} in (1.3.4) is a blown-up primary Hopf surface for generic t.
(1.4) Corollary. Let S, C and H_{j} be the same as in (1.3). Assume moreover that S is not a half Inoue surface, and $C^{2}<0$. Then there are line bundles $L_{j} \in H^{l}\left(S, O_{S}^{*}\right), E_{j}=C_{l}\left(L_{j}\right) \in H^{2}(S, \mathbb{Z})$, $(1 \leq j \leq n), n=b_{2}(S)$ such that
(1.4.1) $E_{j}(1 \leq j \leq n)$ is a \mathbb{Z} basis of $H^{2}(S, \mathbb{Z})$,
(1.4.2) $K_{S} L_{j}=-1, L_{j} L_{k}=-\delta_{j k}$,
(1.4.3) $\quad C=-\left(L_{r+1}+\ldots+L_{n}\right), K_{S}=L_{1}+\ldots+L_{n}$ for some $1 \leq r \leq n-1$.
 $(1 \leq i \leq n)$, all distinct for j fixed.
(1.5) Remark. If $C^{2}=0, C_{1}(C)=0$, but $C \neq 0$ in $H^{l}\left(S, O_{S}^{\star}\right)$.

If S is a half Inoue surface, then $C^{2}<0, C_{1}(C)=-C_{1}\left(K_{S}\right)=-\left(E_{1}+\ldots\right.$ $+E_{n}$), $r=0$, but $C \neq-K_{S}$. In fact, $K_{S}+C$ is a line bundle of order two. See $[5, \S 9]$.
§2 Dual graphs of curves
(2.1) Definition. A VII ${ }_{0}$ surface S with $b_{2}>0$ is said to be special if S has at least b_{2} rational curves.

It is still unknown whether there are un-special VII 0 surfaces with $b_{2}>0$.

We notice that the maximum number of (possibly singular)
rational curves on $a V_{0}$ surface is $b_{2}\left(=b_{2}(S)\right)$, the second Betti number of S) (Ma. Kato, see [5,(3.5)] for the proof.)

Any special VII_{0} surface has a cycle of rational curves.
Any (minimal) surface with a global spherical shell is special.

Let C be a cycle of rational curves. A branch D of C is by definition a reduced connected divisor with $C D=1$ having no common irreducible components with C.

As a simplest case, we shall prove the following
(2.2) Theorem. If a specail VII_{0} surface S has a rational curve C with a node having branches, then the dual graph of b_{2} rational curves is

$$
-(n-1) \underbrace{-2}_{(n-1)}
$$

where $\mathrm{n}=\mathrm{b}_{2}(\mathrm{~S})$, (resp. O$)$ denotes C (resp. a nonsingular \mathbb{P}^{1}). Proof. By (1.4), $C=-\left(L_{r+1}+\ldots+L_{n}\right), K_{S}=L_{1}+\ldots+L_{n}, l \leq r \leq n-1$. By the assumption, there is a branch of C. So we take a nonsingular rational curve D with $C D=1$. We assume $c_{1}(D)=a_{1} E_{1}+\ldots$ $+a_{n} E_{n}$. Since $2+K_{S} D+D^{2}=0$, we have $\sum_{i}\left(a_{i}^{2}+a_{i}\right)=2$. Hence there is a unique i such that $a_{i}^{2}+a_{i}=2$ and except $i, a_{j}^{2}+a_{j}=0$.

By $C D=1$, we have $a_{r+1}+\ldots+a_{n}=1$. Therefore up to permutation, $\left(a_{r+1}, \ldots, a_{n}\right)=(1,0, \ldots, 0)$, and $a_{j}=0$ or -1 for $j \leq r$. Since $D^{2} \leq-2$ by the minimality of S, we may assume $a_{1}=-1$. Since $L_{1} C=L_{1}\left(-L_{r+1}-\ldots-L_{n}\right)=0$, there is a flat line bundle F on S such that $L:=L_{1}+F$ is trivial on C, namely, $L \otimes O_{C}=O_{C}$ (see $[5,(2,14)]$).
(2.2.1) Lemma. Let N be a line bundle on S with $c_{1}(N)=b_{1} E_{1}+\ldots$ $+b_{n} E_{n}$. Assume $b_{1}+\ldots+b_{n}>0$. Then $H^{0}(S, N)=0$.

Proof. Assume the contrary. Then there is an effective divisor D on S such that $c_{1}(D)=b_{1} E_{1}+\ldots+b_{n} E_{n}$. Then by (1.1.2), $K_{S} D \geq 0$. However $K_{S} D=\left(L_{1}+\ldots+L_{n}\right)\left(b_{1} L_{1}+\ldots+b_{n} L_{n}\right)=-\left(b_{1}+\ldots+b_{n}\right)<0$, which is absurd.
(2.2.2) Lemma. $H^{q}(S, L)=0$ for any q.

Proof. By $(2.2 .1), H^{0}(S, L)=0$. By (2.2.1) and Serre duality, $H^{2}(S, L)=H^{0}\left(S, K_{S}-L\right)^{*}=H^{0}\left(S, L_{2}+\ldots+L_{n}-F\right) *=0 \quad$ (because $\left.1 \leq r \leq n-l<n\right)$. By Riemann-Roch, $h^{l}(S, L)=-\chi(S, L)=\left(K_{S} L-L^{2}\right) / 2-\chi\left(S, O_{S}\right)=-\chi\left(S, O_{S}\right)$ $=-\left(p_{g}-q+1\right)=-(0-1+1)=0$.

Consider the exact sequence $0 \rightarrow O_{S}(L-C) \rightarrow O_{S}(L) \rightarrow O_{C}(L) \rightarrow 0$. Taking $L \otimes O_{C}=O_{C}$ into account, we have an exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}(S, L-C) \rightarrow H^{0}(S, L) \rightarrow H^{0}\left(C, O_{C}\right) \\
& \rightarrow H^{1}(S, L-C) \rightarrow H^{1}(S, L) \rightarrow H^{1}\left(C, O_{C}\right) \\
& \rightarrow H^{2}(S, L-C) \rightarrow H^{2}(S, L) \rightarrow 0 .
\end{aligned}
$$

Therefore $h^{0}\left(S, K_{S}-L+C\right)=h^{2}(S, L-C)=h^{1}\left(C, O_{C}\right)=1$. Note that $\mathrm{K}_{\mathrm{S}}-\mathrm{L}+\mathrm{C}=\mathrm{L}_{1}+\ldots+\mathrm{L}_{\mathrm{n}}-\left(\mathrm{L}_{1}+\mathrm{F}\right)-\left(\mathrm{L}_{r+1}+\ldots+\mathrm{L}_{\mathrm{n}}\right)=\mathrm{L}_{2}+\ldots+\mathrm{L}_{r}-\mathrm{F}$. Hence (2.2.3) Lemma. $r=1$.

Proof. By (2.2.1), $H^{0}\left(S, K_{S}-L+C\right)=0$ if $r \geq 2$. $[$

Since $c_{1}(D)=E_{r+1}-\left(E_{1}+\ldots\right)$, we have $C_{1}(D)=E_{2}-E_{1}$. We also have $C=-\left(L_{2}+\ldots+L_{n}\right)$. Let D^{\prime} and $D^{\prime \prime}$ be the other rational curves on S. Then both D^{\prime} and $D^{\prime \prime}$ are nonsingular rational curves as was explained in the introduction. By (1.4.4), we have

$$
\begin{aligned}
& c_{1}\left(D^{\prime}\right)=E_{j}-\left(E_{j_{1}}+\ldots+E_{j_{s}}\right), \\
& c_{1}\left(D^{\prime \prime}\right)=E_{k}-\left(E_{k_{1}}+\ldots+E_{k_{t}}\right)
\end{aligned}
$$

for some $j, j_{h}, k, k_{h} . \quad B y C D^{\prime} \geq 0, D D^{\prime} \geqslant 0$, we have $j \neq 1,2$ and $s=1$ or $\mathrm{s}=2$. Similarly $\mathrm{k} \neq 1,2$, $\mathrm{t}=1$ or 2 and moreover $j \neq \mathrm{k}$. By the assumption that S is special, there are ($n-2$) rational curves D_{j} ($3 \leq \mathrm{j} \leq n$) on S. By the above observation, we can index

$$
c_{1}\left(D_{j}\right)=E_{j}-E_{I_{j}}
$$

for a subset I_{j} of $\{1, \ldots, n\} \backslash\{j\}$. By $D_{j}^{2} \leq-2, I_{j}$ is nonempty. (2.2.4) Lemma. \# $I_{j}=1$.

We omit the proof. See [8].
Assuming (2.2.4), it is not difficult to see that $C_{1}\left(D_{j}\right)$ $=E_{j}-E_{j-1}(2 \leq j \leq n)$, where $D_{2}=D$. The proof is done simply by $D_{j} D_{k} \geqslant 0, C D_{j} \geq 0$ for $j \neq k$. (For instance, if $n=3, c_{1}\left(D_{3}\right) \neq E_{3}-E_{1}$ because $D_{2} D_{3}=\left(E_{2}-E_{1}\right)\left(E_{3}-E_{1}\right)=-1$ is absurd. Hence $c_{1}\left(D_{3}\right)=E_{3}-E_{2}$.) Thus we complete the proof of (2.2).
q.e.d.

After preparing various lemmas, we are able to prove
(2.3) Theorem. Let S be a special VII ${ }_{0}$ surface with C a unique cycle of rational curves having branches. Then the dual graph of b_{2} rational curves is the same as one of those of minimal surfaces with global spherical shells.

Any graph in (2.3) is given explicitly. In (2.3), c^{2} is
negative because $c_{1}(C)=0$, hence C has no branches, if $C^{2}=0$.
(2.4) Theorem. Let S be a special VII $_{0}$ surface with C a unique cycle of rational curves. Assume that $C^{2}<0$ and that C has no branches. Then S is isomorphic to a half Inoue surface.
(2.5) Corollary. Let S be a special VII $_{0}$ surface with C a cycle of rational curves. Then either. $c^{2}=b_{2}(C)-b_{2}(S)$, or $c^{2}=$ $-\mathrm{b}_{2}(\mathrm{C})=-\mathrm{b}_{2}(\mathrm{~S})$ and S is a half Inoue surface.

In (2.5), if S has two cycles of rational curves, the assertion is a part of the strange duality.
(2.6) Problem. Give a direct proof of (2.5).
(2.7) Example. Let S be a special $V I I_{0}$ surface with $b_{2}=3$, and a unique cycle with branches. Then there are three cases;

| dual graph | homological expressions of curves
 (with numbering from the left) |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{1}=-\mathrm{E}_{2}-\mathrm{E}_{3}, \quad \mathrm{D}_{2}=\mathrm{E}_{2}-\mathrm{E}_{1}$, | $\mathrm{D}_{3}=\mathrm{E}_{3}-\mathrm{E}_{2}$ |

where (resp. O) stands for a rational curve with a node (resp. a nonsingular rational curve).
§3 A theorem.
(3.1) Definition. Let s be a VII $_{0}$ surface with $b_{2}>0$. The Dloussky invariant $\mathrm{Dl}(\mathrm{S})$ of S is
$\mathrm{Dl}(\mathrm{S})=-\sum \mathrm{D}^{2}+\#($ rational curves with a node)
where D ranges over all the irreducible curves on S.
(3.2) Theorem. Let S be a $V^{\text {(II }}$ surface with $b_{2}>0$. Then $\mathrm{Dl}(\mathrm{S}) \leq 3 \mathrm{~b}_{2}(\mathrm{~S})$,
equality holding if and only if S is an Inoue surface with $b_{2}>0$.

Bibliography
[l] Enoki,I.: Surfaces of class VII_{0} with curves, Tohoku Math.J. 33, 453-492 (1981)
[2] Kato,Ma.: Compact complex manifolds containing "global spherical shells", I. Proc. Int. Symp. Algebraic Geometry, Kyoto, pp. 45-84 (1977)
[3] Kodaira,k.: On the structure of compact complex surfaces,III Amer. J. Math. 90, 55-83 (1968)
[4] Nakamura,I.: On surfaces of class $V I I_{0}$, Proc. Japan Acad. 58,380-383 (1982),
[5] \qquad : ditto. , Invent. Math. 78, 393-443 (1984)
[6] \qquad : On surfaces of class VII_{0} with global spherical shells Proc. Japan Acad. 59, 29-32 (1983)
[7] \qquad : Rational degeneration of surfaces of class VII_{0},
[8] \qquad : On surfaces of class VII_{0} with curves II (preprint)

