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Quasi-projective surfaces with finite ™y at infinity
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Introduction

C. P, Ramanujam's theorem on characterization of EZ can

be stated as follows.

'Let V be an affine, non-singular, rational surface/C
such that (i) T(V) 1is a U.F.D. (ii) T(V)*=L* and (iii) the
fundamental group at infinity of V is trivial. Then V== Ez
as an affine variety.'

In (2], this result was generalized by assuming that the
fundamental group at infinity of V is finite. Then together
with (i) and (ii) above, V 1is still isomorphic to EZ . For
singular affine surfaces also, the following result holds, see
[31.

'Let V be a normal, affine surface which is topologically
contractible and has finite fundamental group at infinity.

Then V EZ/G , where G 1is a f¥nite subgroup of GL(2,T).'

On the other hand, M. Miyanishi, T. Sugie and T. Fujita

proved the following.

'Let V be an affine, non-singular surface satisfying

(i) T(V) is a U.F.D. (ii) I'(V)*=rC* and (iii) g(V) = - = .



Then V.~ ¢2 as an affine variety.'

The theory of logarithmic Kodaira dimension has proved to
be very important for studying non-complete surfaces. Our aim
in this paper is give a relationship between the topological
method of C. P. Ramanujam and the geometric method of Miyanishi,

Sugie, Fujita. Our result is the following.

Theorem: Let V be a non-singular, affine surface/C which

has finite fundamental group at infinity. Then Kk(V) = ~« ,

See §1 for a slight generalization of this result.

We will give two different proofs of this results, one
4 la Ramanujam method and the other using T. Fujita's results
in [1]. In both proofs, a result of A. R. Shastri on the
classification of trees of Pl's having finite local fundamen-
tal group plays a crucial role. Shastri's proof depends on
C. P. Ramanujam's method plus a concept from 3-dimenisonal
topology. We hope that a more geometric method can be found to
eliminate the use of 3~dimensional topology.

Shastri proved in [6] that an affine, normal surface with
finite fundamental group at infinity in rational. Thus our
result implies more. There exist easy examples of affine

surfaces with K = - « but non-finite at infinity.

1

§1. Shastri's Theorem.

We begin with some notations. For any positive integers,

0 < A <n such that (n,A) =1 , let <n,)> denote the



negative definite linear tree -a, ~a, -a where

k
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a; 2 2 are integers defined by n/Xx = al-a—~—£—~—— .
27 5
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%k
Let <3(n,k>> denote the tree O 0 —al =y .

* *
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For nj ,Aj as above define aji by using the continued

fraction expansion of nj/)\j . For any a € z , let

<a;ng ,Al ,-n2 . A ;n3 + A,> denote the tree
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The result of Shastri mentioned in the introduction is the

following.

Theorem 1: Let B be a normal, quasi-projective surface with
a compactification V CV such that V is non-singular along
V-V . Suppose the divisor D = V-V has simple normal
crossings, D is connected and thé fundamental group at infinity
of V 1is finite. Then the dual graph of D (each irreducible
component of D is isomorphic to Pl) is equivalent to one of

the following trees (equivalence via blowing-ups and downs)



(1) The empty tree oxr 0 0
*

(ii) <n, A>

(iii) <a ;2,1 in, ,Az P ng ,A3> where {n2 ,n3} is one of the
pairs {3,3}, {3,4}, {3,5} or {2,n} for any n > 2 ,

0 < Ai < ng with (ni ,Ai) =1 and a > 2 .

(iv) The trees mentioned in (iii) except that a < 1 .

(V)

(v) The trees T where T 1is one of the trees in (ii)

or (iii) and v € T 1is any vertex.

Here T(V) denotes the tree obtained from T by adding two

more vertices Vv with weights at both 0 and

17 V2 V1 V2
two more links [v ;vl] and [vl ;v2] for any vertex v of

T .

Affine surfaces of the form ¢2/G , where G 1is a finite
subgroup of GL(2,T) have finite fundamental group at infinity.
In this case, the configuration of curves at infinity is given

by the following result of Shastri.

Theorem 2: For V== Ez/G , the dual graph of V-v is

equivalent to one of the following

(1) 0 0 if G = (e) .
* *

(ii) << n,»» if G= %/(n) , X depending on the inclusion

z/(n) ¢—> GL(2,C) .



(1iii) In all other cases, the tree is <a; 2,1 in, ,AZ;

n, ,A3> with a <1 and n, ,Ai as in Theorem 1 (iii).

We will use these two results of Shastri to give a proof of the

main result of this paper

Theorem. Let V be a non-singular,; quasi-projective surface
which is connected at infinity and has finite fundamental group
at infinity. Suppose V -~V supports an effective divisor A
with A2 >0 . Then K(V) = -« (Here V is a projective

compactification of V which is smooth along V -V).

Proof. We can assume that the dual graph of V-~V has only

- r

simple normal crossings. Let V-V = U C; where C; are
i=1

irreducible components. For a suitable tubular neighbourhood

r
T of 'Ul Ci , the boundary 3T 1is a c” compact 3-manifold,
1=
r
C= U Ci is a strong deformation retract of T and T is
i=1

obtained by the process of "plumbing". For a precise defini-

tion, see [4].

By assumption ﬂl(aT) is finite. This implies easily

that each Ci =~ Pl and the dual graph of ié& Ci is a tree.
Also 9T 1is a strong deformation retract of T~C . Thus
ﬂl(T"C) is finite. Let %, be the universal covering of
T-C with T7 —JL? T-C the covering map. Then T is a
complex manifold and ¢ 1is a holomorphic, proper map (with
finite fibres). By Grauert-Remmert's theorem, we can embed

§/ C T where T is a normal complex space such that f-—%l



is a finite union of compact analytic curves. Further we can
assume that T is smooth, ¢ extends to a proper holomorphic

map T —> T , which we still call ¢ . By resolving

. A oy .
singularities, we can assume that the curve T-T  has simple

normal crossings.

By construction, wl(aE) is trivial. This implies that

each irreducible component of T-1 is isomorphic to Pl

~

and the duvual graph of %-—%/ is a tree. T 1is also obtained
e

=T-7

(@

by plumbing from

Now we use Shastri's Theorem 1, Since C supports a

divisor A with Az > 0 , the dual graph of C can be assumed

to be O 0 or as in (iv) or (v) of Theorem 1. First assume
* *

that the graph is O 0 or T(V)
* *

. 2 2 _

in C s.t. Cl =0 = C2 ’ Cl-C2 = 1 and Cl meets no other

curve in C except C, « Then (K+C)-Cl = =1 . This forces

.,  Then ':'I curves C; ,C,

i

In(K +C) | ¢ for all n > 1 .
So we can assume that the dual graph of C is as in (iv)

of Theorem 1.

Lemma 1. We can obtain C from a single non-singular rational

curve L with L2 = 1, by a sequence of blowing ups and downs.

froof. Let G = nl(aT) = HT(V) . We know that the dual graph‘
of C 1is <a;2,1 PNy ,kz i Ny ,k3> as in (iv) of Theorem 1.

From Theorem 2, we see that 33 a normal, affine surface

W = E2/G where G has an embedding in GL(2,T) , and the dual
graph of the infinity of W 1is same as that of V . But once

the intersection matrix (Ci-Cj) of non-singular rational



curves is given, the plumbing process gives the tubular
neighbourhood T wuniguely. Thus T is Cw-diffeomorphic to
a tubular nbd. N of the divisor at infinity D for W 1in
a natural way. Then the universal covers of T~C and N-~D
are also diffeomorphic and the process of constructing T
from %/ being purely topological, we see that the dual
graphs of ¢ and D are naturally isomorphic with the
corresponding components actually complex analytically
isomorphic. But since the dual graph of D can be obtained
2

from a single non-singular rational curve M with M~ =1 ,

the same is true about C . This proves Lemma 1.

Now let U be a complex manifold of dimension 2 which
contains a.Pl as a complex submanifold M with M2 =1,
Then ln(KU-FM)l has no sections for n > 1 . It follows
easily that if U —L>u is a sequence of blowing-ups at
points lying on M and Ll = M , then ln(Kﬁ-fﬁ)! has no
sections for n > 1 .

Suppose ln(KV-+C)[ has a non-zero section s . Since
¢ is a proper map, it follows that s gives a non-zero
section of | n(K%-+5)|. This follows easily from the Logarithmic
Ramification Formula proved in [5].

This contradicts the observation above, completing the

proof of our Theorem.

Remark. If we can find a direct argument for Lemma 1, then the
use of 3-dimensional topology {which is used in Shastri's

results) can be avoided.



§2. Another proof.

We will use the theory of Zariski decomposition of pseudo-
effective divisors as discussed in Fujita's paper, [1 1. The
definitions of rational twig, bark of a tree etc. will be used
as in [1].

Assume now that ﬂm(V) is finite. As in the earlier

1

proof, we have to only consider compactifications V C ¥ . s.t.

the dual graph of V-v is <a ;2,1 :nl ,Xl PN, ,A2> as 1in

Theroem 1, (iv). Assume that K(V) 0 . Then K+C is

v

pseudo~-effective.
et K+C = H+N be the Zariski-decomposition. We make

two cases.

Case 1, Every irreducible component(of N = (K+C) is a
component of C . Then the Lemma 6.17 in [1] implies that the
dual graph I of V-V is an abnormal rational club. But
the intersection matrix of an abnormal rational club is
negative definite where as C supports an effective divisor

with positive self intersection. So this case does not occur.

Case 2. Since T 1is not an abnormal rational club, Bk(I') =
Bk*(I') by definition. If N = Bk*(T) , then every irreducible
component of N is a component of T and we get a contradic-

tion as in case 1. Thus N # Bk*(Tl) .

Now we can use Lemma (6.20) in [1]. There exists a
component E of N which is an exceptional curve not in C

satisfying one of the following conditions.

2 e



1) CNE

I
©

2) C+E =1 and E meets a component of Bk*(C) .

3) C*E >1 and E meets two components of C , one of which

is a tip of a rational club of C .

3) cannct occur because C 1is connected. If 1) occurs, we ca
blow-down E without changing the fundamental group at
infinity or K . So we must consider case 2). We study the
tree T more closely. T = B-+Tl-+T2-+T3 where B 1is the

unique curve which meets three other curves and B > -1 . We

can assume Tl is the tree :3 « Then T has the form fz

2
or j} or 13 13 (we can assume that d(T2) = 2 or 3).
1f T2 is the tree 13 , then T3 can be any negative
definite, minimal tree with determinant n > 2 . If T2 = —3
or 13~ 13 then T, is one of the negative definite minimal

linear trees with determinant 3, 4 or 5 .

Blow down E to get a surface W , let VvV —5> W be the
blowing down and C’ = 7(C) , W = W-c’ . Then C/ looks
like C (but may not be minimal). Then W C vV, so it
suffices to show that R(W) = =

We can blow down exceptional curves of the 1lst kind in C
to get a minimal tree which is either linear or has exactly
one curve which is a branch point for the new tree. This way
we get a new compactification of W , with the divisor at
infinity C having simple normal crossings. If one of the

branches at the branch point has a non-negative weight, then

n

/



the Corollary (6.14) in Fujita's paper implies that K(W) = - «
and we are done, Similarly if ¢ is linear with a non-
negative weight, K(W) = - o .

We can thus assume that C has exactly one branch point
with three branches. From the nature 6f c , it is seen easily
that the dual graph of ¢ 1is again of the type (iv) of Theorem
1. Also C supports an effective divisor with positive self
intersection. So we can again repeat the argument for W - and
in finitely many steps reach a Zariski-open subset of the
original V with logarithmic Kodaira dimension = o« .

The proof of the Theorem is complete.
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