Quasi-projective surfaces with finite π_1 at infinity

Osaka University R. V. Gurjar and M. Miyanishi

Introduction

C. P. Ramanujam's theorem on characterization of \mathbb{C}^2 can be stated as follows.

'Let V be an affine, non-singular, rational surface/C such that (i) $\Gamma(V)$ is a U.F.D. (ii) $\Gamma(V)^* = \mathbb{C}^*$ and (iii) the fundamental group at infinity of V is trivial. Then $V \approx \mathbb{C}^2$ as an affine variety.'

In [2], this result was generalized by assuming that the fundamental group at infinity of V is finite. Then together with (i) and (ii) above, V is still isomorphic to \mathbf{c}^2 . For singular affine surfaces also, the following result holds, see [3].

'Let V be a normal, affine surface which is topologically contractible and has finite fundamental group at infinity. Then $V \approx C^2/G$, where G is a finite subgroup of GL(2,C).'

On the other hand, M. Miyanishi, T. Sugie and T. Fujita proved the following.

'Let V be an affine, non-singular surface satisfying (i) $\Gamma(V)$ is a U.F.D. (ii) $\Gamma(V) * = \mathbb{C}^*$ and (iii) $\overline{\mathbf{k}}(V) = -\infty$.

- 84 --

Then $V \approx c^2$ as an affine variety.'

The theory of logarithmic Kodaira dimension has proved to be very important for studying non-complete surfaces. Our aim in this paper is give a relationship between the topological method of C. P. Ramanujam and the geometric method of Miyanishi, Sugie, Fujita. Our result is the following.

Theorem: Let V be a non-singular, affine surface/ \mathbb{C} which has finite fundamental group at infinity. Then $\tilde{\mathbf{k}}(V) = -\infty$.

See §1 for a slight generalization of this result.

We will give two different proofs of this results, one a la Ramanujam method and the other using T. Fujita's results in [1]. In both proofs, a result of A. R. Shastri on the classification of trees of \mathbb{P}^1 's having finite local fundamental group plays a crucial role. Shastri's proof depends on C. P. Ramanujam's method plus a concept from 3-dimenisonal topology. We hope that a more geometric method can be found to eliminate the use of 3-dimensional topology.

Shastri proved in [6] that an affine, normal surface with finite fundamental group at infinity in rational. Thus our result implies more. There exist easy examples of affine surfaces with $\bar{\mathbf{k}} = -\infty$ but non-finite π_1 at infinity.

§1. Shastri's Theorem.

We begin with some notations. For any positive integers, 0 < λ < n such that (n, λ) = 1 , let <n, λ > denote the

- 85 -

negative definite linear tree
$$-a_1 - a_2 - a_k$$
 where
 $a_1 \ge 2$ are integers defined by $n/\lambda = a_1 - \frac{1}{a_2 - \cdot}$.
 $-\frac{1}{a_k}$
Let $\langle \langle n, \lambda \rangle \rangle$ denote the tree 0 0 $-a_1 - a_k \cdot \frac{1}{a_k}$.
For n_j, λ_j as above define a_{ji} by using the continued fraction expansion of n_j/λ_j . For any $a \in \mathbb{Z}$, let $\langle a; n_1, \lambda_1; n_2, \lambda_2; n_3, \lambda_3 \rangle$ denote the tree

The result of Shastri mentioned in the introduction is the following.

Theorem 1: Let B be a normal, quasi-projective surface with a compactification $V \subseteq \overline{V}$ such that \overline{V} is non-singular along $\overline{V} - V$. Suppose the divisor $D = \overline{V} - V$ has simple normal crossings, D is connected and the fundamental group at infinity of V is finite. Then the dual graph of D (each irreducible component of D is isomorphic to \mathbb{P}^1) is equivalent to one of the following trees (equivalence via blowing-ups and downs)

- 86 -

(i) The empty tree or $0 \quad 0 \quad * \quad * \quad *$

(ii) $\langle n, \lambda \rangle$

- (iii) <a; 2, 1; n_2 , λ_2 ; n_3 , λ_3 > where { n_2 , n_3 } is one of the pairs {3,3}, {3,4}, {3,5} or {2,n} for any $n \ge 2$, $0 < \lambda_i < n_i$ with $(n_i, \lambda_i) = 1$ and $a \ge 2$.
- (iv) The trees mentioned in (iii) except that $a \leq 1$.
- (v) The trees $T^{(\nu)}$ where T is one of the trees in (ii) or (iii) and $\nu \in T$ is any vertex.

Here $T^{(\boldsymbol{\mathcal{V}})}$ denotes the tree obtained from T by adding two more vertices v_1, v_2 with weights at v_1, v_2 both 0 and two more links $[v; v_1]$ and $[v_1; v_2]$ for any vertex v of T.

Affine surfaces of the form \mathbb{C}^2/G , where G is a finite subgroup of $GL(2,\mathbb{C})$ have finite fundamental group at infinity. In this case, the configuration of curves at infinity is given by the following result of Shastri.

Theorem 2: For $V \approx C^2/G$, the dual graph of $\bar{V} - V$ is equivalent to one of the following

- (i) 0 0 if G = (e).
- (ii) $\langle \langle n, \lambda \rangle \rangle$ if $G \approx Z/(n)$, λ depending on the inclusion $Z/(n) \xrightarrow{C} GL(2,\mathbb{C})$.

(iii) In all other cases, the tree is $\langle a; 2, 1; n_2, \lambda_2;$ $n_3, \lambda_3 \rangle$ with $a \leq 1$ and n_i, λ_i as in Theorem 1 (iii).

We will use these two results of Shastri to give a proof of the main result of this paper

Theorem. Let V be a non-singular; quasi-projective surface which is connected at infinity and has finite fundamental group at infinity. Suppose $\overline{V} - V$ supports an effective divisor Δ with $\Delta^2 > 0$. Then $\overline{K}(V) = -\infty$ (Here \overline{V} is a projective compactification of V which is smooth along $\overline{V} - V$).

Proof. We can assume that the dual graph of $\overline{V} - V$ has only simple normal crossings. Let $\overline{V} - V = \bigcup_{i=1}^{r} C_i$ where C_i are irreducible components. For a suitable tubular neighbourhood T of $\bigcup_{i=1}^{r} C_i$, the boundary ∂T is a C^{∞} compact 3-manifold, $C = \bigcup_{i=1}^{r} C_i$ is a strong deformation retract of T and T is obtained by the process of "plumbing". For a precise definition, see [4].

By assumption $\pi_1(\partial T)$ is finite. This implies easily that each $C_i \approx \mathbb{P}^1$ and the dual graph of $\bigcup_{i=1}^{r} C_i$ is a tree. Also ∂T is a strong deformation retract of T - C. Thus $\pi_1(T - C)$ is finite. Let \widetilde{T}' be the universal covering of T - C with $\widetilde{T}' \xrightarrow{\phi} T - C$ the covering map. Then \widetilde{T}' is a complex manifold and ϕ is a holomorphic, proper map (with finite fibres). By Grauert-Remmert's theorem, we can embed $\widetilde{T}' \subset \widetilde{T}$ where \widetilde{T} is a normal complex space such that $\widetilde{T} - \widetilde{T}'$

- 88 -

is a finite union of compact analytic curves. Further we can assume that \tilde{T} is smooth, ϕ extends to a proper holomorphic map $\tilde{T} \longrightarrow T$, which we still call ϕ . By resolving singularities, we can assume that the curve $\tilde{T} - \tilde{T}'$ has simple normal crossings.

By construction, $\pi_1(\Im \widetilde{T})$ is trivial. This implies that each irreducible component of $\widetilde{T} - \widetilde{T}'$ is isomorphic to \mathbb{P}^1 and the dual graph of $\widetilde{T} - \widetilde{T}'$ is a tree. \widetilde{T} is also obtained by plumbing from $\widetilde{C} = \widetilde{T} - \widetilde{T}'$.

Now we use Shastri's Theorem 1. Since C supports a divisor \triangle with $\triangle^2 > 0$, the dual graph of C can be assumed to be $\begin{array}{c} 0 & 0 \\ \star & --\star \end{array}$ or as in (iv) or (v) of Theorem 1. First assume that the graph is $\begin{array}{c} 0 & 0 \\ \star & --\star \end{array}$ or $\mathbf{T}^{(v)}$. Then \exists curves C_1, C_2 in C s.t. $C_1^2 = 0 = C_2^2$, $C_1 \cdot C_2 = 1$ and C_1 meets no other curve in C except C_2 . Then $(K+C) \cdot C_1 = -1$. This forces $|n(K+C)| = \phi$ for all $n \ge 1$.

So we can assume that the dual graph of C is as in (iv) of Theorem 1.

Lemma 1. We can obtain \tilde{C} from a single non-singular rational curve L with $L^2 = 1$, by a sequence of blowing ups and downs. Proof. Let $G = \pi_1(\partial T) = \pi_1^{\infty}(V)$. We know that the dual graph of C is $\langle a; 2, 1; n_2, \lambda_2; n_3, \lambda_3 \rangle$ as in (iv) of Theorem 1. From Theorem 2, we see that \exists a normal, affine surface $W \approx \mathbb{C}^2/G$ where G has an embedding in $GL(2,\mathbb{C})$, and the dual graph of the infinity of W is same as that of V. But once the intersection matrix $(C_i \cdot C_j)$ of non-singular rational

- 89 -

curves is given, the plumbing process gives the tubular neighbourhood T uniquely. Thus T is C^{∞} -diffeomorphic to a tubular nbd. N of the divisor at infinity D for W in a natural way. Then the universal covers of T-C and N-D are also diffeomorphic and the process of constructing \tilde{T} from \tilde{T}' being purely topological, we see that the dual graphs of \tilde{C} and \tilde{D} are naturally isomorphic with the corresponding components actually complex analytically isomorphic. But since the dual graph of \tilde{D} can be obtained from a single non-singular rational curve M with $M^2 = 1$, the same is true about \tilde{C} . This proves Lemma 1.

Now let U be a complex manifold of dimension 2 which contains a \mathbb{P}^1 as a complex submanifold M with $M^2 = 1$. Then $|n(K_U + M)|$ has no sections for $n \ge 1$. It follows easily that if $\tilde{U} \xrightarrow{\pi} U$ is a sequence of blowing-ups at points lying on M and $\pi^{-1}(M) = \tilde{M}$, then $|n(K_{\tilde{U}} + \tilde{M})|$ has no sections for $n \ge 1$.

Suppose $|n(K_V + C)|$ has a non-zero section s. Since ϕ is a proper map, it follows that s gives a non-zero section of $|n(K_{\tilde{T}} + \tilde{C})|$. This follows easily from the Logarithmic Ramification Formula proved in [5].

This contradicts the observation above, completing the proof of our Theorem.

Remark. If we can find a direct argument for Lemma 1, then the use of 3-dimensional topology (which is used in Shastri's results) can be avoided.

- 90 -

§2. Another proof.

We will use the theory of Zariski decomposition of pseudoeffective divisors as discussed in Fujita's paper, [1]. The definitions of rational twig, bark of a tree etc. will be used as in [1].

Assume now that $\pi_1^{\infty}(V)$ is finite. As in the earlier proof, we have to only consider compactifications $V \subseteq \overline{V}$ s.t. the dual graph of $\overline{V} - V$ is $\langle a; 2, 1; n_1, \lambda_1; n_2, \lambda_2 \rangle$ as in Theroem 1, (iv). Assume that $\overline{K}(V) \geq 0$. Then K + C is pseudo-effective.

Let K + C = H + N be the Zariski-decomposition. We make two cases.

Case 1. Every irreducible component of $N = (K+C)^{-}$ is a component of C. Then the Lemma 6.17 in [1] implies that the dual graph Γ of $\overline{V} - V$ is an abnormal rational club. But the intersection matrix of an abnormal rational club is negative definite where as C supports an effective divisor with positive self intersection. So this case does not occur.

Case 2. Since Γ is not an abnormal rational club, $Bk(\Gamma) = Bk^*(\Gamma)$ by definition. If $N = Bk^*(\Gamma)$, then every irreducible component of N is a component of Γ and we get a contradiction as in case 1. Thus $N \neq Bk^*(\Gamma)$.

Now we can use Lemma (6.20) in [1]. There exists a component E of N which is an exceptional curve not in C satisfying one of the following conditions.

8

- 91 -

1) $C \cap E = \phi$.

2) $C \cdot E = 1$ and E meets a component of $Bk^*(C)$.

3) C·E > 1 and E meets two components of C , one of which is a tip of a rational club of C .

3) cannot occur because C is connected. If 1) occurs, we can blow-down E without changing the fundamental group at infinity or \overline{K} . So we must consider case 2). We study the tree Γ more closely. $\Gamma = B + T_1 + T_2 + T_3$ where B is the unique curve which meets three other curves and $B^2 \ge -1$. We can assume T_1 is the tree -2. Then T_2 has the form -2or -3 or -2 -2 (we can assume that $d(T_2) = 2$ or 3). If T_2 is the tree -2, then T_3 can be any negative definite, minimal tree with determinant $n \ge 2$. If $T_2 = -3$ or -2 -2 then T_3 is one of the negative definite minimal linear trees with determinant 3, 4 or 5.

Blow down E to get a surface \overline{W} , let $\overline{V} \xrightarrow{\pi} \overline{W}$ be the blowing down and $C' = \pi(C)$, $W = \overline{W} - C'$. Then C' looks like C (but may not be minimal). Then $W \subseteq V$, so it suffices to show that $\widetilde{K}(W) = -\infty$.

We can blow down exceptional curves of the 1st kind in C'to get a minimal tree which is either linear or has exactly one curve which is a branch point for the new tree. This way we get a new compactification of W, with the divisor at infinity \tilde{C} having simple normal crossings. If one of the branches at the branch point has a non-negative weight, then

- 92 -

the Corollary (6.14) in Fujita's paper implies that $\tilde{K}(W) = -\infty$ and we are done. Similarly if \tilde{C} is linear with a nonnegative weight, $\bar{K}(W) = -\infty$.

We can thus assume that \tilde{C} has exactly one branch point with three branches. From the nature of \tilde{C} , it is seen easily that the dual graph of \tilde{C} is again of the type (iv) of Theorem 1. Also \tilde{C} supports an effective divisor with positive self intersection. So we can again repeat the argument for $W \cdot$ and in finitely many steps reach a Zariski-open subset of the original V with logarithmic Kodaira dimension $-\infty$.

The proof of the Theorem is complete.

References

- T. Fujita On the topology of non-complete algebraic surfaces. J. Fac. Sci. Univ. of Tokyo, 29, 1982.
- R. V. Gurjar and A. R. Shastri The fundamental group at infinity of affine surfaces. Comment. Math. Helvetici, 59, 1984.
- 3) R. V. Gurjar and A. R. Shastri A. topological characterization of \mathbb{C}^2/G . To appear in J. Math. Kyoto Univ.
- F. Hirzebruch and W. D. Neumann Differentiable manifolds and quadratic forms. Marcel Dekkar Inc. New York, 1971.
- S. Iitaka Algebraic Geometry. Springer Verlag, Graduate Texts in Mathematic, 1982.
- A. R. Shastri Divisors with finite local fundamental group on a surfaces. Preprint.

10