Osaka University
R．V．Gurjar and M．Miyanishi

Introduction

C．P．Ramanujam＇s theorem on characterization of \mathbb{C}^{2} can be stated as follows．
＇Let V be an affine，non－singular，rational surface／ \mathbb{C} such that（i）$\Gamma(V)$ is a U．F．D．（ii）$\Gamma(V) *=\mathbb{I}^{*}$ and（iii）the fundamental group at infinity of V is trivial．Then $V \approx \mathbb{C}^{2}$ as an affine variety．＇

In［2］，this result was generalized by assuming that the fundamental group at infinity of V is finite．Then together with（i）and（ii）above，V is still isomorphic to \mathbb{C}^{2} ．For singular affine surfaces also，the following result holds，see ［3］．
＇Let V be a normal，affine surface which is topologically contractible and has finite fundamental group at infinity． Then $V \approx \mathbb{C}^{2} / G$ ，where G is a finite subgroup of $G L(2, \mathbb{C}) . '$

On the other hand，M．Miyanishi，T．Sugie and T．Fujita proved the following．
＇Let V be an affine，non－singular surface satisfying
（i）$\Gamma(V)$ is a U．F．D．（ii）$\Gamma(V)^{*}=\mathbb{C}^{*}$ and（iii） $\bar{K}(V)=-\infty$ ．

Then $V \approx \mathbb{C}^{2}$ as an affine variety.'
The theory of logarithmic Kodaira dimension has proved to be very important for studying non-complete surfaces. Our aim in this paper is give a relationship between the topological method of C. P. Ramanujam and the geometric method of Miyanishi, Sugie, Fujita. Our result is the following.

Theorem: Let V be a non-singular, affine surface/ \mathbb{C} which has finite fundamental group at infinity. Then $\overline{\boldsymbol{k}}(\mathrm{V})=-\infty$.

See $\S 1$ for a slight generalization of this result. We will give two different proofs of this results, one á la Ramanujam method and the other using T. Fujita's results in [l]. In both proofs, a result of A. R. Shastri on the classification of trees of $\mathbb{P}^{1}{ }^{1} s$ having finite local fundamental group plays a crucial role. Shastri's proof depends on C. P. Ramanujam's method plus a concept from 3-dimenisonal topology. We hope that a more geometric method can be found to eliminate the use of 3-dimensional topology.

Shastri proved in [6] that an affine, normal surface with finite fundamental group at infinity in rational. Thus our result implies more. There exist easy examples of affine surfaces with $\bar{K}=-\infty$ but non-finite π_{1} at infinity.
§l. Shastri's Theorem.

We begin with some notations. For any positive integers, $0<\lambda<n$ such that $(n, \lambda)=1$, let $\langle n, \lambda\rangle$ denote the

$a_{i} \geqq 2$ are integers defined by $n / \lambda=a_{1}-\frac{1}{a_{2}-\cdot} \quad$.
$-\frac{1}{a_{k}}$
Let $\langle\langle n, \lambda\rangle\rangle$ denote the tree $0 \quad 0_{*}^{0 \quad-a_{1} \quad a_{k} .}$.
For n_{j}, λ_{j} as above define $a_{j i}$ by using the continued fraction expansion of n_{j} / λ_{j}. For any $a \in z$, let $\left\langle a ; n_{1}, \lambda_{1} ; n_{2}, \lambda_{2} ; n_{3}, \lambda_{3}\right\rangle$ denote the tree

The result of Shastri mentioned in the introduction is the following.

Theorem l: Let B be a normal, quasi-projective surface with a compactification $V \subset \overline{\mathrm{~V}}$ such that $\overline{\mathrm{V}}$ is non-singular along $\overline{\mathrm{V}}-\mathrm{V}$. Suppose the divisor $\mathrm{D}=\overline{\mathrm{V}}-\mathrm{V}$ has simple normal crossings, D is connected and the fundamental group at infinity of V is finite. Then the dual graph of D (each irreducible component of D is isomorphic to \mathbb{P}^{l}) is equivalent to one of the following trees (equivalence via blowing-ups and downs)
(i) The empty tree or $0 \quad 0$
(ii) <n, $\lambda>$
(iii) $<a ; 2,1 ; n_{2}, \lambda_{2} ; n_{3}, \lambda_{3}>$ where $\left\{n_{2}, n_{3}\right\}$ is one of the pairs $\{3,3\},\{3,4\},\{3,5\}$ or $\{2, n\}$ for any $n \geq 2$, $0<\lambda_{i}<n_{i}$ with $\left(n_{i}, \lambda_{i}\right)=1$ and $a \geq 2$.
(iv) The trees mentioned in (iii) except that $a \leq 1$. .
(v) The trees $T^{(\nu)}$ where T is one of the trees in (ii) or (iii) and $\nu \in T$ is any vertex.

Here $T^{(\nu)}$ denotes the tree obtained from T by adding two more vertices v_{1}, v_{2} with weights at ν_{1}, v_{2} both 0 and two more links $\left[\nu ; v_{1}\right]$ and $\left[\nu_{1} ; v_{2}\right]$ for any vertex v of T.

Affine surfaces of the form \mathbb{C}^{2} / G, where G is a finite subgroup of $G L(2, \mathbb{C})$ have finite fundamental group at infinity. In this case, the configuration of curves at infinity is given by the following result of Shastri.

Theorem 2: For $V \approx \mathbb{L}^{2} / G$, the dual graph of $\bar{V}-V$ is equivalent to one of the following

(ii) $\langle\langle n, \lambda\rangle\rangle$ if $G \approx Z /(n), \lambda$ depending on the inclusion $\mathrm{Z} /(\mathrm{n}) \xrightarrow{C} G L(2, \mathbb{C}) \quad$.
(iii) In all other cases, the tree is <a; 2, $1 ; n_{2}, \lambda_{2}$; $n_{3}, \lambda_{3}>$ with $a \leq 1$ and n_{i}, λ_{i} as in Theorem 1 (iii).

We will use these two results of Shastri to give a proof of the main result of this paper

Theorem. Let V be a non-singular; quasi-projective surface which is connected at infinity and has finite fundamental group at infinity. Suppose $\overline{\mathrm{V}}-\mathrm{V}$ supports an effective divisor Δ with $\Delta^{2}>0$. Then $\overline{\mathrm{K}}(\mathrm{V})=-\infty$ (Here $\overline{\mathrm{V}}$ is a projective compactification of V which is smooth along $\bar{V}-V$).

Proof. We can assume that the dual graph of $\bar{V}-V$ has only simple normal crossings. Let $\bar{V}-V=\underset{i=1}{\bigcup_{i}} C_{i}$ where C_{i} are irreducible components. For a suitable tubular neighbourhood T of $\underset{i=1}{\cup} C_{i}$, the boundary ∂T is a C^{∞} compact 3-manifold, $C=\bigcup_{i=1}^{r} C_{i}$ is a strong deformation retract of T and T is obtained by the process of "plumbing". For a precise definition, see [4].

By assumption $\pi_{1}(\partial T)$ is finite. This implies easily that each $C_{i} \approx \mathbb{P}^{l}$ and the dual graph of $\underset{i=1}{\underline{u}} C_{i}$ is a tree. Also ∂T is a strong deformation retract of $T-C$. Thus $\pi_{1}(T-C)$ is finite. Let \tilde{T}^{\prime} be, the universal covering of $\mathrm{T}-\mathrm{C}$ with $\tilde{\mathrm{T}}^{\prime} \xrightarrow{\phi} \mathrm{T}-\mathrm{C}$ the covering map. Then $\tilde{\mathrm{T}}^{\prime}$ is a complex manifold and ϕ is a holomorphic, proper map (with finite fibres). By Grauert-Remmert's theoren, we can embed $\tilde{T}^{\prime} \subset \tilde{T}$ where \tilde{T} is a normal complex space such that $\tilde{T}-\tilde{T}^{\prime}$
is a finite union of compact analytic curves. Further we can assume that \tilde{T} is smooth, ϕ extends to a proper holomorphic map $\tilde{T} \longrightarrow T$, which we still call ϕ. By resolving singularities, we can assume that the curve $\tilde{T}-\tilde{T}^{\prime}$ has simple normal crossings.

By construction, $\pi_{1}(\partial \tilde{T})$ is trivial. This implies that each irreducible component of $\tilde{T}-\tilde{T}^{\prime}$ is isomorphic to \mathbb{P}^{l} and the dual graph of $\tilde{T}-\tilde{T}^{\prime}$ is a tree. \tilde{T} is also obtained by plumbing from $\tilde{\mathrm{C}}=\tilde{\mathrm{T}}-\tilde{\mathrm{T}}^{\prime}$.

Now we use Shastri's Theorem l. Since C supports a divisor Δ with $\Delta^{2}>0$, the dual graph of C can be assumed to be $0 \quad 0 \quad$ or as in (iv) or (v) of Theorem l. First assume that the graph is ${ }_{*}^{0} \quad 0$ or $T^{(v)}$. Then \exists curves C_{1}, C_{2} in c s.t. $c_{1}^{2}=0=c_{2}^{2}, c_{1} \cdot c_{2}=1$ and c_{1} meets no other curve in C except C_{2}. Then $(K+C) \cdot C_{1}=-1$. This forces $|n(K+C)|=\phi$ for all $n \geqslant 1$.

So we can assume that the dual graph of C is as in (iv) of Theorem 1.

Lemma l. We can obtain \tilde{C} from a single non-singular rational curve L with $L^{2}=1$, by a sequence of blowing ups and downs. Proof. Let $G=\pi_{l}(\partial T)=\pi_{l}^{\infty}(V)$. We know that the dual graph of C is <a;2,l; $n_{2}, \lambda_{2} ; n_{3}, \lambda_{3}>$ as in (iv) of Theorem l. From Theorem 2, we see that \exists a normal, affine surface $W \approx \mathbb{C}^{2} / G$ where G has an embedding in $G L(2, \mathbb{C})$, and the dual graph of the infinity of W is same as that of V. But once the intersection matrix $\left(C_{i} \cdot C_{j}\right)$ of non-singular rational
curves is given, the plumbing process gives the tubular neighbourhood T uniquely. Thus T is C^{∞}-diffeomorphic to a tubular nbd. N of the divisor at infinity D for W in a natural way. Then the universal covers of $T-C$ and $N-D$ are also diffeomorphic and the process of constructing \tilde{T} from \tilde{T}^{\prime} being purely topological, we see that the dual graphs of \tilde{C} and \tilde{D} are naturally isomorphic with the corresponding components actually complex analytically isomorphic. But since the dual graph of \tilde{D} can be obtained from a single non-singular rational curve M with $M^{2}=1$, the same is true about $\tilde{\mathrm{C}}$. This proves Lemma 1.

Now let U be a complex manifold of dimension 2 which contains a \mathbb{P}^{1} as a complex submanifold M with $M^{2}=1$. Then $\left|n\left(K_{U}+M\right)\right|$ has no sections for $n \geqslant l$. It follows easily that if $\tilde{U} \xrightarrow{\pi} U$ is a sequence of blowing-ups at points lying on M and $\pi^{-1}(M)=\tilde{M}$, then $\left|n\left(K_{\tilde{U}}+\tilde{M}\right)\right|$ has no sections for $n \geqq 1$.

Suppose $\left|n\left(K_{V}+C\right)\right|$ has a non-zero section s. Since ϕ is a proper map, it follows that s gives a non-zero section of $\left|n\left(K_{\tilde{T}}+\tilde{C}\right)\right|$. This follows easily from the Logarithmic Ramification Formula proved in [5].

This contradicts the observation above, completing the proof of our Theorem.

Remark. If we can find a direct argument for Lemma 1 , then the use of 3-dimensional topology (which is used in Shastri's results) can be avoided.
§2. Another proof.

We will use the theory of Zariski decomposition of pseudoeffective divisors as discussed in Fujita's paper, [1]. The definitions of rational twig, bark of a tree etc. will be used as in [1].

Assume now that $\pi_{1}^{\infty}(V)$ is finite. As in the earlier proof, we have to only consider compactifications $V \subset \overline{\mathrm{~V}}$. s.t. the dual graph of $\overline{\mathrm{V}}-\mathrm{V}$ is <a;2,1; $\mathrm{n}_{1}, \lambda_{1} ; \mathrm{n}_{2}, \lambda_{2}>$ as in Theroem 1, (iv). Assume that $\bar{K}(V) \geqq 0$. Then $K+C$ is pseudo-effective.

Let $\mathrm{K}+\mathrm{C}=\mathrm{H}+\mathrm{N}$ be the Zariski-decomposition. We make two cases.

Case 1. Every irreducible component of $N=(K+C)^{-}$is a component of C. Then the Lemma 6.17 in [l] implies that the dual graph Γ of $\overline{\mathrm{V}}-\mathrm{V}$ is an abnormal rational club. But the intersection matrix of an abnormal rational club is negative definite where as C supports an effective divisor with positive self intersection. So this case does not occur.

Case 2. Since Γ is not an abnormal rational $c l u b, ~ \mathrm{Bk}(\Gamma)=$ $B k^{*}(\Gamma)$ by definition. If $N=B k^{*}(\Gamma)$, then every irreducible component of N is a component of Γ and we get a contradiction as in case l. Thus $N \neq \mathrm{Bk}^{*}(\Gamma)$.

Now we can use Lemma (6.20) in [l]. There exists a component E of N which is an exceptional curve not in C satisfying one of the following conditions.

1) $C \cap E=\phi$.
2) $\mathrm{C} \cdot \mathrm{E}=1$ and E meets a component of $\mathrm{Bk}^{*}(\mathrm{C})$.
3) $C \cdot E>l$ and E meets two components of C, one of which is a tip of a rational club of C.
4) cannot occur because C is connected. If l) occurs, we can blow-down E without changing the fundamental group at infinity or $\overline{\mathrm{K}}$. So we must consider case 2). We study the tree Γ more closely. $\Gamma=B+T_{1}+T_{2}+T_{3}$ where B is the unique curve which meets three other curves and $B^{2} \geqq-1$. We can assume T_{1} is the tree -2 . Then T_{2} has the form -2 or -3 or $-2 \quad-2$ (we can assume that $d\left(T_{2}\right)=2$ or 3). If T_{2} is the tree $\underset{*}{-2}$, then T_{3} can be any negative definite, minimal tree with determinant $\mathrm{n} \geq 2$. If $\mathrm{T}_{2}=-3$ or $-2 \quad-2$ then T_{3} is one of the negative definite minimal linear trees with determinant 3,4 or 5 .

Blow down E to get a surface \bar{W}, let $\bar{V} \xrightarrow{\pi} \bar{W}$ be the blowing down and $C^{\prime}=\pi(C), W=\bar{W}-C^{\prime}$. Then C^{\prime} looks like C (but may not be minimal). Then $W C V$, so it suffices to show that $\bar{K}(W)=-\infty$.

We can blow down exceptional curves of the list kind in C^{\prime} to get a minimal tree which is either linear or has exactly one curve which is a branch point for the new tree. This way we get a new compactification of W, with the divisor at infinity \tilde{C} having simple normal crossings. If one of the branches at the branch point has a non-negative weight, then
the Corollary (6.14) in Fujita's paper implies that $\overline{\mathrm{K}}(\mathrm{W})=-\infty$ and we are done. Similarly if \tilde{C} is linear with a nonnegative weight, $\overline{\mathrm{K}}(\mathrm{W})=-\infty$.

We can thus assume that \tilde{C} has exactly one branch point with three branches. From the nature of \tilde{C}, it is seen easily that the dual graph of \tilde{C} is again of the type (iv) of Theorem 1. Also \tilde{C} supports an effective divisor with positive self intersection. So we can again repeat the argument for W and in finitely many steps reach a Zariski-open subset of the original V with logarithmic Kodaira dimension $-\infty$. The proof of the Theorem is complete.

References

1) T. Fujita - On the topology of non-complete algebraic surfaces. J. Fac. Sci. Univ. of Tokyo, 29, 1982.
2) R. V. Gurjar and A. R. Shastri - The fundamental group at infinity of affine surfaces. Comment. Math. Helvetici, 59, 1984.
3) R. V. Gurjar and A. R. Shastri - A. topological characterization of \mathbb{C}^{2} / G. To appear in J. Math. Kyoto Univ.
4) F. Hirzebruch and W. D. Neumann - Differentiable manifolds and quadratic forms. Marcel Dekkar Inc. New York, 1971.
5) S. Iitaka - Algebraic Geometry. Springer Verlag, Graduate Texts in Mathematic, 1982.
6) A. R. Shastri - Divisors with finite local fundamental group on a surfaces. Preprint.
