<table>
<thead>
<tr>
<th>Title</th>
<th>Hopf algebra for Fuchsian groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Saito, Kyoji</td>
</tr>
<tr>
<td>Citation</td>
<td>世代幾何学シンポジューム記録 1988年試験の研究報告集</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2433/212683">http://hdl.handle.net/2433/212683</a></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
This is a partial report on the trial of constructing modular functions on the Teichmüller space. The idea is to use the Ising model in statistical mechanics, where the lattice of rank 2 is replaced by the Fuchsian group. The calculations are still on the way and in the present note we report on the the construction of the Hopf algebra and some of its structures.

A more completed note will be published elsewhere.

Contents

§ 1 Introduction
§ 2 Fuchsian groups
§ 3 Configuration algebra
§ 4 Covering coefficients and the Hopf algebra
§ 5 Growth functions

§ 1 Introduction
§ 2 Fuchsian groups

We describe tessellations and the growth functions for Fuchsian groups. The materials are classical, which can be traced back to Fricke and Dehn [ ]. Some results are rather recent [ ] or may be new.

(2.1) The $\text{PSL}(2, \mathbb{R})$ acts on the upper half complex plane $\mathbb{H}$ from
left by the fractional linear transformation. A discrete subgroup \( \Gamma \) of \( \text{PSL}(2,\mathbb{R}) \) is a Fuchsian surface group, if it acts on \( \mathbb{H} \) fixed point freely and the quotient \( \Gamma \backslash \mathbb{H} \), denoted by \( X \), is compact. The \( X \) is a Riemann surface of genus \( g \geq 1 \), where the natural projection
\[
(2.1.1) \quad u : \mathbb{H} \rightarrow X
\]
is a universal covering map. Conversely, for a given compact Riemann surface \( X \) of genus \( g \geq 1 \), a universal covering map (2.1.1) exists up to an ambiguity of \( \Gamma \backslash \text{PSL}(2,\mathbb{R}) \) (= a circle bundle over \( X \)).

As is well known, on the surface \( X \) one can choose 2\( g \) oriented circles:
\[
(2.1.2) \quad a_1, b_1, a_2, b_2, \ldots, a_g, b_g
\]
which intersect in only one point 0 as in the Fig.1 (cf Fig.8).

The intersection numbers of the circles are easily seen by deforming the Fig.1 to Fig.1' at 0.

\[
(2.1.3) \quad \langle [a_i], [a_j] \rangle = \langle [b_i], [b_j] \rangle = 0 \quad \text{for } i,j = 1, \ldots, g,
\]
\[
\langle [a_i], [b_j] \rangle = \delta_{i,j} \quad \text{for } i,j = 1, \ldots, g,
\]
where \([a]\) describe the homology class of \( a \) in \( H_1(X,\mathbb{Z}) \).

Cut the surface \( X \) along the circles \( a_1, \ldots, b_g \) (called a canonical dissection) and develop it to a surface \( Y \) with boundary. From Fig.1 one sees easily that the boundary of \( Y \) is a connected circle \( a_1 b_1 a_1^{-1} b_1^{-1} \ldots a_g b_g a_g^{-1} b_g^{-1} \) by looking the interier of \( Y \) in the left side. The determinant of the intersection matrix of (2.1.3) is equal to 1 so that \([a_i], [b_i] \) \((i = 1, \ldots, g)\) span the homology group \( H_1(X,\mathbb{Z}) \). Thus \( Y \) is homologically trivial and then it is simply connected by classification of surfaces. (See Fig.2.)
(2.2) The homotopy classes in $\pi_1(X, O)$ represented by the circles $a_1, \ldots, b_g$ will be denoted by

$$\tilde{a}_1, \tilde{b}_1, \ldots, \tilde{a}_g, \tilde{b}_g.$$ 

Then the fundamental group $\pi_1(X, O)$ is generated by (2.2.1) with a single relation:

$$\tilde{a}_1 \tilde{b}_1 \tilde{a}_1^{-1} \tilde{b}_1^{-1} \ldots \tilde{a}_g \tilde{b}_g \tilde{a}_g^{-1} \tilde{b}_g^{-1} = 1$$ 

As a convention in this paper, the succession of a path $b$ after a path $a$ will be denoted by the product $ab$.

Let us choose and fix a point $\tilde{O}$ of $H$, which is projected to $O \in X$. Then the fundamental group $\pi_1(X, O)$ acts on $H$ from the left as the covering transformations for (2.1.1). This induces the isomorphism:

$$(2.2.3) \quad \varphi : \pi_1(X, O) \cong \Gamma.$$ 

By this $\varphi$, we regard (2.2.1) as a generator system for $\Gamma$. The change of $\tilde{O}$ to $\gamma \tilde{O}$ for $\gamma \in \Gamma$ induces the change of $\varphi$ to $\text{ad}(\gamma) \cdot \varphi$.

Let us lift the movement on the surface $Y$ along the boundary $a_1, b_1, a_1^{-1}, b_1^{-1}, \ldots, a_g, b_g, a_g^{-1}, b_g^{-1}$ in anti-clockwise direction, to the movement on the surface $H$ starting from $\tilde{O}$. Since $Y$ is simply connected, it form a polygon of $4g$ vertexes $\tilde{O}_i$ ($i=0, \ldots, 4g$):
\[(2.2.4) \quad \tilde{O}_i := R_i \tilde{O} \quad (i=0, \ldots, 4g),\]

with
\[(2.2.5) \quad R_i := \prod_{k=1}^{i} \tilde{c}_k = \tilde{c}_1 \tilde{c}_2 \ldots \tilde{c}_i \quad (i=0, \ldots, 4g),\]

where \(\tilde{c}_1, \ldots, \tilde{c}_{4g}\) is the sequence \(\tilde{a}_1, \tilde{b}_1, \tilde{a}_1^{-1}, \tilde{b}_1^{-1}, \ldots, \tilde{a}_g, \tilde{b}_g, \tilde{a}_g^{-1}, \tilde{b}_g^{-1}\).

\[(I.e. \quad R_0 = 1, \quad R_1 = \tilde{a}_1, \quad R_2 = \tilde{a}_1 \tilde{b}_1, \quad R_3 = \tilde{a}_1 \tilde{b}_1 \tilde{a}_1^{-1}, \quad R_4 = \tilde{a}_1 \tilde{b}_1 \tilde{a}_1^{-1} \tilde{b}_1^{-1}, \ldots, \quad R_{4g-1} = \tilde{a}_1 \tilde{b}_1 \ldots \tilde{a}_g^{-1}, \quad R_{4g} = \tilde{a}_1 \tilde{b}_1 \ldots \tilde{a}_g^{-1} \tilde{b}_g^{-1} = 1.\)

The polygon surrounds a domain \(Z\) in \(H\), which is homeomorphic to \(Y\) by the map (2.1.1) (cf. Fig. 3). Obviously, \(Z\) is a fundamental domain for the action of \(\Gamma\) on \(H\). The \(i\)-th edge of \(Z\) between \(\tilde{O}_{i-1}\) and \(\tilde{O}_i\) is denoted by \([\tilde{O}_{i-1} \tilde{O}_i]\).

There exists a unique element of \(\Gamma\), which transforms the vertex \(\tilde{O}_i\) to \(\tilde{O}_j\), which is explicitly given by \(R_j R_i^{-1}\).

(Note that the homotopy class \(\tilde{c}_i\) of the circle on \(X\) of the image of edge \([\tilde{O}_{i-1} \tilde{O}_i]\) is given by \(R_i^{-1} R_{i-1}\) but not by \(R_i R_{i-1}\).)

\[(2.3) \quad \text{The following generator system (2.3.5) of } \Gamma \text{ associated to the polygon } Z \text{ is classical. (} \Gamma \text{, See Fig. 4.)}\]

For each \(i\) with \(1 \leq i \leq g\), the elements of \(\Gamma\) bringing \(\tilde{O}_{2+4(i-1)}\) to \(\tilde{O}_{1+4(i-1)}\) and \(\tilde{O}_{3+4(i-1)}\) to \(\tilde{O}_{4(i-1)}\) are the same, verified from (2.2.5). Let us denoted it by \(\tilde{\alpha}_i\).

\[(2.3.1) \quad \tilde{\alpha}_i := R_{1+4(i-1)} R_{2+4(i-1)}^{-1} R_{3+4(i-1)}^{-1} = R_{4(i-1)} R_{3+4(i-1)}^{-1} \quad = R_{4(i-1)} \tilde{a}_i \tilde{b}_i^{-1} \tilde{a}_i^{-1} R_{4(i-1)}^{-1} \quad = R_{4(i-1)} \tilde{a}_i \tilde{b}_i^{-1} \tilde{a}_i^{-1} R_{4(i-1)}^{-1} \quad \tilde{\alpha}_i = \tilde{a}_i \tilde{b}_i^{-1} \tilde{a}_i^{-1} R_{4(i-1)}^{-1}.\]

Samely, the elements of \(\Gamma\) bringing \(\tilde{O}_{1+4(i-1)}\) to \(\tilde{O}_{4+4(i-1)}\) and \(\tilde{O}_{2+4(i-1)}\) to \(\tilde{O}_{3+4(i-1)}\) are the same, denoted by \(\tilde{\beta}_i\).
We start with (2.3.2) \[ \tilde{\alpha}_i^{-1} \tilde{\beta}_i = R_{4(i-1)}^{-1} \tilde{\beta}_i R_{4(i-1)} = R_{4(i-1)}^{-1} \tilde{\alpha}_i R_{4(i-1)} = R_{4(i-1)}^{-1} \tilde{\alpha}_i R_{4(i-1)}. \]

These mean that \( \tilde{\alpha}_i \) is an element of \( \text{PSL}(2, \mathbb{R}) \), which transforms the edge \([\tilde{\alpha}^{-1}_i + 4(i-1) \tilde{\beta}_i^{-1} + 4(i-1)]\) to the edge \([\tilde{\alpha}^{-1}_i + 4(i-1) \tilde{\beta}_i^{-1} + 4(i-1)]\), and \( \tilde{\beta}_i \in \text{PSL}(2, \mathbb{R}) \) transforms the edge \([\tilde{\alpha}^{-1}_i + 4(i-1) \tilde{\beta}_i^{-1} + 4(i-1)]\) to the edge \([\tilde{\alpha}^{-1}_i + 4(i-1) \tilde{\beta}_i^{-1} + 4(i-1)]\). (Fig. 4.)

Using (2.3.1) and (2.3.2), one calculates easily

\[
(2.3.3) \quad \tilde{\alpha}_i \tilde{\beta}_i \tilde{\alpha}_i^{-1} \tilde{\beta}_i^{-1} = R_{4(i-1)} \tilde{\beta}_i^{-1} \tilde{\alpha}_i^{-1} \tilde{\beta}_i \tilde{\alpha}_i R_{4(i-1)}^{-1} = R_{4(i-1)} R_{4(i-1)}^{-1},
\]

so that finally one obtains a relation (cf. (2.4.7)):

\[
(2.3.4) \quad \tilde{\alpha}_i \tilde{\beta}_i \tilde{\alpha}_i^{-1} \tilde{\beta}_i^{-1} \ldots \tilde{\alpha}_g \tilde{\beta}_g \tilde{\alpha}_g^{-1} \tilde{\beta}_g^{-1} = 1.
\]

Since one can easily solve (2.3.1) and (2.3.2) to obtain an expression of \( \tilde{\alpha}_i \) and \( \tilde{\beta}_i \) by means of \( \tilde{\alpha}_1, \ldots, \tilde{\beta}_g \) (for an explicit form, see (2.4.4) and (2.4.4)'), we conclude that:

**Assertion** The Fuchsian group \( \Gamma \) is generated by the system:

\[
(2.3.5) \quad \tilde{\alpha}_1, \tilde{\beta}_1, \tilde{\alpha}_2, \tilde{\beta}_2, \ldots, \tilde{\alpha}_g, \tilde{\beta}_g
\]

where \( \tilde{\alpha}_i \) and \( \tilde{\beta}_i \) are elements of \( \text{PSL}(2, \mathbb{R}) \) bringing edges of the polygon \( Z \) from \([\tilde{\alpha}^{-1}_i + 4(i-1) \tilde{\beta}_i^{-1} + 4(i-1)]\) to \([\tilde{\alpha}^{-1}_i + 4(i-1) \tilde{\beta}_i^{-1} + 4(i-1)]\) and
\[ \tilde{\alpha}_{1+4(i-1)} \tilde{\delta}_{2+4(i-1)} \text{ to } [\tilde{\alpha}_{4+4(i-1)} \tilde{\delta}_{3+4(i-1)}] \text{ respectively. (See Fig. 4.)} \]

The system (2.3.5) satisfies the single relation (2.3.4).

(2.4) Let us give another interpretation of the system (2.3.5). For the canonical dissection (2.1.2), let us define the "dual" canonical dissection of \( X \) as a system of \( 2g \) circles on \( X \):

\[(2.4.1) \quad \alpha_1, \beta_1, \alpha_2, \beta_2, \ldots, \alpha_g, \beta_g\]

intersecting in only one point \( \Omega \) as in the Fig. 5 (in an opposite ordering than the Fig. 1) such that the circles in system (2.1.2) and in system (2.4.1) intersects in only the following cases:

a) \( \alpha_i \) and \( \alpha_i \) intersects normally at a point with the sign

\[(2.4.2) \quad \langle [\alpha_i], [\alpha_i] \rangle = 1 \quad \text{for } i=1, \ldots, g.\]

b) \( \beta_i \) and \( \beta_i \) intersects normally at a point with the sign

\[(2.4.2)' \quad \langle [\beta_i], [\beta_i] \rangle = -1 \quad \text{for } i=1, \ldots, g.\]

The existence and the uniqueness (up to the isotopy) of such dual dissection (2.4.1) may be clear from the Fig. 5 drawn on \( Y \). By this new cut system (2.4.1), the surface \( X \) is developed to a simply connected surface, say \( U \) (Fig. 7). We remark that the interior of \( U \) is now the right side of the boundary move of the cut.
Now the point $\Omega$ is inside the surface $Y$, which is homeomorphic to $Z$ by (2.1.1) and one can choose uniquely (after a choice of $\hat{O}$) a point $\hat{\Omega}$ in $Z \subset \mathcal{H}$ which is projected to $\Omega$ in $X$. Then the fundamental group $\pi_1(X,\Omega)$ acts on $\mathcal{H}$ from the left as covering transformations for (2.1.1) so that one obtains an isomorphism:

$$(2.4.3) \quad \phi : \pi_1(X,\Omega) \simeq \Gamma.$$ 

It is a straightforward consideration to show that:

**Assertion 1.** By the isomorphism $\phi$, the homotopy classes in $\pi_1(X,\Omega)$ of the circles $\alpha_i$ and $\beta_i$ ($i=1,\ldots, g$) (2.4.1) are mapped to the generator system $\tilde{\alpha}_i$ and $\tilde{\beta}_i$ ($i=1,\ldots, g$) (2.3.5) of the $\Gamma$ respectively. By this identification, we shall regard $\tilde{\alpha}_i$ and $\tilde{\beta}_i$ as homotopy classes in $\pi_1(X,\Omega)$.

Let $V$ be the polygon in $H$ surrounded by the vertexes

$$(2.4.4) \quad \tilde{\Omega}_i := \mathfrak{R}_i \tilde{\Omega} \quad (i=0,\ldots, 4g),$$

where

$$(2.4.5) \quad \mathfrak{R}_i := \prod_{k=1}^{i} \tilde{\gamma}_k = \tilde{\gamma}_1 \cdots \tilde{\gamma}_i \quad (i=0,\ldots, 4g),$$

and $\tilde{\gamma}_1,\ldots, \tilde{\gamma}_{4g}$ is the sequence $\tilde{\alpha}_1, \tilde{\beta}_1, \tilde{\alpha}_1^{-1}, \tilde{\beta}_1^{-1}, \ldots, \tilde{\alpha}_g, \tilde{\beta}_g, \tilde{\alpha}_g^{-1}, \tilde{\beta}_g^{-1}$. $V$ is homeomorphic to $U$ by the map (2.1.1), which gives another fundamental domain for $\Gamma$.

**Assertion 2.** The $\tilde{\alpha}_i \in \Gamma$ ((2.2.1)) transforms the edges of the polygon $V$ from $[\tilde{\Omega}_{2+4(i-1)} \tilde{\Omega}_{3+4(i-1)}]$ to $[\tilde{\Omega}_{1+4(i-1)} \tilde{\Omega}_{4(i-1)}]$ and $\tilde{\beta}_i \in \Gamma$ transforms $[\tilde{\Omega}_{1+4(i-1)} \tilde{\Omega}_{2+4(i-1)}]$ to $[\tilde{\Omega}_{4+4(i-1)} \tilde{\Omega}_{3+4(i-1)}]$. 

-93-
for \( i=1,\ldots,g \) (cf Fig. 8) so that one has a representation:

\[
(2.4.6) \quad \tilde{a}_i := \mathcal{R}_{1+4(i-1)} \mathcal{R}_{2+4(i-1)}^{-1} = \mathcal{R}_{4(i-1)} \mathcal{R}_{3+4(i-1)}^{-1}.
\]

\[
(2.4.6)' \quad \tilde{\delta}_i := \mathcal{R}_{4+4(i-1)} \mathcal{R}_{1+4(i-1)}^{-1} = \mathcal{R}_{3+4(i-1)} \mathcal{R}_{2+4(i-1)}^{-1}.
\]

There is a relation between \( R_4(2.2.4) \) and \( \mathcal{R}_1(2.4.5) \) as follows.

\[
(2.4.7) \quad R_{4i} \mathcal{R}_4 = 1 \quad \text{for } i=1,\ldots,g.
\]

(This follows immediately from (2.3.3) by an induction on \( i \).)

Fig. 8

A canonical dissection on a surface of genus 2 and its dual canonical dissection is drawn in the Fig. 9.

Fig. 9

(2.5) Let us call the correction of polygons \( \gamma Z \) (\( \gamma \in \Gamma \)) on \( \mathbb{H} \) a tesselation \( T \) for the cut system (2.1.2). Precisely, \( T \) consists of the data of a correction of the faces, edges, and vertexes:

\[
(2.5.1) \quad T_2 := \{ \gamma Z : \gamma \in \Gamma \},
\]

\[
T_1 := \{ \gamma [\tilde{\delta}_i, \tilde{\delta}_{i+1}] : \gamma \in \Gamma, \ i=0,\ldots,4g-1 \},
\]

\[
T_0 := \{ \gamma \tilde{\delta} : \gamma \in \Gamma \},
\]

such that one has a locally finite cell decomposition:
(2.5.2) \[ H = F \cup T_1 \hat{F} \cup \hat{E} \cup E \cup T_0 \nu, \]

(\( F \) and \( \hat{E} \) denote the interior of \( F \) and \( E \) respectively), which is invariant by the action of \( \Gamma \), inducing the system (2.1.2).

Two faces \( \gamma Z \) and \( \delta Z \in T_2 \) are adjacent (i.e., have a common edge) if and only if either \( \gamma^{-1} \delta \) or \( \delta^{-1} \gamma \) is a generator in (2.\ldots).

(Remark that \( \delta \gamma^{-1} \) brings \( \gamma Z \) to \( \delta Z \) but not \( \gamma^{-1} \delta \).) Two vertexes \( \gamma \bar{O} \) and \( \delta \bar{O} \) are adjacent so that \( [\gamma \bar{O}, \delta \bar{O}] \) is an edge in \( T_1 \) if and only if either \( \gamma^{-1} \delta \) or \( \delta^{-1} \gamma \) is a generator in (2.\ldots).

Suppose that the faces \( \gamma Z \) and \( \delta Z \) and the vertexes \( \gamma \bar{O} \) and \( \delta \bar{O} \) are adjacent through an edge as in the Fig. .

Then one has

(2.5.3) \[ \gamma^{-1} \delta = \alpha_i \quad \iff \quad \gamma^{-1} \delta' = \alpha_i, \]

(2.5.4) \[ \gamma^{-1} \delta = \beta_i \quad \iff \quad \gamma^{-1} \delta' = \beta_i^{-1}, \]

for \( i = 1, \ldots, g \).

A face \( \gamma Z \in T_2 \) and a vertex \( \delta \bar{O} \in T_0 \) are adjacent if and only if \( \gamma^{-1} \delta \in \{ R_{4i} : i = 1, \ldots, g \} \) or equivalently \( \delta^{-1} \gamma \in \{ \mathbb{A}_{4i} : i = 1, \ldots, g \} \), where the arrangement of the vertexes is the same as the Fig. .

(2.5.6) \[ \gamma \mathbb{A}_i \bar{Z} \in T_2 \quad (i = 0, 1, \ldots, 4g) \]

and edges

(2.5.7) \[ \gamma \bar{O}, \bar{O} \bar{O} \mathbb{I} \in T_1 \quad (i = 1, \ldots, 4g) \]

are joining in a clockwise cyclic ordering. (For \( \bar{c}_i = R_{i-1}^{-1} R_i \), recall (2.2.5).)
Remark 1. Similar to $T$, one may consider a tessellation $T^*=(T^*_2, T^*_1, T^*_0)$ for the cut system (2.4.1). Then $T$ and $T^*$ are dual in the sense that there are one to one correspondences:

\begin{align*}
F \in T_2 & \longleftrightarrow V^* \in T^*_0 \quad \text{with} \quad V^* \in F \\
E \in T_1 & \longleftrightarrow E^* \in T^*_1 \quad \text{with} \quad E \in E^*, \\
V \in T_0 & \longleftrightarrow F^* \in T^*_2 \quad \text{with} \quad V \in F^*.
\end{align*}

(Here the notation " " means "intersect transversally".)

Thus the data of $T$ and $T^*$ are equivalent so that we shall treat mainly $T$ in the present paper.

2. The combinatorial data of $T$ is nothing but the Cayley graph in combinatorial group theory for the group $\Gamma$ with the generator system (2.2.1). (Cf. [ ]).

(2.6) Word problem for the group $\Gamma$.

The word problem for $\Gamma$ is a problem to give a finite processes to determine whether two words written by the letters in $\Gamma$ give the same element in $\Gamma$. We recall a solution due to Dehn [ , , ].

Assertion (Dehn) Any nonempty word $W$ in the generator system representing the identity element in $\Gamma$ can be shortened by one of two processes:

i) delete a word $cc^{-1}$ from $W$,

ii) for a cyclic permutation $R'=A \cdot B^{-1}$ of $R$ with $\ell(A)>\ell(B)$, replace $A$ in $W$ by $B$.

(2.7) Dihedral group action on $\Gamma$.

The following is a straightforward consideration.
Assertion  The set of automorphisms of $\Gamma$ preserving the set 
$G:=\langle \alpha_1, \alpha_1^{-1}, \beta_1, \beta_1^{-1}, \ldots, \alpha_g, \alpha_g^{-1}, \beta_g, \beta_g^{-1} \rangle$ is isomorphic to a dihedral 
group with two generators $\phi, \phi$ and three relations:

\begin{align*}
D_g &= \langle \phi, \phi \mid \phi^g=1, \phi^2=1, (\phi \phi)^2=1 \rangle \\
&= \langle \phi^0, \phi^1, \phi^2, \ldots, \phi^{g-1}, \phi, \phi \phi, \phi \phi^2, \ldots, \phi \phi^{g-1} \rangle.
\end{align*}

Here $\phi$ is a cyclic rotation:

\begin{align*}
\phi(\alpha_i) &:= \phi(\alpha_{i+1}) \quad \text{for } i=1, \ldots, g \text{ with } \alpha_{g+1}=\alpha_1, \\
\phi(\beta_i) &:= \phi(\beta_{i+1}) \quad \text{for } i=1, \ldots, g \text{ with } \beta_{g+1}=\beta_1,
\end{align*}

and $\phi$ is an orientation reversing homomorphism:

\begin{align*}
\phi(\alpha_i) &:= \beta_{g-i+1} \quad \text{for } i=1, \ldots, g, \\
\phi(\beta_i) &:= \alpha_{g-i+1} \quad \text{for } i=1, \ldots, g.
\end{align*}

Proof  The dihedral group above obviously preserves $G$. Let $\psi$ 
be an automorphism of $\Gamma$ preserving $G$. In the free group generated 
by $G$, the element 
$R:=\psi(\alpha_1)\psi(\beta_1)\psi(\alpha_1^{-1})\psi(\beta_1^{-1})\ldots\psi(\alpha_g)\psi(\beta_g)$ 
is conjugate to either $S:=\alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1} \ldots \alpha_g \beta_g^{-1}$ or $S^{-1}$. Since $R$ is an 
element of length $4g$, we see that $R$ is a cyclic permutation of 
either $S$ or $S^{-1}$.

(2.8) The growth functions.

As a consequence of the solution of the word problem, we can 
determine the growth function and related functions [ , ].

Let $\Gamma$ be as before a Fuchsian surface group and fix a generator 
system (2. . ). For each $\gamma \in \Gamma$, we define the length by
Then the growth function of $\Gamma$ relative to $\ell(\gamma)$ is defined to be
\[
\ell(\gamma) := \inf(n: \gamma = \gamma_1 \ldots \gamma_n, \text{ either } \gamma_i \text{ or } \gamma_i^{-1} \epsilon)
\] 
whose generating function, called a growth power series for $\Gamma$, is also defined to be
\[
a_n := \#(\gamma \in \Gamma: \ell(\gamma) = n),
\]
whose generating function, called a growth power series for $\Gamma$, is also defined to be
\[
P(t) := \frac{\sum a_n t^n}{1 - (4g-1)t + (4g-1)t^2g - t^{2g+1}}
\]
The $P(t)$ is calculated by Cannon, Wagreich [ ].

For a later purpose, we give a proof of the formula including some auxiliary functions.

For a face $\gamma Z \in T_2^2$, the length $\ell(\gamma Z)$ is defined to be $\ell(\gamma)$. I.e. $\ell(\gamma Z) := \ell(\gamma)$.

For an edge $E \in T_1^1$ and a vertex $V \in T_0^0$, length are defined to be:
\[
\ell(E) := \inf(n: \exists F \in T^2 \text{ s.t. } \ell(F) = n \text{ and } E \subseteq F),
\]
\[
\ell(V) := \inf(n: \exists F \in T^2 \text{ s.t. } \ell(F) = n \text{ and } V \in \overline{F}).
\]
The number of elements of length $n$ are defined as
\[
f_n := \text{the number of faces of length } n = a_n,
\]
\[
e_n := \text{the number of edges of length } n,
\]
and
\[
v_n := \text{the number of vertexes of length } n,
\]
whose generating functions are denoted by
\[
f(t) := \sum f_n t^n,
\]
\[
e(t) := \sum e_n t^n
\]
and
\[
v(t) := \sum v_n t^n.
\]
A face of length $n$ is said to be overlapping if it is adjacent
to two faces of length \( n-1 \). Then we put,

\[
o_n := \text{the number of overlapping faces of length } n
\]

\[
o(t) := \sum o_n t^n.
\]

Under these notations, we show the following recursion relations.

\[
f_n = (4g-1)f_{n-1} - o_{n-1} - o_n \quad \text{for } n \geq 2,
\]

\[
e_n = (4g-1)f_n - o_n \quad \text{for } n \geq 1,
\]

\[
v_n = (4g-2)f_n - o_n \quad \text{for } n \geq 1,
\]

\[
o_n = v_{n-2} \quad \text{for } n \geq 0.
\]

(2.8.)

\[
f(t) = \frac{(1+t)(1-t^{2g})}{1 - (4g-1)t + (4g-1)t^{2g} - t^{2g+1}}
\]

(2.8.)

\[
e(t) = \frac{4g (1-t^{2g})}{1 - (4g-1)t + (4g-1)t^{2g} - t^{2g+1}}
\]

(2.8.)

\[
v(t) = \frac{4g (1-t)}{1 - (4g-1)t + (4g-1)t^{2g} - t^{2g+1}}
\]

(2.8.)

\[
o(t) = \frac{4g t^{2g}(1-t)}{1 - (4g-1)t + (4g-1)t^{2g} - t^{2g+1}}
\]

The roots of the denominator polynomial lie on the unit circle except for a pair of real roots \( \omega \) and \( \omega^{-1} \), where the bigger one, say \( \omega^{-1} \), is approximately given by

\[
4g-1 - (4g-1)^{-2} < \omega^{-1} < 4g-1
\]

§3. Configuration algebra

Most of the results are valid for finitely generated infinite groups, or even for infinite graphs with certain homogeneity.

(3.1) Configurations in \( \Gamma \).

Due to the tessellation \( T \) on \( \mathbb{H} \) (2. . . ), the group \( \Gamma \) as a set
has a structure of an oriented colored graph. Namely, two elements \( \gamma \) and \( \delta \) of \( \Gamma \) are connected by an edge if and only if \( \gamma^{-1}\delta \) belongs to the set of the generators \( (2, \ldots) \). The edge carries a color with an orientation according to the elements \( \gamma^{-1}\delta \) in

A subset \( S \) of \( \Gamma \) inherits the oriented colored graph structure from \( \Gamma \). Two subsets \( S \) and \( T \) are said to have the same configuration type, if both have the same oriented colored graph structure (This means that if \( S = \biguplus_{i \in I} S_i \) and \( T = \biguplus_{j \in J} T_j \) are decompositions to their connected components, then there is a bijection \( \varphi : I \to J \) and a map \( \phi : I \to \Gamma \) such that \( T_{\varphi(i)} = \phi(i)S_i \) for \( i \in I \).)

By a configuration type \( S \), we shall simply mean such a colored graph of a subset \( S \) of \( \Gamma \). In this paper, we shall consider only finite configurations, i.e. \( S \) with \( \#S < \infty \). Let us fix notations:

\begin{align*}
(3.1.1) \quad \text{Conf} & := \text{the set of all finite configuration types}, \\
(3.1.2) \quad \text{Conf}_0 & := \{ S \in \text{Conf} : S \text{ is connected} \} .
\end{align*}

\textit{Note.} As a convention, we shall not include the void set \( \emptyset \) in \( \text{Conf} \). When it is convenient to include \( \emptyset \) as a configuration, we shall use a notation: \( \text{Conf} \cup \{ \emptyset \} \).

The set \( \text{Conf} \) naturally carries an abelian semigroup structure by taking the disjoint union \( S \cup T \) as the product of \( S \) and \( T \in \text{Conf} \). Thus \( \text{Conf} \cup \{ \emptyset \} \) is naturally identified with the free abelian semigroup generated by \( \text{Conf}_0 \), where \( \emptyset \) is the unit element.

(3.2) Configuration algebra
Let us consider the algebra,

$Z[\text{Conf}]$

over the semigroup Conf, (i.e. the algebra generated by the set Conf with the relations $S\cdot T = S \ T$ for $S, T \in \text{Conf}$.), which may be regarded as the polynomial algebra freely generated by Conf.

The algebra carries a graded algebra structure by taking the cardinality $\#(S)$ of a configuration as the degree of $S$, due to the additivity:

$$\#(S \cdot T) = \#(S) + \#(T).$$

The adic topology on the algebra is defined by taking the sequence of ideals

$$\mathcal{J}_n := \text{the ideal generated by } S \in \text{Conf with } \#(S) \geq n$$
as the fundamental system of neighbourhoods of 0. The formal completion $Z[[\text{Conf}]] := \lim_{n} Z[[\text{Conf}]]/\mathcal{J}_n$ of the algebra is denoted by

$$R(\Gamma)$$
and will be called the configuration algebra. The augmentation ideal $\lim_{n} \mathcal{J}_n/\mathcal{J}_n$ of the configuration algebra will be denoted by

$$R(\Gamma)_+.$$

For an algebra $A$ with a unit element, the extension of the coefficients is denoted as

$$R(\Gamma, A) := R(\Gamma) \otimes_\mathbb{Z} A$$

$$R(\Gamma, A)_+ := R(\Gamma)_+ \otimes_\mathbb{Z} A.$$
An element $A$ of $R(\Gamma, \mathbb{A})_+$ is uniquely expressed by an infinite sum:

$$A = \sum_{S \in \text{Conf}} A(S)S$$

for $A(S) \in \mathbb{A}$ ($S \in \text{Conf}$).

(3.3) Exponential and logarithmic maps.

Let $\varphi \in \mathbb{A}[[t]]$ be a formal power series in $t$ with coefficients in $\mathbb{A}$. Then one may define a map:

$$\varphi : R(\Gamma, \mathbb{A})_+ \rightarrow R(\Gamma, \mathbb{A})$$

by substituting $f \in R(\Gamma, \mathbb{A})_+$ in the variable $t$. The map is equivariant with any algebra automorphism of $R(\Gamma, \mathbb{A})$.

As the particular case, let us consider the exponential map

(3.3.1) $M \in R(\Gamma, \mathbb{Q})_+ \rightarrow \exp(M) - 1 \in R(\Gamma, \mathbb{Q})_+$

and the logarithm map

(3.3.2) $A \in R(\Gamma, \mathbb{Q})_+ \rightarrow \log(1+A) \in R(\Gamma, \mathbb{Q})_+$

where $\exp(M) = \sum_{n=0}^{\infty} \frac{1}{n!} M^n$ and $\log(1+A) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} A^n$.

The maps are well defined and inverse of each other due to the standard argument for complete algebras. Hence they give a bijection of $R(\Gamma, \mathbb{Q})$ to itself.

The additivity: $\exp(M_1 + M_2) = \exp(M_1) \exp(M_2)$ and the multiplicativity: $\log((1+A_1)(1+A_2)) = \log(1+A_1) + \log(1+A_2)$ are standard.

Formula. Let $A := \sum_{S \in \text{Conf}} A(S)S$ and $M := \sum_{S \in \text{Conf}} M(S)S$ be elements of $R(\Gamma, \mathbb{Q})_+$ such that $1+A = \exp(M)$ (or equivalently,
\( M = \log(1 + A) \). Then the coefficients of \( A \) and \( M \) are related by the transformations:

\[
A(S) = \sum_{S = k_1 S_1 \ldots k_m S_m} \frac{1}{k_1! \ldots k_m!} M(S_1)^{k_1} \ldots M(S_m)^{k_m}
\]

and

\[
M(S) = \sum_{S = k_1 S_1 \ldots k_m S_m} \frac{(k_1 + \ldots + k_m - 1)!}{k_1! \ldots k_m!} (-1)^{k_1 + \ldots + k_m - 1} A(S_1)^{k_1} \ldots A(S_m)^{k_m}
\]

Here the summations are over all possible decompositions:

\[
S = k_1 S_1 \ldots k_m S_m
\]

such that \( S_i \in \text{Conf} \) \((i = 1, \ldots, m)\) are pairwise different.

(Here we use a convention \( kS := S \ldots S \) for \( k \in \mathbb{N} \) and \( S \in \text{Conf} \).)

Proof Recall that the configuration algebra may be regarded as the algebra of formal power serieses of the set of variables \( \text{Conf} \). Even the set \( \text{Conf} \) is infinite, the standard arguments for exponential and logarithmic functions are valid so that we omit the proof.

Remark We shall often use the notations \( A \) and \( M \) to indicate the relation \( 1 + A = \exp(M) \). In spite of original attempt to indicate "additive" and "multiplicative" by \( A \) and \( M \), our use of them are confused as above.

(3.4) Representation of \( R(\Gamma) \) in a power series.

To a configuration type \( S \in \text{Conf} \cup \{\phi\} \), let us associate a vector

\[
E(S) = (e_1, \ldots, e_{2g}) \in \mathbb{N}_0^{2g},
\]
called the exponent of $S$ by

\[(3.4.1) \quad e_{2i-1} := \#(\gamma \in \Gamma \setminus S : 3 \delta \in S \text{ s.t. } \gamma^{-1} \delta = \alpha_i \text{ or } \alpha_i^{-1}),\]
\[(3.4.1) \quad e_{2i} := \#(\gamma \in \Gamma \setminus S : 3 \delta \in S \text{ s.t. } \gamma^{-1} \delta = \beta_i \text{ or } \beta_i^{-1}),\]

where $S$ is a subset of $\Gamma$ of the type $S$. $E(S)$ depends only on the type $S$ but not on $S$. The exponent has the following additivity:

\[(3.4.2) \quad E(S_1 \ S_2) = E(S_1) + E(S_2).\]

Let us introduce $2g$ indeterminates $X = (X_1, \ldots, X_{2g})$ and put

\[(3.4.3) \quad X^{E(S)} := X_1^{e_1} \cdot X_2^{e_2} \cdot \ldots \cdot X_{2g}^{e_{2g}}.\]

The additivity (3.4.2) implies that the correspondence $S \to X^{E(S)}$ is a semigroup homomorphism from $\text{Conf}$ to the set of monomials in $X$, so that one has a well defined ring homomorphism:

\[(3.4.4) \quad \mathbb{Z}[\text{Conf}] \longrightarrow \mathbb{Z}[X_1, X_2, \ldots, X_{2g}].\]

We shall regard that the polynomial ring $\mathbb{Z}[X]$ carries the adic topology defined by the maximal ideal $(X) = (X_1, \ldots, X_{2g})$. To show that (3.4.4) is continuous w.r.t. the topologies, we prepare a Lemma. Let us denote by $|E(S)|$ the sum $\sum_{i=1}^{2g} e_i$.

**Lemma** For $S \in \text{Conf}$, one has

\[(3.4.5) \quad |E(S)| > 4(g-1) \cdot |S|.\]

**Corollary** The homomorphism (3.4.4) is continuous w.r.t. the adic topology. Hence it induces a ring homomorphism between
the formal completions:

(3.4.6) \( R(\Gamma) \rightarrow \mathbb{Z}[X_1, X_2, \ldots, X_{2g}] \).

Proof of the Lemma. Due to the additivities (3.2.3) and (3.4.2), we have only to consider the case \( S \) is connected.

Since any vertex of \( \Gamma \) as a graph has \( 4g \) edges, we have

\[ |E(S)| = 4g \#(S) - 2 \#(\text{edges on } S) . \]

The following Euler's relation on a graph is well known.

\[ \deg(S) - \#(\text{edges on } S) + \#(\text{linearly independent cycles on } S) = n(S), \]

where \( n(S) \) denotes the number of connected components of \( S \).

Combining the relations *) and **),

(3.4.7) \[ |E(S)| = (4g-2) \cdot \#(S) + 2 n(S) - 2 \#(\text{linearly independent cycles on } S). \]

Let us show an inequality:

(3.4.8) \[ \#(\text{linearly independent cycles on } S) < \#(S), \]

by induction on \#(S). There is no cycles on \( S \) sofar \#(S)<4g.

Let \( S \) be a subset of \( \Gamma \), whose configuration type is \( S \) (\( \neq \emptyset \)). Since \#S=\#(S)<\( \emptyset \), there is a point \( \gamma_0 \in S \) such that \( \ell(\gamma_0) = \max(\ell(\gamma) : \gamma \in S) \).

Then the vertex of \( S \) corresponding to \( \gamma_0 \) is adjacent to at most two other vertexes of \( S \) (cf ( . . )). Then it is easy to show that one can find a basis of cycles on \( S \) such that at most one cycle of them passes the vertex \( \gamma_0 \). This means that the \# of linearly independent cycles on \( S \setminus \{\gamma_0\} \) is non less than the \# of
linearly independent cycles on $S$ minus 1.

(3.4.7) and (3.4.8) imply (3.4.5).

\[ \square \]

Remark 1. The map (3.4.6) is not a graded homomorphism.

2. The map (3.4.6) is an open map, since one has an estimate: $4g \cdot \#(S) \geq |E(S)|$ in the other direction than (3.4.5).

(3.5) Recall the dihedral group $D_{2g}$ (2.7.1) action on $\Gamma$ as automorphism of the group preserving the set of generators $G$. The action of $D_{2g}$ on $\Gamma$ preserves the graph structure up to a change of the colors and orientations. Hence the action induces an action on the semigroup $\text{Conf}$. Since the action is continuous w.r.t. the adic topology, it induces an automorphism of the configuration algebra:

\[ (3.5.1) \quad D_{2g} \times R(\Gamma) \longrightarrow R(\Gamma) \]

On the other hand the dihedral group $D_{2g}$ acts on the monomials in $X = (X_1, \ldots, X_{2g})$ by

\[ (3.5.2) \quad \varphi(X_i) := X_{i+2} \quad (i=1, \ldots, 2g) \quad \text{(here } X_{2g+1} := X_1) \]

and

\[ (3.5.3) \quad \varrho(X_i) := X_{2g-i+1} \quad (i=1, \ldots, 2g). \]

Comparing (2.7.2), (2.7.3) and (3.5.2), (3.5.3), one sees:

For any $\alpha \in D_{2g}$ and $S \in \text{Conf}$, one has

\[ X^E(\alpha(S)) = \alpha(X^E(S)) . \]

Hence the actions of $D_{2g}$ on the configuration algebra and on the
power series in \( X \) is equivariant with the homomorphism (3.4.6).

\[
\begin{align*}
D_2 g \times R(\Gamma) & \longrightarrow R(\Gamma) \\
\downarrow & \\
D_2 g \times \mathbb{Z}[[X]] & \longrightarrow \mathbb{Z}[[X]]
\end{align*}
\]

§ 4. Covering coefficients and the Hopf algebra

We introduce a Hopf algebra structure on the configuration algebra, which plays an important roll in (6. . ).

(4.1) Covering coefficients.

We introduce a concept of covering coefficients

\[
(\begin{array}{c} S_1 \\
S_m \end{array}) \in \mathbb{N}
\]

for configuration types \( S_1, \ldots, S_m \) and \( S \in \text{ConfU}(\emptyset) \) as follows.

i) Fix a subset \( S \) of \( \Gamma \), whose configuration type is \( S \).

ii) Put

\[
(\begin{array}{c} S_1 \\
S_m \end{array}):=\{(S_1, \ldots, S_m): S_i \,(i=1, \ldots, m) \text{ is a subset of } S \,\text{s.t.} \\
a) \text{ the configuration type of } S_i \text{ is } S_i. \quad \text{b) } \bigcup_{i=1}^{m} S_i = S.\}
\]

iii) Show that the cardinality of \( (\begin{array}{c} S_1 \\
S_m \end{array}) \) depends only on the type \( S \) but not on the choice of \( S \). (The verification is left.)

iv) Put

\[
(\begin{array}{c} S_1 \\
S_m \end{array}) := \#(\begin{array}{c} S_1 \\
S_m \end{array}).
\]

(4.2) Immediate from the definition, we have the followings, whose proofs are omitted.
i) The coefficient \( \left( S_1 \ldots S_m \right) \) is invariant under the action of the symmetric group \( S_m \) by the permutation of \( S_i \)'s.

ii) If \( S_i = \emptyset \) for \( 1 \leq i \leq m \), then the term can be eliminated. I.e.

\[
\left( S_1 \ldots S_{i-1} S_i S_{i+1} \ldots S_m \right) = \left( S_1 \ldots S_{i-1} S_{i+1} \ldots S_m \right).
\]

iii) For \( S \) and \( T \in \text{Conf}(\emptyset) \),

\[
\left( \begin{array}{c} T \\ S \end{array} \right) = \begin{cases} 1 & \text{if } S = T, \\ 0 & \text{else}, \end{cases}
\]

iv) \[
\left( S_1 \ldots S_m \phi \right) = \begin{cases} 1 & \text{if } U S_i = \emptyset, \\ 0 & \text{else}. \end{cases}
\]

(4.3) The following formula on the coefficients is important.

**Assertion.** For \( S_1, \ldots, S_m, T_1, \ldots, T_n \in \text{Conf}(\emptyset) \), one has

\[
\sum_{U \in \text{Conf}(\emptyset)} \left( S_1 \ldots S_m \right) \left( U T_1 \ldots T_n \right) = \left( S_1 \ldots S_m T_1 \ldots T_n \right).
\]

**Proof.** Consider the map

\[
\left( S_1 S_m T_1 \ldots T_n \right) \rightarrow \sum_{U \in \text{Conf}} \left( U T_1 \ldots T_n \right)
\]

\[
\left( S_1, \ldots, S_m, T_1, \ldots, T_n \right) \rightarrow \left( \bigcup_{i=1}^{m} S_i, T_1, \ldots, T_n \right)
\]

The fiber over a point \( (U, T_1, \ldots, T_n) \) is bijective to the set \( \left( S_1 \ldots S_m \right) \) so that one has the bijection

\[
\left( S_1 \ldots S_m T_1 \ldots T_n \right) \rightarrow \sum_{U \in \text{Conf}} \left( S_1 \ldots S_m \right) \left( U T_1 \ldots T_n \right).
\]

**Note** The summation index \( U \) in (4.3.1) runs over all Conf. But in fact the sum is finite, since the coefficients \( \left( S_1 \ldots S_m \right) \) for large \( U \) vanish. In the following of the paper, we shall meet
the same phenomenon, on which we shall not mention each time.

(4.4) Another important formula for the covering coefficients is the following decomposition formula.

**Assertion** For $S_1, \ldots, S_m, U, V \in \text{Conf}_U(\phi)$, one has a formula:

$$
\left( S_1 \cdots S_m \right) = \sum_{S_1 = R_1} \left( \sum_{S_m = R_m} \left( (R_1 \cdots R_1) \left( T_1 \cdots T_m \right) \right) \right).
$$

Here $R_i$ and $T_i$ run over $\text{Conf}_U(\phi)$ for all possible decompositions of $S_i$ ($i = 1, \ldots, m$).

**Proof** Consider the map

$$
\left( S_1 \cdots S_m \right) \rightarrow \bigcup_{S_1 = R_1} \left( \bigcup_{S_m = R_m} (R_1 \cdots R_1) \times (T_1 \cdots T_m) \right),
$$

$$
(S_1, \ldots, S_m) \rightarrow (S_1 \cap U, \ldots, S_m \cap U) \times (S_1 \cap V, \ldots, S_m \cap V).
$$

One checks easily that the map is bijective.

(4.5) The Hopf algebra structure on the configuration algebra.

As consequences of (4.2)-(4.4), we give an Abelian Hopf algebra structure on the Configuration algebra.

First, for a positive integer $m \in \mathbb{N}$, let us define a map $\phi_m$ defined on $U \in \text{Conf}_U(\phi)$ as

$$
\phi_m(U) := \sum_{S_1 \in \text{Conf}_U(\phi)} \left( S_1 \cdots S_m \right) S_1 \otimes \cdots \otimes S_m
$$

which takes values in the completed tensor product $\hat{\otimes}_m R(\Gamma)$ of
m-copies of the configuration algebra. Due to (4.2) iv),
\[ \Phi_m(\phi) = 1. \]

The map \( \Phi_m \) is multiplicative in the sense that
\[ \Phi_m(U \cdot V) = \Phi_m(U) \Phi_m(V) \]
for \( U, V \in \text{Conf}_U(\phi) \). This can be directly shown from (4.4.1).

Hence \( \Phi_m \) induces an algebra homomorphism:
\[ \Phi_m : R(\Gamma) \to \hat{\Phi} R(\Gamma) \]
\[ U \to \Phi_m(U) \]
which is denoted by the same \( \Phi_m \). The symmetric group \( S_m \) acts on the \( m \)-tensor product by permuting letters \( \phi_1 \otimes \phi_1 \otimes \ldots \otimes \phi_1 \)
\( (i=1, \ldots, m) \). Then the image of \( \Phi_m \) lies on the \( S_m \)-invariant subalgebra, due to (4.2) i).

We define now a coproduct structure on the configuration algebra by \( \Phi_2 \), which is abelian due to the remark above.

(4.6) Associativity.

The formula (4.3.1) implies the relation:
\[ (1\otimes \ldots \otimes \phi_m) \cdot \Phi_{m+1} = \Phi_m 
\]
for \( m, n \in \mathbb{N} \). Particularly, this implies the relation:
\[ (\Phi_2 \otimes 1) \cdot \Phi_2 = (1 \otimes \Phi_2) \cdot \Phi_2 \]
which is the associativity of the coproduct of the Hopf algebra structure. It is also clear from (4.6.1), that \( \Phi_m \) for \( m \geq 2 \) are described as the compositions of \( \Phi_2 \).

(4.7) Unit element.

The augmentation map for the algebra, i.e. the map
gives the identity element of the Hopf structure. This means

\[(4.7.2) \quad (\text{aug} \cdot \text{id}) \cdot \Phi_2 = \text{id} .\]

i.e. the composition of the maps: \( R(\Gamma) \xrightarrow{\Phi_2} R(\Gamma) \xrightarrow{\text{aug} \cdot 1} R(\Gamma) \)
becomes the identity due to (4.2 ii) and iii) as follows.

Image of \( S = \sum_{T, U \in \text{Conf}(\phi)} \left( \begin{array}{c} T \\ S \end{array} \right) T \cdot \text{aug}(U) = \sum_{T \in \text{Conf}(\phi)} \left( \begin{array}{c} T \\ \Phi \end{array} \right) T = S.\)

(4.8) The involution map \( \iota.\)

**Assertion** There exists uniquely an automorphism

\[(4.8.1) \quad \iota: R(\Gamma) \rightarrow R(\Gamma)\]

of the configuration algebra such that

i) \( \iota \) is involutive, i.e. \( \iota^2 = \text{id} .\)

ii) The composition of the maps: \( R(\Gamma) \xrightarrow{\Phi_2} R(\Gamma) \xrightarrow{\iota \cdot 1} R(\Gamma) \)
is the augmentation map (4.7.1). i.e.

\[(4.8.2) \quad (\iota \cdot \text{id}) \cdot \Phi_2 = \text{aug} .\]

**Proof.** For an \( n \in \mathbb{N}, \) let us denote by \( \text{Conf}(n) \) the sub semigroup of \( \text{Conf} \) generated by \( \mathcal{S} \in \text{Conf}_0 \) with \( \#(S) \leq n. \) We denote also by

\( R(n):= \mathbb{Z}[[ \text{Conf}(n) ]] \)

the complete subalgebra of \( R(\Gamma) \) generated by \( \text{Conf}(n). \) We remark that the restriction \( \Phi_2(n) := \Phi_2 \mid_{R(n)} \) maps \( R(n) \) to \( R(n) \otimes R(n). \)

Let us show by induction on \( n \) the existence and the uniqueness of an involutive automorphism \( \iota(n) \) of \( R(n) \) such that

i) \( \iota(n) \mid_{R(n-1)} = \iota(n-1), \)
ii) \((t(n) \cdot 1) \Phi_2(n) =\) the augmentation map for \(R(n)\),

iii) \(t(n) \left( \mathcal{F}_m \cap R(n) \right) \subseteq \mathcal{F}_m \cap R(n)\) for \(m \in \mathbb{N}\).

For \(n=0\), \(R(0) = \mathbb{Z}\) and \(t(0) = \text{id}_\mathbb{Z}\). Suppose the hypothesis is shown for an \(n \geq 0\). We want to determine \(t(n+1)(S)\) for \(S \in \text{Conf}_0\) with 

\[\#(S) = n+1\]

by solving the equation:

\[(t(n+1) \cdot 1) \Phi_2(n+1)(S) = 0\]

More explicitly, the equation is rewritten by the use of (4.5.1)

\[
\begin{align*}
&\sum_{V \in \text{Conf}_U(\emptyset)} \left( \begin{array}{c}
S \\
S 
\end{array} \right) V \\
+ &\sum_{U \in \text{Conf}_U(\emptyset), V \neq S} \left( \begin{array}{c}
U \\
S 
\end{array} \right) t(n)(U) V \\
+ &\sum_{U \in \text{Conf}_U(\emptyset), U \neq S} \left( \begin{array}{c}
U \\
S 
\end{array} \right) t(n)(U) S \\
&= 0
\end{align*}
\]

For simplicity, one may write the equation as

\[(4.8.2) \quad t(n+1)(S) \left(1 + \Phi(S)\right) + B(S) + \left(1 + t(n)\left(\Phi(S) - S\right)\right) S = 0,\]

where

\[(4.8.3) \quad \Phi(S) - S := \sum_{V \in \text{Conf}_U(\emptyset)} \left( \begin{array}{c}
S \\
S 
\end{array} \right) V \in R(n) \not\subseteq_1,\]

and

\[(4.8.3) \quad \Phi(S) := \sum_{U \in \text{Conf}_U(\emptyset) \setminus U, V \neq S} \left( \begin{array}{c}
U \\
S 
\end{array} \right) t(n)(U) V \in R(n) \not\subseteq_{n+1}.\]

Since \(\Phi(S) \in \not\subseteq_1\), the inverse of \(1 + \Phi(S)\) \((= \sum_{m \geq 0} (-\Phi(S))^m)\) exists in \(R(n+1)\) so that (4.8.2) is solved as

\[(4.8.4) \quad t(n+1)(S) := \frac{-1}{1 + \Phi(S)} \left( \Phi(S) + \left(1 + t(n)\left(\Phi(S) - S\right)\right) S \right).
\]

Extend (4.8.4) multiplicatively to \(\text{Conf}(n+1)\) so that one obtains
an algebra homomorphism from $Z[\text{Conf}(n+1)]$ to $R(n+1)$. Since the right hand side of (4.8.4) belongs to $\mathcal{J}_{n+1}$, the map is continuous w.r.t. the adic topology so that it can be completed to a map from $R(n+1)$ to itself, which we denote $\iota(n+1)$. The properties i), ii) and iii) for $\iota(n+1)$ are shown in the construction. The uniqueness of $\iota(n+1)$ follows from the unique solution (4.8.4) for the equation (4.8.2).

What remains to show is the identity: $\iota(n+1)^2(S) = S$ for $S \in \text{Conf}_0$ with $\#(S) = n+1$. Let us apply $\iota(n+1)$ to the equality (4.8.2), where we shall denote $\iota(n)$ simply by $\iota$.

\[ \iota(n+1)^2(S) \left(1 + \mathcal{A}(S) - S + \iota(n+1)(S) \right) + \mathcal{B}(S) + \left(1 + \mathcal{A}(S) - S \right) \iota(n+1)(S) = 0 \]

Here we have $\mathcal{B}(S) = \mathcal{A}(S)$ due to the symmetry (4.2)i) and the fact $\iota(n)^2 = \text{id}$ (i.e. the induction hypothesis on $\iota(n)$).

Taking the difference: $\star - (4.8.2)$, one has

\[ \left( \iota(n+1)^2(S) - S \right) \left(1 + \iota(\mathcal{A}(S)) \right) = 0. \]

Since $\iota(\mathcal{A}(S)) \in \mathcal{J}_1$ so that $1 + \iota(\mathcal{A}(S))$ is invertible in $R(n+1)$, this implies the involutivity of $\iota(n+1)$. \hfill \Box

Remark 1. The coproduct $\Phi_2$ (4.5.3) and the augmentation map (4.7.1) are defined already on the polynomial ring $Z[\text{Conf}]$, whereas the involution map $\iota$ (4.8.1) cannot be defined in the polynomial ring and it was necessary to extend the algebra to that of power series as above.

Precisely, for the definition of $\iota$, it is enough to extend the polynomial algebra $Z[\text{Conf}]$ to its localization by the set

\[ \mathcal{K} = \{1 + \mathcal{A}(S) : S \in \text{Conf}_0 \} \]
(i.e. to the algebra of meromorphic functions, whose poles are at most products of powers of elements of $\mathfrak{M}$).

2. In §5, the functions $d(S) \ (S \in \text{Conf})$ are re-introduced and investigated more precisely. Particularly we shall show that

$$\left(1 + t(d(S))\right) \cdot \left(1 + d(S)\right) = 1$$

for $S \in \text{Conf}$ (5.3.1). This relation may be understood as an inductive definition for $t$ for (4.8.3) replacing (4.8.2).

§5. The growth functions for configurations.

(5.1) Growth functions for configuration types.

For $S$ and $T \in \text{Conf} \cup \{\phi\}$, we define $A(S,T) \in \mathbb{N}$ as follows.

i) Fix a subset of $\Gamma$ of $T$, whose configuration type is $T$.

ii) Put

$$A(S,T) := \# \{S: S \text{ is a subset of } T, \text{ whose configuration is } S\}.$$ 

iii) Show that the cardinality of $A(S,T)$ depends only on the types $S$ and $T$ but not on the choice of $T$. (The proof left.)

iv) Put

$$A(S,T) := \# A(S,T).$$ 

We shall call $A(S,T)$ the growth function (or $gr$-function for short) for the configurations. Of course $A(\phi,T)=1$ for $T \in \text{Conf} \cup \{\phi\}$.

Using the growth function, let us introduce a series

$$d(T) := \sum_{S \in \text{Conf}} A(S,T)S$$
whose investigation is the central problem of the paper. Since

\[(5.1.4) \quad 1 + \mathcal{A}(T) = \sum_{S \in \mathcal{S}_2} [S], \]

where we denote by \([S]\) the configuration type of a set \(S\), one has a product formula:

\[(5.1.5) \quad (1 + \mathcal{A}(T_1 \cdot T_2)) = (1 + \mathcal{A}(T_1))(1 + \mathcal{A}(T_2)) \]

follows immediately from (5.1.4).

**Remark 1.** By comparing the definitions, we see immediately

\[A(S,T) = \binom{S}{T} \]

for \(S\) and \(T \in \text{Conf}(\emptyset)\). Hence the two definitions (4.8.3) and (5.1.3) for \(\mathcal{A}(T)\) coincides.

**Remark 2.** A first approximation of the growth function is

\[(5.1.6) \quad A(S,T) \leq \frac{1}{k_1! \ldots k_m!} \#(T)^{n(S)}, \]

where \(k_1, \ldots, k_m\) are given by the irreducible decomposition of \(S\):

\[(5.1.7) \quad S = k_1 S_1 \ldots k_m S_m \]

such that \(S_i \in \text{Conf}_0\) are pairwise different and \(n(S) = \sum_{i=1}^{m} k_i\).

**Proof** One has an embedding

\[A(S,T) \rightarrow \prod_{i=1}^{m} \left(\prod_{i=A(S_i,T)}^{k_i} / \mathcal{E}_{k_i}\right) \]

by associating to each \(S \in A(S,T)\) its irreducible decomposition. Here \((\prod_{i=1}^{k} \mathcal{A}) = ((a_1, \ldots, a_k) \in \prod_{i=1}^{k} : a_i \text{'s are pairwise different})\), on which the symmetric group \(\mathcal{E}_{k}\) is acting freely.

Let \(S_i \in \Gamma\) be a set of the configuration type \(S_i\). Since \(S_i\) is
connected, \( A(S_i, T) = \{ \gamma S_i : \gamma \in \Gamma \text{ and } \gamma S_i \subset T \} \subset \gamma \in \mathcal{T}^{-1} \). This implies \( A(S_i, T) = \# A(S_i, T) \leq \#(T) \). ☐

(5.2) Product expansion formula for growth functions.

Let us show a very important expansion formula (5.2.1) for products of growth functions.

**Lemma** Let \( S_1, \ldots, S_m (m \geq 1) \) and \( T \) be given configuration types in \( \text{ConfU}(\phi) \). Then,

\[
(5.2.1) \quad \prod_{i=1}^{m} A(S_i, T) = \sum_{S \in \text{ConfU}(\phi)} \left( \begin{array}{c} S_1 \cdots S_m \\ S \end{array} \right) A(S, T).
\]

**Proof.** Let \( T \) be a subset of \( \Gamma \), whose configuration type is \( T \) and let us denote by \( 2^T \) the set of all subsets of \( T \).

Consider a map

\[
(S_1, \ldots, S_m) \in \prod_{i=1}^{m} A(S_i, T) \mapsto S := \bigcup_{i=1}^{m} S_i \in 2^T,
\]

whose fiber over \( S \) is \( \left( \begin{array}{c} S_1 \cdots S_m \\ S \end{array} \right) \) so that one has the decomposition

\[
\prod_{i=1}^{m} A(S_i, T) \simeq \bigcup_{S \in 2^T} \left( \begin{array}{c} S_1 \cdots S_m \\ S \end{array} \right).
\]

By counting the cardinality of the both sides, one obtains the formula. ☐

**Remark** The expansion formula (5.2.1) is essentially reduced to the case \( m = 2 \), since the higher cases are shown by induction on \( m \) as follows. Multiply \( A(S_{m+1}, T) \) to (5.2.1) and
apply the formula for m=2.

\[
\begin{align*}
\prod_{i=1}^{m+1} A(S_i, T) &= \sum_{S \in \text{ConfU}(\phi)} \left( \frac{S_1 \cdots S_m}{S} \right) A(S, T) A(S_{m+1}, T) \\
&= \sum_{S \in \text{ConfU}(\phi)} \sum_{U \in \text{ConfU}(\phi)} \left( \frac{S_1 \cdots S_m}{U} \right) A(U, T)
\end{align*}
\]

Using (4.3.1),

\[
= \sum_{U \in \text{ConfU}(\phi)} \left( \frac{S_1 \cdots S_m}{U} \right) A(U, T)
\]

(5.3) A very important consequence of (5.2.1) is the following.

Lemma For any configuration type \(T \in \text{ConfU}(\phi)\) and \(m \in \mathbb{N}\), one has

\[
(1+\mathcal{A}(T)) \otimes \cdots \otimes (1+\mathcal{A}(T)) = \Phi_m (1+\mathcal{A}(T)).
\]

Proof Define an infinite series of \(m\) variables \(S_1, \ldots, S_m\):

\[
*) \quad \sum_{S_1 \in \text{ConfU}(\phi)} \cdots \sum_{S_m \in \text{ConfU}(\phi)} \left( \prod_{i=1}^{m} A(S_i, T) \right) S_1 \otimes \cdots \otimes S_m
\]

in the complete tensor \(\otimes_m R(T)\) of \(m\)-copies of the Configuration algebras. By definitions of \(\mathcal{A}(T)\) (5.1.3), this equals to

\[
**) \quad (1+\mathcal{A}(T)) \otimes \cdots \otimes (1+\mathcal{A}(T)) \quad \text{(a tensor of } m\text{-copies)}
\]

On the other hand, by a use of the product expansion formula (5.2.1), *) is expressed as

\[
\sum_{S_1 \in \text{ConfU}(\phi)} \cdots \sum_{S_m \in \text{ConfU}(\phi)} \left( \sum_{S \in \text{ConfU}(\phi)} \left( \frac{S_1 \cdots S_m}{S} \right) A(S, T) \right) S_1 \otimes \cdots \otimes S_m
\]

Recalling the definition of the map \(\Phi_m\) (4.5.1), this equals to

\[
\sum_{S \in \text{ConfU}(\phi)} \Phi_m(S) A(S, T)
\]

\[= \Phi_m \left( \sum_{S \in \text{ConfU}(\phi)} S A(S, T) \right)
\]
Comparing (5.4.1) with (5.4), we obtain the relation.

(5.4) Another consequence of the (5.2.1) is the following.

\[(1 + t a(T)) (1 + a(T)) = 1,\]

for any configuration type \(T \in \text{Conf} \cup \emptyset\).

**Proof** Apply (5.3.1) to the \((t + 1) \cdot \Phi_2(T) = \text{aug}(T)\) (4.8.1).

(5.4) The logarithmic growth function.

As we saw in (5.1.4), the function \(A(S,T)\) is polynomial growth in \(#T\) of degree \(n(S)\). For our purpose, we need to know not only its leading coefficient but its precise lower terms. This is achieved by introducing another function \(M(S,T) \in \mathbb{Q}\) for \(S, T \in \text{Conf}\), which we call the logarithmic growth function, as follows.

Take the logarithm of the series \(a(T)\) (5.1.3) (cf (3.3.4)),

\[(5.4.1) \quad M(T) := \log(1 + a(T)),\]

in \(R(\Gamma, \mathbb{Q})\). The coefficients of its expansion

\[(5.4.2) \quad M(T) = \sum_{S \in \text{Conf}} M(S,T) S,\]

are the logarithmic growth functions (or log gr-functions), taking their values in \(\mathbb{Q}\). We formally put

\[(5.4.3) \quad M(\emptyset, T) := 0 \quad \text{for} \ T \in \text{Conf}.\]

For a sake of completeness, let us recall the relations (3.3.5) and (3.3.6) and apply it to the coefficients of \(a(T)\) and \(M(T)\).
Remark 1. In fact, $\mathcal{M}(T)$ is a finite sum. Nevertheless $\mathcal{M}(T)$ is an infinite series in the algebra, whose support is in $T$.

2. For a connected $S \in \text{Conf}_0$, we have

$$ \mathcal{A}(S,T) = \mathcal{M}(S,T). $$

(Directly seen from (5.4.4) or (5.4.5).

(5.5) What is surprising is that the polynomial relations (5.2.1) imply linear relations on the log gr-function.

**Lemma** Let configuration types $T, S_1, \ldots, S_m \neq \emptyset$ ($m \geq 2$) be given. Then,

$$ \sum_{S \in \text{Conf} \cup \{ \emptyset \}} \left( S_1 \cdots S_m \right) \mathcal{M}(S,T) = 0. $$

**Proof** Substitute $1 + \mathcal{M}(T)$ by $\exp(\mathcal{M}(T))$ in the formula (5.3.1) so that one obtains a relation:

$$ \exp(\mathcal{M}_1(T) + \ldots + \mathcal{M}_m(T)) = \Phi_m(\exp(\mathcal{M}(T))) $$

where $\mathcal{M}_i(T) := 1 \otimes \ldots \otimes \mathcal{M}(T) \otimes \ldots \otimes 1$. Since $\Phi_m(\exp(\mathcal{M}(T))) = \exp(\Phi_m(\mathcal{M}(T)))$, we obtain the relation:
(5.5.2) \[ \mathcal{M}_1(T) + \ldots + \mathcal{M}_m(T) = \Phi_m(\mathcal{M}(T)). \]

Now develop the both sides of (5.5.2) in the series of variables \( S_1, \ldots, S_m \) and compare the coefficients. Since the left hand side does not have a cross term in the variables \( S_1, \ldots, S_m \), the corresponding coefficients in the right hand side should vanish.

Combining (5.2.6) and (5.4.3), this means the formula (5.5.1).

**Remark 1.** The formula (5.5.1) is essential in the case \( m=2 \) with \( S_i \neq \emptyset \) (\( i=1,2 \)), since the cases of \( m \geq 3 \) are reduced to that case by a use of (4.2.4) as follows.

\[
\sum_S \left( S_1 \cdots S_m \right) M(S,T) = \sum_S \left( \sum_{U \in \text{Conf}} \left( S_1 \cdots S_{m-1} \right) \left( U S_m \right) \right) M(S,T)
= \sum_{U \in \text{Conf}} \left( S_1 \cdots S_{m-1} \right) \left( \sum_S \left( U S_m \right) M(S,T) \right)
+ \left( S_1 \phi \cdots S_{m-1} \right) \left( \sum_S \left( \phi S_m \right) M(S,T) \right)
= 0 + 0 = 0.
\]
References


[ ] Saito, K.: Moduli space for Fuchsian groups, (1987)

[ ] Siegel, C. L.: Topics in Complex Function Theory, Vol.1,

