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On the Lie-Drach-Vessiot Theory

Hiroshi UMEMURA
Recent years we suceeded in clarifying on a rigorous and
comprehensive foundation, principal ideas of Painlevé. Among other
things, we proved the irreducibility of the Painleve equations. It
seems therefore a predominant problem in theory of algebraic

differential equations is:

Problem A (problem of generalization). Can we realize Lie's

dream of infinite dimensional differential Galois theory?

Precisely, Lie(1842-1899) had a dream of generalizing
classical Galois theory of algebraic equations"to differential
equations. The virtual theory would be inifinitie dimensional but he
had to begin by constructig finite dimensional theories. In this way
he founded theory of Lie groups and Lie algebras. Infinite
dimensional theory occupies a small part in his Gesamelte Abhandelun-
gen. The girst attempt of realizing Lie's dream was done by-a French
mathematician Drach(1871-1941). But there are unclear definitions and
gaps in proofs in his works. We wonder how these incomplete works
were published. Vessiot(18656~-1952) spent all his life to complete
Drach's works. The works of Vessiot are more accesible than those of
Drach but the lack of language, particularly the language of
algebraic geometry, makes his works wordy and incomprehensive. After

their works the problem is left untouched in spite of its importance.

We propose to realize the dream of Lie by developing an idea of
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Vessiot.

As is well known, Galois theory of differential equations
satisfying a finiteness condition was established at the eﬁd of the
19th century. A particular case of the theory is Galois theory of
ordinary linear differential equations which we call also
Picard-Vessiot theory. Kolchin not only made the theory
with finiteness condition complete but also constructed a foundation
of theory of differential algebra based on fﬁe language of algebraic
geometry of Weil. In his book published in 1973, he writes: Indeed,
since an aléebraic equation can.be considered as a differential
equation in.which derivatives do not occcur, it is possible to
consider algeb}aic geometry as a special case of differential algebra.
[f we are not concerned with mathematical meaning of his words, what
h; writes is at least logically true. But it is very strange that
his strongly normal extension, which should be a generalization of

Galois extension, does not include classical Galois extensions.

Problem B (problem of unification). Why is classical Galois
extension not strongly normal? Namely, is there a consistent
definition which includes both classical Galois extension and

strongly normal extension?
We felt unpleasent the incoherence of definitions for years.

Pursuing Problem A, we found that Problem B is related with Problem A

and we solve Problem B too.
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The infinite dimensional differential Galols theary is expected
t6 have two important applications. The first apéllcatlon is the
third proof of the irreducibility of the first Painleve equation. So
far we know two proofs of the irreducibility. The first proof
depends on an idea of Nishioka and the proof is done in a framework
of Kolchin. The second proof is inspired from Lecons de Stockholm of
Painleve and the analysis of the general solution as a function of
initial conditions plays an important role in the secand proof.

The third proof is to be done by c;lcuiétlng the Galois group.-
We notice that their is an anticipating work of Drach published in
1915 on the Gaiois group aof the'first.Painlevé equation. The paper
itself is very interesting but highly incomplete. The first and the
second proofs are of negative character. In fact we proved that no
solution of the first Painleve equation is classical. But if we can
calculate the Galois group, we understand the nature of the equation
better and moreover we can also compare the first Painleve equation
with other egquations of higher order.

The second application is deformation of (not necessarily
linear) differential equations. Works of Riemann, Fuchs, Schlesingef
and Garnier and a recent contribution of the Sato school show the
importance of monodromy preserving deformation of linear differentiai
equations. Theta functions and the Painleve equations are introduced
in this framework. A work of Ramis on generation of the differential
Galoiskgroup of a linear differential equation which has irregular
singular points suggests that Galois group preserving deformations of
linear differential equations are also natural. Further Drach

considered a deformation of non~linear differential equation which
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preserves his Galois group and showed that the first Painleve
equation describes this deformation. Since hls'theory is imcomplete,

it is very interesting to review his paper using our theory.

§ 1 Classical Galois theory of algebraic equations

Let K be a fieid. We assume for simplicity ch K = 0. Let
f(X)EK[X] bw an irreducible polynomial of degree n. Let Xyo Ay o

@ be roots of an algebraic equation_xf(X):O. Let L = K(al. ®ops -o
an). Then the Galois group of the algebraic equation £(X)=0 1is the
K-automorphism group Aut L/K (which we denote also by AutKL) of the
field L. It is therefore more natural to speak of the Gaiois group

of a field extension and we are led to the notion of Galois extensfon.

To explain this , let us recall the definition of a principal

homogeneous space.

Definition (1.1). Let G be a group acting on a set X. We
say that X 1is a principal homogeneous space of G 1{f the following
condition is satisfied: 1f x 1is an element of X, then the map G

+ X sending g to gx 1is bijective.

According to this definition, the empty set is a principal
homogeneous space for any group G.

Let L/K be a finite algebraic field extension and K an
algehraic closure of K. The K~automorphism group G = AutKL. which

is a finite group, operates on the set HomK(L. K). Namely for
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£ € Aut L, f € Hom (L, K), we define gf by £:g. The definition

K
of Galois extension which is convenient for our generalization is the

following.

Definition (1.2). A finite algebraic extension L/K 1is Galois

if HomK(L. K is a principal homogeneous space ofv AutKL.

If L/K 1is a finite algebraic extension, then the automorphism
group Aut L/k 1is a finite group and hence can be considered as a
group scheme over K. Let C be the category of (commutative)

K-algebras. We define a functor

FL/K: C -+ (Sets)
by FL/K(A) = HomK(L. A) = HomK(Spec A, Spec L) for A € ob L. We
have FL/K(A) = HomA(LGKA. A). Since G = Aut L/K 1is a finite group

, we can consider it as a finite X-group scheme and we can speak of
A-valued points of G. Namely, the functor GL/K: C =+ (Groups) is

defined by G (AY = G for A € ob £, where the direct sum of

L/K
copies of the finite group G 1is extended over the number of

coneccted components of Spec A. Since the group scheme Glopetastes

on the K-scheme Spec L, the functar G is a group subfunctor

L/K

of the automorphism functor AutKL and hence G (A) 1is a subgroup

L/K

of AutKL(A) = Aut L @KA/A. Therefore G (A} operates on F (A).

L/K
In other words the functor GL/K operates on F

L/K

L/K" We know the

following result.

Proposition (1.3). For finite algebraic extension L/K of a

field K, the foilowing conditions are equivaient.
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(1) The extension L/K is Galois.

(2) The K-scheme Spec L fs a principal homogeneous space of
Aut L/K. Here the finite group Aut L/K 1is considered as a K-group
scheme.

(3) The functor F is a principal hgomogenepous space of the

L/K
group functor GL/K' i.e. FL/K(A) is a principal homogeneous space

of K(A) for any A € ob C.

Gy
The equivalence of conditions (2) and (3) is due to definitions.
We know that the condition (3) of Proposition (1.2) characterizes the
finite group G. To be precise, let. H be a finite group hence a
K-group scheme or a group functor H:C -+ (Groups). If H operates

effectively on the functor FL/K and if F is a principal

L/K
Vd
homogeneous space, then H 1is {isomorphic to G = Aut L/K.

Remark (1.4). We call reader's attention not to confuse the
full automorphism functor Aut.L = Aut L/K with a subfuncter G =
AutKL (= Aut L/K). We have however AutK
groups but the finite group Aut L/K is considered as a K-scheme

L = AutKL(K) as finite
and hence a functor.

Theorem (1.5). Let L/K be a Galois extension. Then there is
a 1:1 correspondence between the elements of the following two Sets:

(1) The set of subgroups of G = Aut L/K;

(2) The set of subfields of L containing K.

To a subgroup H & G, the subfield e (xelL | gx = x for

any £ € H} corresponds. Conversely, for an intermediate field M
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the corresponding subgroup is ( g € G | & flxes all the elements

af M ).

The classical Galois theory is remarkable since it is power ful
in applications and it seems we had better not overestimate the
theoretical correspondence of twaoa different objects, subgroups and
intermediate fields. In fact amang applications, we are contented
with counting the trisection of the angle, the Delian problems, i.e.
the problem of dublication of the cube, construction of the regular
polygon of 17 sides by straight ege and compases and the solution by
expansion of radicals of algebraic equations.

We have modern Galois theories in characteritic p > 0. The main
idea is to replace finite groups by finite group schemes or Hopf
algebras or more generally by certain algebraic sysfems. There are a
number of theories depending on the choice 0f algebraic systems. One
of the theories gives a generalization of Theorem (1.4) known as
Jacobson-Bourbaki correspondence. But corresponding algebraic
systems are not always simpler than intermediate fieids! For this
reason, modern Galois theory are not as effective as the classical
Galois theory. Therefore it is more advatageous to give up the 1:1
correspondnce and to consider only a particular type of intermediate
fields and try taoa find a simpler class of algebraic systems

corresponding to these intermediate fields.

8§ 2 Kolchin theory
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All rings that we consider are commutative Q-algebras. Let A
be a ring. A map &8:A + A is a derivation operator if &(x + y) =
dx + 3y and 8(xy) = (8x)y + x8y for any X, y € A. A differential
ring (A, A) <consists of a ring A and a finite set A of
derivation oparators such that 6162 = 6261 for any i € A, 61. 62 €
4. An element Xx € A is called a constant if 6x = 0 for any 8§ € A.
The set of all constants of A forms a subring of A which we denote
by CA' When A consists of one operator &, we say that (A, A) =
(A, 8) 1is an ordinary differential ring. If ther is no danger of
confusion, we do not write the set .A.’Kolchin. as Weil did, work in a
unversal domain Q. Namely, we fix the set A and (R, A) 1is a very
big differential field such that the differential algebras which we

consider are contained in (Q, A). The following Lemma is

fundamental.

Lemma (2.1). Let K be a differential field and C be its
subfield of constants. Let A be differential C-algebra consisting
only of constants. Then A and K are linearly disjoint over C.

Here all the algebras K, C, A are considred as subalgebras of {.
Let us study ordinary differential rings. What follows holds

for general differential fields but we limit ourselves to ordinary

case since this case is substaintial and the generalization is easy.

Kolchin introduced the notion of strong morphism.

Definition (2.2). Let L be an (ordinary) differential field
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and hence L is a subfield of Q. A (differential) morphism f:L ~
Q 1is strong if fhe following two conditions are satisfied:

(1) £ fixes all the constants of L;

(2) The composite field f(L).L 1{is generated over L by

constants.

The following interpretation of the Definition(2.2) seems more

natural.

Proposition (2.2.1). Notation being as in Definition (2.2).
The following con&itions are equivalen}.

(1) The morphism f 1is strong.

{2) The morphism { induces an CQ-automorphlsm af the

composite field L.CQ.
Let us underétand the definition by examples.

Example (2.3). Let L = Q(x, e*) with derivation 6>= d/ax.
(L, 6) Is a differential field. Denoting ex by y, we have
(2.3.1) &8y = vy,
We show that any (differential) Q(x)-morphism £f:L =+ Q is strong.
In fact CL = Q and f fixes rational numbers. The Ilmage w =
f(y) should satisfy
(2.3.2) Sw = w.
On the other hand &8(w/y) = ((Sw)y - w&y)/y2 = 0 by (2.3.1) and

(2.3.2). Nanely w/y = ¢ 1is a constant and we have w = yc. Hence

w = f(y) € L. CQ and f(L).L 1is generated over L by constnants.

— 181 —



The above argument works more generally for a linear differential

equation and gives another example.

Example (2.4). Let (K(D), 8) be a differential field of all
meromorphic functions over a domain D of C, & being the
derivation d/dx with respest to the coordinate x of C. Let K
be a differential subfield of K(D). Let A = (aij) € Mn(K) and Y
= (yij) € GLn(K(D)) satisfying a differential equatlon Y' = A Y,

where Y' denotes (6yij). Let L = K(y be the field

ij'1£ 1,5 £ n
obtained by the adjunction of the yij's to K. Then L is a
differentlal field and any (differential) K-morphism L = Q is

strong.
Lemma (2.1) gives the following

Proposition (2.5). Let L be a differential field and f:L = Q
is a morphism. [f f fixes all constants of L, then the following
conditions are equivalent.

(1) £ 1is strong, i.e. the composite field £f(L).L 1is generated
over L by constants.

(2) The composite field f(L).L belng denoted by M, we have M
2 L.CM.
The following notion of strongly normal extension is introduced

by Kolchin as a generalization of classical Galois extension.
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Definition (2.6). Let L/K be an (ordinary) differential field
‘extension which is finitely generated over K as an abstract field
extension. We say that L/K 1is strongly normal {f any K-morphism

f:L - Q is strong.

Examples (2.3) and (2.4) are strongly normal extensions as we
have seen above. The following phenomena are unpleasant. First,
since a strong morphism leaves constants invariant, if L/K 1is
strongly noamai, then CL = CK‘ Therefore a Galois extension
Q«/~1)/Q@ in Q is not strongly normal. Secondly, an extension Q(x,
ex)/Q(x, eSx) is strongly normal by Example (2.3) but this extension
is not Galois. The first phenomenon is more disagreable than the
second. We can avoid these defects replacing the universal domain by
tensor products.

Let (A, 8) be a differential ring and (R, &

), (8, 8,) be

1 2
differential A-~algebras. Then R QAS is a differential algebra.
Here the differential operator J§:R @AS - R @AS is defined by
putting &(r @ s) = (8r) @ 8 + r @ (8s8) for r € R, s € S and
extending it additively.

Bialynicki-Birula adopted the following characterization as a

definition.

Proposition (2.7). Let L/K be a differential field extension.
We assume that (1) as an abstract field extension, L/K 1is finitely

= C,. Then the follovfng

Renerated over K and regular, (2) CL K

conditions are equivalent.

(1) L/K 1is strongly normal.
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(2) The differential field QL @KL) is generated over i, (L)

by constants, where 12 denotes the morphism L - L ® KL, x» 18 x

for x € L.

This interpretation due to Bialynicki~Birula is liberated from
the universal domain but our definition is different. Let (R, §)
be a differential ring. We have an embedding i:(R. 5 » (RV[[T1)1,

«
d/dT), x » 2 %T(an)Tn for x € R. Here we denote by RY an
ns=0 ° '

dbstract ring R to emphasize that we forget the differential

operator &. The morphism 1 is a di-ferential homomorphism, 1i.e.

d(i(x))
s S XD

1(8(x)) aT

for any x € R.
Lemma (2.8). The mosphism i:R - R'{[T]] 1is universal in the
following sense. Let f:(R, &) = (AL[T11, d/dT) be a differential

morphism. Then there exists a unique abstract algebhra morphism T:

R* - A such that f < i = f£f. Here we denote by ¥ the morphism R®

CCT11 » ALLTI] induced by f:R% = A. Namely , we have

Hom(RY, A) =~ Hom((R, &), (A[L{T11, d4/dT)»).

Let now L/K be a differential field extension which is
finitely generated over K as an abstract field ex}ension. Let
C(K') be the category of K -algebras. We have the morphism i:K -+
K* {{T)). Intuitively we would define a functor

F :C(KY) = (Sets)

L/K

by F (A) = HomK((L. 5), (ACLIT1], d/dT)). The right hand side

L/K
consists of, by definition, differential morphisms f:L = AL[T]]
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of which the restriction fJ|K coincides with the composite K 4 Kb
CLT11 - ACCT]), where the last morphism is induced from the K'-
algebra structure of A. Notice that if the field consists only of
constants, then the functor FL/K coincides with the functor FL/K
introduced in § 1.

The group functor GL/K in 8§ 1 has also an analogue:
We would define

GL/K:C(CK) -+ (Groups)
by GL/K(A) = Aut (L @CA)/(K @cA) for A € C(CK). where we denote
o] by C to avoid the complicated notation in the tensor product.

K

The functor is defined on the. category C(Cp) which contains

Gr/x
C(Kv) as a full subcategory. Therefore we can speak of the

restriction of G to C(Kv).

L/K
The precise definitions of FL/K and GL/K are given by using
a model of L/K. Namely let LO be a differential K-afgebra which
is finitely generated as an abstract K-algebra such that the
quotient field of LO is L. It is easy to show that such a
differential K-algebra exists. We have to consider pseudo-morphisms
in the sense of E.G.A. IV, 8§20. In our language the strongly normal

extension is characetrized as follows.

Proposition (2.9). Let L/K be a differential field extension
such that L 1is finitely generated over K as an abstract field. If
CL 2 CK’ then the following conditions are equivalent.

(1) L/K is strongly normal.

(2) The functor is a principal homogeneous space of the

FL/k

group functor GL/K restricted to C(KY).
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Kolchin proved that if L/K 1{s strongly normal, then GL/K is
representable by a CK-group scheme of finite type. Therefore ‘GL/K!

C(K ) 1is a K -group scheme of finite type. More generally we have

Conjecture (2.10). Let L/K be a differential field»extenston
which is finiteiy generated as an abstrct field extension. In this
gsituation the group functor FL/K is representable by a CK~group

scheme of finite type if and only if CL/CK A is algebraic.

If the field L consists only.of constsants, then the functor

G coincides with AutKL. Hence it does not give the correct

L/K
functor G = AutKL. We need a definition.

Definition (2.11). Let G be a group scheme finite type over a
field k. We say that G 1is split over Kk if all connected

components of G are absolutely irreducible. We adopt the following

Definition (2.12). Let L/K be a differential field extension
which is finitely generated over K as an ;bstract field extensijon.
If there exists a split CK-group scheme G of finite type such that
the functor FL/K is a principal homogeneous space of GK + then wve

say that the extension L/K 1is automorphic.
As we have seen in § 1, Galois extension is automerphic. For

differential field extension L/K which is finite algebraic, L/K

is automorphic if and only if L/K 1is Galois as an abstract field
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extension. If CL = CK.
Conversely if CK

is automorphic. We have

Theorem (2.13). Let

CK-group scheme G. Then there is
elements

(1) CK-subgroup schemes of G

(2) Differential subfields of

over M.

We have the following result.

Proposition (2.14). If L/K
Cx-group scheme G,

up to isomorphism.

automorphic extension

is algebraically closed,

of the following two sets.

then the group scheme G

is strongly normal.

strongly normal extension

L/K be an automorphic extension with a

a 1:1 correspondence between the

split over CLH.

. such that L is automorphic

is an automorphic extension with a

is uniquely determined

§ 3 Lie-Drach-Vessiot theory
Let X be a complex manifold. Traditionally since Lie, a system
P of differential equation for sections of the projectioh plzx X X =

X onto the first factor is called a Lie pseudo-group if the

following conditions are satisfied.

(1) The identity Idx is a solution of P,

X) 1is a solution of P.

i.e. the map x » (x,
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(2) Let s:U -+ V be an isomorphism of two open sets of X. If
s is a solution of P, more precisely 1f the ﬁap U->UXYV sending
x €U to (x, s(k)) is a solution of P, then s ':v- U is a
salution of P.

(3) Let U, Y and W be three open sets of X and s:U - v,

t:y =+ W isomorphisms. [f s and t are solutions of P, then tes

is a solution of P.

Examples (3.1.1). Let X = C and we consider the differemtial
equation dy/dx = 1, where x |is the’boordinate of C. Then the
general solution is y = x + c.

(2) Let X = P1 and we consider the Schwarzian differential

5
equation y(a)/y' - %(y"/y’)' = 0, where the differentiation is done
with respect to a inhomogeneous coordinate x of Pl. Then the

’ ‘ _ax + b A
general solution ts vy = oex + d°

9
(3) Let X =C° and xl, X be the usual coordinate system on

2
Cz. We consider the differential equation D(yl, yz)/D(xl. xz) = 1.

We can not write the general solution but this is a Lie pseudo-group.

The Examples (3.1.1) and (3.1.2) are really algebraic groups
but Example(3.1.3) offers a typical example of Lie pseudo-group. To
our end, Lle pseudo-group can be linterpreted as a functor. To
explain our definition of Lie pseudo~group, we need a preparation.
Let k be a field of characteristic 0 and AL(k) the category of
all Artinian local k-algebras. For an integer n 2 0, we define a
groups functor Qn:AL(k) -+ (Groups) by setting gn(A) = ((yl, yg. e

. yn)l Yy € AULt;, ty,...y t 11 with y (t) = t, mod m for 1< i <n,
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m being the maximal ideal of A} for A € ob AL(k). The group law
in Qn(A) is the composition of series, i.e. for y = (yl. yz.....
yn) and 2z = (zl, Zyaeens zn) € Qn(A), we define yz by ysz =
(yl(z), yz(z),..., yn(z)), which is in Qn(A). Id = (tl. tz,...,
tn) is an identity in gn(A), i.e. Idy = yId = y for any vy €

Qn(A). To prove that Gn(A) is a group, it is sufficient to show

that any element of @n(A) has a right inverse. Let us assume

for simplicity n = 1. Let vy € QI(A). y(t) = a; + alt + aztz L N

with al =0 modm if i = 1, and a, 21 mod m. First, let us look‘
2

for a series 2z(t) = bD + bl(t - ao) f'bz(t - ao) +... such that

2y = t. This is done since if we assume zy =t, we can determine

the coefficients b b € A succesively. Moreover we have bi

o' 2p» -

=0 modmif i=1, and b 1 mod m. The series 2z(t) 1is in

1
fact in A[[tl]l. In fact, the constant term of z(t) |is b0 +

- - 2 . - q .
bl( ao) + bz( ao) +... which is in A since ( ao) = 0 for a
sufficiently large integer q. Similarly the coefficient of tp of

z(t) is determined in A for p x 1.

Definition (3.2), Let Kk be a field of characteristic 0. Let
Yi» Yoo ...,yﬁ‘ be differential indeterminates over (k[[t,, t,, ...,

tn]]. (d/d4t d/dtz. ...,d/dtn)). Let I be an differential ideal of

1!
k(t1(Y) = k[[tl. tz. ""tn]](yl' Yos e Yn). [f a functor H:C(k)
~ (Sets), A= ((y;, Yo, ..., ¥ ) € Qnm)l F(Y{s Ygueoen ¥) = 0 for
any F € I} is a subgroup functor of Qn. the we say that H 1is a

Lie pseudo-group functor or simply a Lie functor.

Definition (3.3). A morphism of Lie pseudo~group functors is a
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morphism of group functors.

This definition is simpler than the traditional definition using

prolongations.

Let L/K be an ordinary differential field extension which is

finitely generated as an abstract field extension. Let us assume L=

K<y> since the general case is treated with a little modiflcation.

Let F(y, yvy', ..., y(n)) = 0 with F(Y) € K(Y} be the differential

(n)

equation satisfied by y such that QEISY # 0 and the degree of

F in Y(“) is the smallest. Then -tr.d.[(L: K1 = n and (y, y', .-
, y(n-l)) is a transcendental base of L/K. Hence if we put Yy ®
s hen 8/8y :K(y;, ¥,y . .., ¥.) » K 1is aderivation for 1

£ i £ n. We can extend the (a/ayi)'s to derivations of K¢y)> = L =

L which we denote by § Hence L is a differential algebra with

i
respect to (61. 62, vee 6n) whci we denote by L'. The 6{5
define a.derivation operators of of L"([[tl] commuting with 8/3t,
i.e. differéntlations of coefficients. We denoting these operators
‘again by & (1 £ 1 < n), L*[[t]] 1is a differential algebra with A

i
= {3/8t, 3§ 62. »eo.-» 8 ). As we explained in § 2, we have the

1 n
canonical embedding i: L - L*([(T1l, t being a variable. We have a

commutative diagram
L = LY¥([[t]1]
| |

K — KvV[[t]1].
Let us denote by (£, A) the differential algebra of (L*([(t1], &)

generated by 1(L) and L. Similarly (X, A) is the differential
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subalgebra of (L*[(t]ll, A) generated by 1i1(K) and L*'.

Since (61. 62..... 6n) kills {(K), 1i(K) and L* are A-invariant
so that X = 1(K)L*. Since the ring of constants of (L*[[t]], A) |is

K', Ck. CZ a KN, We have the canonical embedding t:(¥, A) » £V

[er, Ul, U2. en e Un]], (9/9T, 8/9U1. 8/8U2. vess 8/8Un)) introduced

in § 2. Let us see what happens in Example (2.3.1).

Example (3.3.1). We have L = Qx, eX) = K<e®> with K = Q(x).

Let us take eX as. y. By the canonical morphism i:L - Ly [peell, x

is sent to x-+ t and e* to yet in LY(Lt]1. In fact, i(y)
@ n o @ Co @ .

z 2 F% 9—% t" 2 3 F% yt" =y 3 F% t" = ye!. Since X 1s
i=0 7" dx i=0 7 i= :

generated by i(K), L with 9/8t and 3d/9 y, X = i(K).L . £ s
generated over X by i(y) = yet with 8/8t and 8/3dy. Therefore

Q) = Q(XCe'D).

Lemma (3.3). The abstract algebra £ is uniquely determined

» by L/K or is independent of the choice of the generator y of L/K.

We define a functor

7 TAL(Q(EY)) -+ (Sets),

L/K

by ¥ (A) = (f € Homx((l. 4), (ALLT, Ul' u cess Un]]. (8/9T,

L/K 2°
a/auy, 8/dU,, ..., 3/3U }))| The reduction T:2 - ALLT, U1l » A/ml(T,
Ull coincides with (¢:Z -» ZV[[T, UJ] - A/ml(T, UJ]} for A € ob

AL(Q(Z)). In other words, ?L/K is the functor of all infinitesimal

deformations of (:f - ZV[(T, Ul].
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Lemma (3.4). ¥ K(A) = Homx(z ., A)Y for any A € ob AL(Q(ZvY)).

L/

Since Z depends only on the extension L/K by Lemma (3.3),

Lemma (3.4) shows that the functor ¥ K:AL(Q(Z')) -+ (Sets) is

L/
independent of the choice of the generator y of L/K. Let us

analyze Example (2.3)

Example (3.4.1). As we have seen in (3.3.1) for L/K of

Example (2.3), Q(€) = Q(X[et]). We consider now t:Z = #Zv ([T, Ull.

t(e®) = e'eT by definition.  For a € obAL(Q(Z )), a deformation f:¢

t t

-+ A[[T, U]l 1is determined by f(e ). - Since eetlat = e and aet/ay

= 0, we should have Bf(e')/ 8T = f(e') and 8f(e')/dy = 0 and

hence feebHricce ™) = scetrice’y™! is in A and is a unit: f(e®

/

= ci(e’) with c €A, c =1 mod m. Therefore FLgA) = (c € Al ¢

= 1 mod m} for A € ob AL(Q(Z£')).

Now let us define the infinitesimal counterpart of the functor

G of § 2. Let L/K be an ordinary differential field

L/K
extension which is finitely generated as an abstract field extension.
Let EK<y> = L. and we take yl. Yos coes ¥ as above. Let us denote

by L' the differential field (LY, (§ 6n)). We have the

1. 2- LI |
canonical embedding
(3.5) j:L* =
(L'[tUl. U2. oo Un]]. (3/8U1. 8/8U2. ceey S/GUn)).
Therefore we may identify S/BUi with 51 for 1 £1i1 < n. For
A € ob AL(L'), we have the natural inclusion L¥([(U]) < ACLU]]l and

hence by (3.5) (L'[(U]].(&l. . 6n)) is an L' - algebra. On
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the other hand, we have £ ¢ L*[[t]]. We have a canonical morphism
L* - (LvY([CUID, (G/GUI. a/auz. RN B/GUn)) and hence we have ¢ < L*
(Ct1] c (LVCCUIICCE1Y = Ly([Lt,Ul], (3/39t, a/aul. a/auz, cees a/aun)).

Lemma (3.6). The natural differential morphism £ @ A[[U]l] ~»
L.

ACCt, Ull, w @ h«U) =» wh(U) for w € £, h(U) € A({U]] 1is an

injection for A € ob AL(LMW),

We define a group functor

gL/K: AL(LY) - (Groups),
by 9 (A = (f € Auty o prpyyp(E ?e'UA[:um. (8/8t, 8/3u;, 8/3U,,
L!
- G/GUn)) | £ =1d mod m, m being the maximal ideal of A} for A
€ obAL(L ).

Let us study Example (2.3).

Example (3.6.1). For L/K in Example (2.3), by Lemma(3.6) £
® A[L(Ul] 1is isomorphic to a subalgebra of AfI[t,Ul]l] for A €
L* .
ob AL(L%¥)) which contains et by Example (3.3.1). X @ A{[U]] -
LI

automorphism f of £ @ ACLU]]l] 1is determined by the image f(et).
L#

The argument of Example (3.4.1) shows that we must have f(et) 2
cet. c €A with ¢ =21 mod m. Conversely if we put f(et) = cet
with ¢ € A satisfying ¢ =1 mod m, then f determines an
automophism. Thereofre we have QL/K(A) = {c€A| c=1mdm for

A € ob AL(LY)).
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By Lemma (3.3), the riang £ 1is uniquely determined and
independent of the choice of a generator. Hence AL(Q(£')) depends

only on the extension L/K.

Lemma (3.7). The functor QL/K:AL(Q(zI)) -+ (Groupes) is

independent of the choice of a generator.
The following question is an analogue of Conjecture (2.10).

Conjecture (3.8). Is QL/K : AL(L') -+ (Groupes) a Lie functor?

We have the canonical morphism £ -» £V ([T, Ul] and the
inclusion 2ZY([[{UJ] - £ [[T, Ull. Therefore we have a canonical

morphism of taking product as in Lemma (3.6) £ @ ZV[[Ul]l - £V [T,
: Lt

Ull. Similarly we have a natural morphism £ ® A[[(Ul] - ACIT, U]l
Lﬂ

of taking product for A € ob AL(LV).

Lemma(3.9). The natural differential morphism £ © ACCUI] -
L -

ACLT, Ul]l 1is injective for A € obAL(Q(Z )).

The composite £ - £ & A[(CU)] - A(C(t, Ul]l of canonical maps

L.
coincides with (32 - £Y ([T, UJ]. Let f € QL/K(A), then the
-1
composite £ - £ ® A[[U]] ——— Z ® ACCUI] » ACCT, U1l is a
L L

infinitesimal deformation of (¢, i.e. is in ?L/K(A). where the last

and the second morphisms are canonical. Therefore QL/KIAL(Q(ZN))
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operates on Lk

Lemma (3.10). The following conditions for L/K are equivalent.

(1) (% fAL(Qgv )y, ¥ is a princiral homogeneous space.

L/K L/K’

(2) The morphism of the operation JAL(QEV) x fL/K - yL/K

$L/k
is surjective.

Proposition (3.11). 1If the equivalent conditions of Lemma(3.8)

are satisfied, then @L/KIAL(Q(Z')) is a Lie functor.

The following definition is consistent with the definitions of

Galois extension and automorphic extension.

Definition (3.12). [f L/K satisfies the following conditions,

we say that L/K 1is infinitesimally automorphic.
4]

(L (QL/KIAL(Q(I ), yL/K) is a principal homogeneous space.
(2) The group functor QL/K:AL(L') -+ (Groups) is a Lie functor-
defined over K . Ndmely there exists a Lie functor H:AL(K') =
(Groups) such that H|AL(KY) = (Groups) such that H|AL(LV) 1is
isomorphic to gL/K‘

Conjectural Lemma (3.13). Let L/K be an ordinary differential
field extension which is finitely generated as an abstract field
extension. Then there exists a canonical group functor H:AL(R') =
(Groups) such that H|AL(L') 1is isomorphic to gL/K'

Let us explain what we mean bycondition (2) of Definition (3.12)
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and Conjectural Lemma (3.13). Let

of L such that the K!'-algebra
0

LO be a differential

Lo is of finite type and

K~algebra

L is

the quotient field of L~. It is well-known and easy to show that we

can find such an LO. Let LO‘ =

‘e yn} form a transcendental bas

L[Yl. Youeers Ym] such that (yl. .

e of L/K. We can constr

uct an

algebra ZO similarly as £. Namely, we can introduce derivation

0

operators & of L as for L/K

i
differential algebra (Loi. (& 5

1!
{9/9t, 3 5

1* "2
LQ' and x° A-subalgebra generate
We assume that Kt is algeﬁraical
Spec L0 by X. Let v:Spec K - X
identify v with the K'-morpohis

Therefore we have a A~morphism L

therefore a morphism 1V:z° - KbV (C

deformations of iv which form a
0 0

have L™* = ; ‘[[Ul. Ug,..-. Un]]

denote by v. We can define a gro

g (AY = ( f € Aut

v:L0 -+ K £

04

L
m, m being the maximal ideal of

AV[[UJ] 1is an L0'~algebra by L0
What precisely Conjectural Le
following. Since AL(LY) is a su

speak of restrction.

Conjectural Lemma (3.13.1).

. We denote by LO' the

»0
greces Bn)). Let 2 be

d by 1) ana L%.

ly-closed. We denote the
be a K~rational point.

0 -

m v:L K'Y of Kv-alge

VLCt, UI1,» KVCCt, UID.

A =

ceey 6n)-subafgebra of L*([([t]] generated by i(Lo).

K-scheme
We may
bras.

We have

As wve

t,Ull. We can consider
functor AL(KY) = (Sets).
- K'[[Ul. U2..... Un]] which we

up functor

29 @ oL ALTUTI] £
o ALTUII LO»

A} for A € ob AL(Kv),.

L, Kv ((U11 - ALLUI3.

mma (3.13.1) means is th

= Id mod

Here

e

bcategory of AL(K'), we can

There exists a non-empty
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Zariski~-Open set U of X such that QV:LO K is independent of
the K-valued point v and GV:LO - K!I AL(LY) is canonically

isomorphic to gL/K’

The condition (2) of Definition (3.14) means that the conclusion
of Conjectural Lemma (3.13.1) is satisfied.

Let us study Example (2.3.1).

Example (3.14). By (3.4.1) and (3.6.1), Qx, eX)/Qx) is

infinitesimally automorphic.
The arguments used to study Example (2.3.1) shows the following.
Proposition (3.15). Let L/K be a strongly normal extension.
Let G be the Galois group which is a group scheme over CK' Then
L/K is infinitesimally automorphic and & , (A) = (v € Gay|lw = 1

mod m, m being the maximal ideal of A} for A € ob AL(LY).

We expect a similar result for an automophic extension and hence

the proof is related with Conjecture (2.10).

Conjecture (3.17). The same conclusion as Proposition (3.10)

holds also for an autaoamorphic extension.
Our final result is yet conjectural.

Conjenctural Theorem (3.12). Let L/K be an infinitesimally
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automorphic extension and M an intermediate field between L and
E such that M/K is infinitesimally automorphic. Then there
-y

exists a surjective morphism of Lie pseudo~group functors %

g

L/K
M/K*
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