
          On the Lie-Drach-Vessiot Theory

                                        Hirosht UMEMURA

     Recent years we suceeded in clarifying on a rigorous and

comprehensive foundatio' n, principal ideas of Painlev6. Among other

things, we proved the irreductbiltty of the Painlev6 equations. It

seems therefore a predominant problem in theory'of algebraic

differential equattons is:

     Problem A (problem of generalization). Can we realize Lie's

dream of infinite dimensional differential Galois theory?

     Precisely, Lie(1842-!899) had a dream of generalizing

                                              ttclassical Galois theory of algebraic equations to differential

equations. The virtual theory would be inifinitie dimensional but he

had to begin by constructig finite dimensional theories. In this way

he founded theory of Lie groups and Lie algebras. Infinite

dimensiona! theory occupies a small part in his Gesamelte Abhandelun-

gen. The first attempt of realizing Lie's dream was done by'a French

mathematician Drach(1871-1941). But there are unclear definitions and

gaps in proofs in his works. We wonder how these incomplete works

were published, Vessiot(1865-1952) spent all his 11fe to complete

Drach's works. The works of Vessiot are more accesible than those of

Drach but the lack of lan.guage, particularly the language of

algebraic geometry, makes his works wordy and incomprehensive. After

their works the problem is 1,eft untouched in spite of its importance.

SIB propose to reaL-tze the dream of Lte by devetoping an idea of
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Ve3stot.'

     As is well known, Galois theory of differential equations

satisfying a Åíiniteness condition was established at the end of the

19th century. A particular case of the theory is Galois' theory of

ordlnary linear differential equattons which we call also

P!card-Vessiot theory. Koichin not only made the theory

with ftniteness condition complete but also constructed a foundation
                                           'of theory of differential algebra based on the language of algebraic

geometry of Weil. In his book published ln 1973, he wrttes: Indeed.
                                    .           -tsince an aigebraic equation can be considered as a differenttal

equation in which derivatives do not occcur, it is possible to

eonsider algebraic geometry as a speciai case of differential algebra.

If we are not concerned with mathematical meaning of his words, what
 .t
he writes is at least logically true. But it is very strange that

his strongly normai extension, which should be a generalization of

Galois extension, does not include classical Gatois extensions.

     Problem B (problem of unification). Why is classical Galois

extension not strongly normal? Namely, is there a consistent

definition which includes both classical Galois extension and

strongly normal extension?

                                                                '
     We felt unpleasent the incoherence of definitions for years.

Pursuing Problem A, we found that Problem B is related with Problem A

and ue sotve Problem B too.
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     The infinite dimen$ional differentiai Gaiois theory is expected
t6 have two important applications. The first application is the

                                                    tthird preei of the irreciucibiKty ei the iirgt PaiRleve equatSen. So

iar we know two proofs af the irreductbility. The first prooÅí

depeRds eR ak idea ff! Mskieka aRd the precf is deRe in a iraraewfirk

of Kolehin. The second proof is inspired from Lecons de Stockholm of
       "PaiRleve and the analysis of the general solution as a function of

initiai cond"iens plays aft important vole in the secafid preof.
     The third proof ts to be clone by ealculating the GaloSs group.

We gstice that thek' is aft aftticipating yerk eÅí 9rach publiskeG iR
                                    -1915 an the Galois group of the first Painiev6 aquation. The paper

Stsel! Ss very iRterestiRg but hSghly Sncgmplete. The tirst and the

second proofs are of negative character. rn faet we proved that no

solution of the first PainlevE equation is elassical. But if we can

calcuiate the Galeis group, we understand the nature GÅí the eguatien

better and rnoreover we can also eornpare the ftr$t Painlev6 equation

yith ether eguatie"s GÅí higher Grder.

    The second application is deformation of (not neae$sarily

liBear) di!ferenUal equatiens. Werks af Riernann, Fuehs, Sehlesinger

and Garnier and a reeent contribution af the Sato seheal show the

Smportance of monodromy preserving deformation of linear differential

eggaiiens. 'Irketa Åíufictlefts and the Pata}evE equa"eRs are intraduceG

ln this framewark. A work of Ramis on generatian of the differential
      'Galeis areup oÅí a !inear diÅíSeyential equatiefi which has irregul&r

singular points suggest$ that Galois graup pre$erving deformations of

linear difierential equations are also natural. Further Drach
                           '
cefisidered a deiermatioft ei ttan-•linear diiierential eguatioR whtch
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prgserves his Gaicis greup afid shfiyed that the first Painlev5

equatlon describes this defermaUan. Since his thaory is imcemplete,

it is very interesting to review his paper using our theory.

     S : Classical Galois theory of algebraic aquations

     Let Kbe a iSeld. We assume ier simp}icRy ch K#g. Let

f(x)eK[Xl bw an irredueibla potynomial of degr'ee n• Let ct1, ct2. ..

ctn be roots of an algdibraie equation :'f(X)=O. Let L= K(ct1, ct2- ..

ct }. Tken the Galcis greup cÅí the algebraic equaticfi ÅíÅqXÅr=e is the
 fi

K-automorphisrn group Aut LIK (which we denote a!so by Aut                                                          LÅr of the                                                         K
fleld L. rt is therefore rnore natural to speak of the Galois group

ei a fieid extensiofi and we are ied to the notion af Galois extension.

Te explain thls , }et u$ reea!! the de"a}tieR ei a princSpal

homogeneous space.

     9eftaiUen ".iÅr. Let G be a grgup actiRg en a set X. We

say that X is. a. principal homogeneous space of G if the•following

condition is $atisfied: if x is an element of X. then the map G

.X seftdiftg g le gx is bijeetive.

     Accarding to this deflnition, the empty sert is a principal

hcmogene"us space for any group G.

     Let L!K be a Åíinite algebraic Åí!e!d extensien aBd X an

algebraic closure of K. The K-automorphism group G = AutKL, which
Ss a finite group, operates on the set HornK(L, R). Nameiy for

-  1.76-

4



gE AutKL, fG HomK(L, R), we define gf by f"g. The definition

of Galois extension whiah ts conv' enient for our generalization is the

ÅíeHewizzg.

     Seflnttie# K.2}. A ÅíiRi{Åë algebraic extefisifift LIK is 6aleis

if HornK(L, k) is a principal homogeneous space of AutKL.

     !i L/K i$ a finite algebraic extension, then the autemQrph!sat

group Aut Llk is a finite grcrup and hence caxx be con$idered ut$ a

gregp scheme ever X. Let C be the categcry cf Åqcfimmutative)
                                    -
K-algebras. We define a functor

     FuK; C. ÅqsetsÅr

bY FL/KÅqA) = HornK(L, AÅr n HomKÅqSpec A, Spec L) for AG ob C. We

have FvKÅqA) = HomA(LQKA, A). Since a= Aut Z./K is a finite group

, we can coftsider it a$ a Åíinite K-group seherae and we can spaak at

A-valued points af G. Namely, the functor GI.IK: C ew, (GroUP$År iS

               ÅqAÅr = G for AE eh C. vhere tke direct sgm eideÅíIRed by G            L!K
coptes of the finite group G is extended over the number oÅí
coneccted cemponents oÅí Spec A. Since the group scheme G•opetastes'

                                             is a group subÅíunctoren the K-scherne Spee L, the functor G                                        L!K
af the automorphism funÅëtor AutKL and hence GLIK(A) is a subgroUP

ef AutKL{A} = Aul L QKA!A. 'rhereÅíere GuK{AÅr eperates en Fi.IK{AÅr.

!n other words the funetor GvK opevakes on FL/K• We know the

lellescing result.

     Proposition (!.3). For, finite algebraic extension L/K ef a

Åíleld K, the faiiowing coftditians are equivalent.
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     (i) The extension LIK is Gaiois.

     (2) The K-.scheme Spec L is a principal homogeneous space of

Agt VX. Here the finlte group Ant I.!K is eensidered as a K-gregp

     {3År The functey F                           is a principal hgfimegeftepeus space eÅí the                      L!K
group fUnctor GL,!K, i.e. FLIK(A) is a principal homonceneous space

        (AÅr for any A6 ob C.Qf G     L.1K

     The equivalence of condittons (2År ,and (3År ls due to definitions.

lje kficw tha2 the ceRdRieR Åq3År ef PrgposgSeR Åq1.2År ehar&eterizes tke
                                    --finite group G. To be precisa, let. H be a finite group henee a

K-graup scheme or a graup fanctor H:C'-, ÅqGroup$År. If H eperates

effectively on the funator FL!K and ii FL/K is a principal
                                                     •t,x
homogeneous space, then H is isomorphic to G = Aut LIK.

     Reraark (1.4). We aall reader's attention not to confuse the

                              L = Aut VX wi th a subfukcter G =iul! autemeyphi$m iuRcter Aut                             K
AutKL (me Aut LIK). We have however AutKL = AutKL(K) a$ finite

groups but the MRite group Aut L/K is eoRsidered as a K.scheme

and henee a tuncter.

    Thecrem {i.5}. Let YK be a Galeis exteRsiBR. Theg tkere ls

a 1:1 eorresponctence between the elements ot the following twa sets:

     (1År The set ei subgroups eÅí G = Aut L!K;

     (2) The set of subfields of L containing K.
    To a subgrQup H ct G, the subfield LH = { x E L l gx = x for

afiy x ff H } corresponds. Cgaversely, for afi intermediate fielct M
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the cerrespe nd ing subgreup is Åq g G G l g A xes all the ei eme nts

                                      '

      '     The classical Galoi$ theory is remarkable since it is powerful

in applieations and it seems we had bettÅër nat overestimate the

theoretical covrespondence of two different abjeets, subgroups and

intertaediate Åíieids. in Åíaet ag}eftg appXcatigks, we are centeptad

witk eeuRRftg the trisect!gft cf the aRgle, the Delian preblems, i.e.

the problem oÅí dublication of the cube, aonstruction of the regular

polygon of 17 sides by straight ege and eompases and the solution by

expansion of radical$ of algebraic equations.

     We have modern Galeis theo}'ies in charaÅëteritic p År e. The mata

tdea ls to replaee Åíinite greups by fintte group schemes er K' epi

                                                  '
algebras er raore geRerally by ceytain a!gehraSc systems. There are a

numher of theeries depending on the ehoiee of algebraic systems. One

ot the theories gives a generalSxation of Theorem (1.4) known as

Jacobson-Bourbaki correspondence. But corre$ponding algebraic

.systems are not arways simpier than intermediate fieids! Far this

reasofi, medera Galgis thegry are ngt as effecKve as the classical

Galets theery. Therefere R is mere advatageeus te give up the 1:1

"orrespondnce and to consider only a particular type of intermediate

fSeids and try to find a simpler class ot algebraie $ystems

eorresponding to the$e interrnediate fields.

S 2 KBIÅëhin theory
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     All rings'that we consider are commutative Q-algebras. Let A

be a ring. A map 6:A -, A is a derivation aperator if 6(x + y) m

6x + 6y and 5(xy) = Åq6x)y + x6y fov any x, yG A. A differential

ring ÅqA, AÅr censi$t$ ef a rlRg A and aÅítaite set .A oÅí

derivaticR eparatcrs $uck that 5!52 = 5261 Åí"r aay xE A, 5;, 52 e

A. Afi element xGA is called a cefistaRt iÅí 6x #e fer aRy 5G A.

The set ef all constants of A torms a subring ot A which we denate
by CA• When A con$ists of one operator 6, we say that (A, A) m

(A, 6) is an ordinary diÅíferential ring. !f thttr is no danger of

confusion. we do not write the set .A. Kolehin, as Weil did, work in a

unversal domain R. Naraely, we Åíix the set A and ÅqR. AÅr is a very

big dliÅíereBtia} iie}ct $uch that the dlÅíierential algebyas yhleh lje

eensider are ceRtaSned ta ÅqR. AÅr. The Åícllowing Lept#)6 is

tundamental.

     Lemma (2.1). Let K be a differential field and C be its

subfield of eonstants. Let A be differential C-algebra conststing

only of constants. Then A and K aye lineariy disSoint ever .C.

gere all the algebra$ K, C, A are cegsidred as subalgebras ef g.

   . Let us study erdinary differetttial rtng$. What tollows helds

for general differential fields but we limit our$elves to ordtnary

aase since this case is ssubstaintial and the generalization ls easy.

Kolehin introduced the notion of strong morphi$rn.

     DeiifiiticR (2.2År. Let L be afi (erdinary) dliferential iield
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and hence L is a subfield of Q. A (differantial) morphism f:L •.
n is strong if ' the following two conditions are satisfied:

     (1) f fixes ail the aonstants of L;

     Åq2År The compgsite Åíield f(LÅr.L is generated aver L by

eeftstaRts.

     The following interpretation of the Definitlan(2.2) seems more

natural.

     Proposition (2.2.1). Notatien being as in Definition (2.2).

The feHewing cenditions are equivalent.
     Åq1} The pterpk'isra Åí is $treRg.

     Åq2År The iitorphi$m Åí iftduces an CR-automorphism ei the

eampositet field LCn.

                i     Let us understand the definition by exarnples.

     Example (2.3). Let L= Q(x, eX) wlth derivation 6= d/dx.

                                          xÅqL, 5År is a d2fÅíereR"al ÅíielG. "efifitifig e by y, ye kave ,

     Åq2.3.!} 5y = y.

We show that any CdtfferentialÅr QÅqxÅr-morphi$m f:L - R is strong.

rn fact CL =O and f fixes rational numbers. The image w=

f(y) should satisfy

     (2.3.2År 6w = w.
On the other hand 5(wly) m {(6w}y - w6yÅr!y2 ra O by c2.3.1} and

Åq2.3.2}. Na"ely yly ra Åë is a cfittstant aftd we have w= yc. Keftce

yn ÅíÅqyÅr E L. CR and Åí{L}.L is geRerated ever L by ceftstaaRts.
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     The above argument works more generally for a linear differential

equation and gives another example.

                                                         '
     Example Åq2.4). Let (K(D), 6) be a differential field of all

meromorphic functions over a domain D of C, 6 being the
derivation dldx with respest to the coordtnate x of, C. Let K

be a differentlal subfield oÅí K(D). Let A = (a                                                 )EM (K) and Y                                                ij                                                      n
= (yijÅr E GLn(K(D)) satisfying a differential equation y' = A y,

where Y'  denotes Åq6yij). Let L= K(yij)ls i,j sn be the field

obtained by the adjunction of the y...'s to K. Then L is a                                   IJ
dtfferential field and any (differentlal) K-morphism L . R is

strong.

     Lemma (2.1) gives the following

     Proposition (2.5). Let L be a differential field and f:L . R

is a morphism. !f f fixes all constants of L, then the followtng

conditions are equivalent.

     (:) f ig strong, i.e. the composite field f(L).L is generated
o' ver L by constants.
                             '
     (2) The composite field f(L).L being denoted by M, we have M

.  L.CM.

     The following notion of strongly normal extension is introduced

by Kolehin as a generalization of classical Galols extension.
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     Definition Åq2.6). Let LIK be an (ordinary) differenttal tield
'

extens!on which is finitely generated over K as an abstract field

exteftsiott. We $ay that VK i$ streRgly fiormal ii any K-merphlsm

f:L . Q is strong.

     Examples (2.3) anci (2.4) are strongly normal extensions as we

haye seen above. The foHewing phenomena are unpleasant. Flrst,

$ince a strong rnorphism leaves eonstants invariant, if LIK ts

strongiy noamal, then CL = CK. ThereÅíore a Galois extension
e{!:'TÅr/Q ta g is fifit sÅírgftgly ftermal. $ecend}y, aft exteRsieR C{x,
                                      ,eX)/Q(x, e3X) is strongly normaal by Example (2.3) but this extension

is stet Galeis. The first phenoraegeR is mfire d!$agreable thaR the

second. We can avoid these defects replacing the universal domain by

tensor products.

     Let (A, 6År be a diÅíferefttial ring aftd Åqa, 51År, (S, 52År be

differential A-algebras. Then R eAS is a differential alggbra.

Kere the d!Åíierentia} eperator 6:R QAS . R gAS ls deÅíiRed hy

putting 6(r e $) = (6r) X s + r e (6s) for r E R, s e S and

extending St aad!tively.

     Biaiynicki-.Birula adepted the following eharacterization as a
                  'deflnition.

     Proposition (2.7År. Let LIK be a

Ye assurae that Åq" as an abstract fSeld

aenerated over K and regular, (2År C                                     L
conditlons are equivalent.
                            '
     (1År L/K is strongiy ftermal.

differential

 exieasioR,

nt CK• Then

 field extenston.

 LIK ls fSnitely
the followi' ng
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     (2År The differential field Q(L QKV is generated over ioÅqL)

by eonstants, where i2 denotes the marphism L - L Q KL, x " 1 e x

fer xE L.

     This interpretation due to Btalynicki-Birula is liberated from

the universal domain but our definition ts dtfferent. Let (R, 6)

be a dliierentiai ring. We have aR embeddiRg i:ÅqR, 5} -, {Rl KT33,
            e
dldTÅr, x " nio k/'Åq6nx)Tn Åíor xE R. Here we denottt by Rt an

a' bstract ring R to emphasiae that we fgrget the differential

sperater 5. The mcrphism' i is a dl•Åíerential hgraeraerphispt, i.e.
i.(6(x)) = gfi(X)År for any xE R.'

     Lemma (2.8År. The mosphism i;R . Rt[[T3] is universal in the

iellewifig seftse. Let i:ÅqR, 6År . ÅqA![T33, d/dT) be a different!al

morphism. Then there exist$ a unique ab$tract algebra morphisrn " r:

Rk -. A such that ' f -' i= f. Here we denote by l the morphism Rk

llT" . A![U] indueed by 1:Ri . A. Namely , we have

     HomÅqRg, AÅr bt KomÅqÅqR, 6År, (A[[T]], dldTÅrÅr.

     Let now L!K be a differential field extension which is

ftaRely gefterated ever K a$ aR abstract fiela ex{ensicft. Let

CÅqKD be the category of K -algebras. We have the rnorphism i;K .

KkCCTJI. Intuitively we woula define a functor

     FL/x:CÅqKiÅr " (Sets}

bY FLIKCA) = KOraK(ÅqL, 6), ÅqAt['lrl], dldTÅr}. The right hand side

consists of, by deÅíinition, differential morphisms f:L. A[[Tll
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of which' the restriction flK coincides with the composite K4 Kk

C[T]1 -, A[[r]], where the last morphism is induced from the Kt-

algebra structure of A. Notice that if the fteld consists only of

    'constants, then the functor FL/K coincides with the functor FuK

introduced in g 1.

     The group functor GvK inS1 has also an analogue:

We wou!d define

     GLIK:C(CK) ". (Groups)

bY GLIK(A) = Aut (L ecA)1(K XcA) for Ae C(CK), where we denote

CK by C to avoid the complicated notation in the tensor produet.

                                                 ) which contains                   is defined on the. category C(CThe functor G                                                K             LIK
C(KI) as a fult subcategory. Therefore we cari speak of the

                     to C(KI År.restriction of G                L!K
     The preeise definitions of FLIK and GyK are given by using
a model of LIK. Namely let LO be a differential K-al' gebra which

is finitely generated as an abstract K-algebra such that the
                   oquotient fielq of L is L. It is easy to show that such a
dSfferential K-algebra exists. We have to 'consider pseudo-morphisms

in the sense of E.G.A. rV, S20. In our language the strongly normal

extension ts characetrized as follows.

     Propositton (2.9), Let L!K be a dtfferential fleld extenston

such that L is finitely generated over K as an abstract field. If

CL = CK, then the following conditions are equivalent.

     (1) L!K is strongly normal.

                           is a principal homogeneous spaee of the     (2År The functor F                      L/K ,
group functor GL/K restricted to C(Klt).
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    Kelchta preyed that iÅí VK is strengly xx6rmal, thefi GvK is

representable by a CK-•group scheme ef finite type. Therefare Gvxl

C(K ) is a K -group scheme of finite type. More generally we ijave

    Conjecture Åq2.;OÅr. Let LZK be a differeftt}al iield•exteRsiefi

whieh is finitely generated as an absstret fteld extension. rn this

situatiatt the group functor FL/K is representable by ex CK-group

seheme ef iinRe type ii alld only if CLICK ls algebraie.

         '
     rf the field L eonsisits only•of constsants, then the functor

GuK Cein6ides yXh dE3ti.StKL. Xe"ee R dees nvi give the cerrect

functor G = AutKL. We neecl a dei!nition.

                 t     "eÅíinition Åq2.11). Let G be a group seheme finite type over a

t!e!d k. We say that G is splSt aver k lf aU cennected

components of G are absolutely irreducible. We adopt the fQllowing

     getiRitieft {2.l2År. L6t L!K be a di#ereRtia} iield extegsieg

whieh is finitely generated over K as an abstract field extension.

rf there exi$ts a spltt CK-group scheme G of,finite type such that

tke fgectcr FvK is a principal hemogeReegs $pace ef GK , ihen ye

say that the extension LIK is autemorphic.

     As we have seefi in g i, Galais extension is automorphic. For

difterential tte!d extenslon L!K wh!ch ts finite algebraic, L!X

is autamorphic if and anly if LIK is Galois as an abstract fieldi
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extension. !t

Conversely if

is autoraorphic.

 CL

CK

  We

= CK, automorphic extension is strongly

is algebraically closed, strongly normal

 have

     Theorern (2.13). Let LIK be

CK'group scheme G. Then there is

elements of the following two sets.

     (1) CK-subgroup schemes of G

     (2) Differential subfields of

         over iM.

     We have the following result.

     Proposition

CK'group scheme

up to isomorphism

(2.

G,

.

NÅr. If

 then the

LIK

group

an

a

normal.

extension

 automorphic extension with

1:1 correspondence between

split over C               H'         .L
L such that L

 a

the

is automorphic

is an automorphic extension with a

 scheme G is uniquely determined

S3 Lie-Drach-Vessiot theory

     Let X be a complex manifold. Traditionally since Ue, a system

P of differential equation for sections of the projection pl:X X X .

X onto the flrst faetor is called a Lie pseudo-group if the

following conditions are satisfied.

     (r) The identity Idx is a solutien of P, i.e. the map x. (x,

x) is a solution of P.
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     Åq2År Let s:U -. V be afi isomerphism of tye epen sets gf X. If

s is a $olution of P, more precisely tf the map U -• UÅ~V sending
                 '                                                -1                                                  :V eU is axeU to (x, s(x)År is a solution af P, then s

solutleft ei P.

     (3) Let U, V and W be three open sets of X and s:U. V,

t:V.W isemerpklsms. !Ss and t are seluRclls ei P, theft t,s
ts a solution of P.

                                            '     Exarnples (3.1.1År. Let X m C and we consider the differemtial

equatien dyldx = 1, where x is the 'coordinate of C. Then the

general solutlon is y = x + c.
     Åq2) Let x = Pl and die eonsider the schwarzian differential

equat!en y(3)ly' t- i}Åqy"!y'}2 = e, where the diÅíferentiatien is dene

with re$pect to a inhomogeneous coordinate x of Pl. Then the
                                                        '          '      'geRera! $clutieft is y = gl ; db.

                   o     (3) Let X= C" and xl, x2 be the usual coordinate system on
C2. ye eeasider the differential equatieR D(yl, Y2ÅrlbÅqXl, X2År = 1.

We ean nat wrlte the general solution but this is a Lie pseudo-group.

     The Examples (3.1.1År aftd (3.1.2) are real!y algebraic greups

but Exarnple(3.1.3År affers a typical example of Lie pseudo-group. To

eur eRd, L!e pseudo-greup can be !nterpyeted as a i"Reter. To

explaln our definition of Lie pseudo-group, we need a preparation.

Le{ k be a ÅíieM eS characteristic e aRd ALÅqkÅr tke categery eÅí

all Artinian local k-algabras. For an integer nÅr O, we define a

groups functor gen:ALÅqkÅr "• (Greups) bY setting gn(A} me {(Yl, Y2, .•

, Yn)I Yi E AC[t!, t2,•••, tn:1 With Yi(t) E ti mod M for IS i Sn
.

,

N..
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m being'the maximal ideal of A} for Ae ob 'ALÅqk). The group law

tn gn(A) is the compossition of series, i.e. for y = (yl, y2,...,

Yn) and Z= (Zl, Z2,..., ZnÅr E gn(A), we define yz by y.z=

ÅqYiÅqZÅr, y2{zÅr,..`, yn(zÅrÅr, which is iR gfiÅqAÅr. Id = Åqtl, t2,....

tsÅr !s aR ideRttty in ern{A}, i.e. Idy = yld mo y fgr aky yE

gnÅqA}. To preve that gen(A} is a greup, it is $ufÅílcient to show

that any element of S ÅqA) has a right inverse. Let us assume
                     n
                                                            2tor stmplicity n= :. :.et y6 gl(A)• y(t) me ao + alt + a2t '•..

with ai iO mod m iÅí i pt 1, and al i1 mod m. First, !et us look
                                               'far a sertes z(t) = bo + bl(t - ao) t.b2(t - aoÅrbe +... such that

zy = t. This is dene since ii we assume zy uat, we can determine

the cGeiiieiepts bg, bl, ... E A sgecesive}y. Xcreeyer we have bi

mse med ra ii iS1, andi hli!mgd m. The $erie$ zÅqO is in um
faÅët Sn .,AtCtl]. In faet, the constant term aÅí xÅqt) is bo +
bl(-ao) + b2(-ao)2 +... which is in A sinae (-ao)q =o for a

sutfieiently large inteaer q. Similarly the eoetficient of tP oÅí

x(t) is determined M A fgr p21•
                                           '

     "eiiRi{ieR {3.2År. I.et k be a field ei eharaetertsUc' e. Let
          '
Yi, Y2, .•.,yR'  be di'Åífere"tial iftdetermiRates aver (k[[k, t2, ...,

tnl:s {dldtl, d/dt2, ...,ct/dtn}År. Let ! be an differentiai tdeal oÅí

kCtl{Y} = k[[tl, t2, ...,tnl]{yl, y2, ..•, yn}. rf a functor H:C(k)

--  ÅqSets), A. {(y:, y2, ..., yn) E gn(A)1 F(yl, y2,..., Yn) = O fOr

any FE r} is asubgroup functor of gn, the we $ay that H is a
X.Se pseudo-group funetor or sSmply a Lie fllnctor.

                           '
     eeftaRiefi {3.3År. A raerphism gi L!e pseuda-g:eug iijltcters is a
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morphism of group funetors.

     This definition is simpler than the tradttional defini.tion using

pre1engatigfts.

                                               '
     Let 'LIX be an erdinary diiterentiai Åíield exteksien yhich !s

finitely generated as qn abstract field extension. Let us assume Lme

KÅqyÅr stnce the general aase is treated wtth a little modification.
Let F(y, y', ..., yCn}År mO with F(Y) G K{Y} be the differential

eguation satisfied by y such that QF/eYCn) pt O and the degree of

F in Y(n) is the smallÅëst. Then 'tr.d.CL; Kl x n aftd {y, y', ...

   ÅqR-1År,y } is a traaseendenial base ei L!X. ffeftce if ye put y! z
 "-iÅrY , theR efSyi:KÅqyi, y2, . .., ynÅr -. K i$ a derivatie# ier 1

S i S n. We can extand the (alayi)'s to derivations of K('yÅr = L -.
                                        'L which we denote by 6i. Hence L is a differential algebra with

respect to {61, 62, ..., 6n} whci we denote tsy V. The 5is

define a derivation operators of of VtEtl: comrnuting with e/et,

i.e. dliferentiations of eoefticients. We de' noting these operatcrs

agaiR by 5i Åq1 S i S n}, YKRI is a diÅíkrentia! algebra'yith A

n {e/et, El, 52, ,..., 6ft}. As ye explaiRed in S 2, sce haye the

eanonlca! embedding i: X. " "C[TH, t being a variabie. We have a

commutative diagram
                   r. . L" [[tl]
                   ll
                   K - Kk CCt]1.

Let us deRote by ee, 6År the differential algebra ef {L"[R]], AÅr

generated by i{LÅr a"d L Similar!y ÅqX, AÅr is tke diiÅíereRtia2
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subalgebra of (L"[[tll,• A) generated by t(K) and L-.

SinCe {61, 62,..•, 6n} ktlls i(K), i(K) and Le are A-tnvariant

so that X= i(K)Le. Since the ring of constants of (V[Et]], A) is
      JKi, Cx, Cz a Ki. We have the cangntcal emheddlng "Åqf, A} . Zi

ccT, ijl, g2, ..., gft3;, {s!sT, sseg!, slsg2, ..,, efeijfi}År i"tredueeG

in g 2. Let us see what happefis ifi Example (2.3.1År.

     Example (3.3.1År. We have L= Q(x, eXÅr ua KÅqaXÅr with Ks Q(x).

 Let us take eX as• y. By the canonical rno"phi$rn i:L . LI [tt]], x
                                         .is sent to .x'+ t 'and eX to• yet iR' t.kCtt:1. In fact, i(y)

xt

i` E".e •i{-}/• :ili .tfi =iilg "/ ytn = yii.le E-}/•' tn = yet. siRce x is

gefterated by i(K}, L wRh elgt afid elS y, X=iÅqXÅr.L. Z is
                                 tgenerated ever X by iÅqyÅr = ye with S!St and elay. Th.ereiere
QÅqf) = ' Q(.xcetlÅr.

                                                         '
     Lemma (3.3). The ab$tract algebra Z is uniquely deterrnined

by L/K or ls independent of the choice of the senerator y of LIK.

                                                                      '
     Ye d.eiiRe a functer

     fLIK:Al(QÅqfiÅrÅr e (setsÅr,

by fL/K(A) = {t e Homx((X, A), ÅqAE[T, Ul, U2, ..., Vnll, {e/eT,

SlaU:, eleU2, ..., elaUn}År)l The reduction 7:X " A[[T, U]1 . A/mc[r,

Ull cotncides with t:sc -, Zk:[r, U]1 . A/rntCT, Ull} tor AE eb

AL(QÅqX)). rn other words, f                                  is the functor of all inflnitesimal                             L/K
                                                                  'cteÅíermatSeRs ef t:sc -. ÅílK'r, U3].
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     Lemma (3.4År. Vm.fKCA) # Hom.x(f , A) for any A E ob AL(Q(2h)).

                                                    '

     Since Z depends onLy on the extension LIK by Lernma (3.3),

Lemma Åq3.4} shews that the Åíuncter fL!K:AL(QÅqX#ÅrÅr . {SetsÅr is

!ndepeRdent eÅí'lhe ckeice ef the geRerater y ei L/K. Let us

analyze Examp1e Åq2.3År

                                         '
     Example (3.4.1). As we have seen ln (3.S.1År tor L/K of
Example (2.3), Q(Z) n Q(.Xtetl). We consider now t:Z . It.[[T, Ull.

                                                't.(et) = eteT by.definition." For A E,o.bALÅqQec )), a deformation f:sc

-. A[[T, U]l is determined by i(et).• Since Set/et = eV and eetfay

rc e, ye sheuld have eÅí(et}l ST = f(etÅr aftd efÅqetÅr!Sy' = e aaG
hefiee fÅqeS{ÅqÅqeS-iÅr m f{et}iÅqe5'! is ift A and is a uftit: tÅqetÅr

za ei(et) with c6 A, e-1 mod m}. Therafore SL/K(AÅr = {c E Ai c'

                                                              'es 1 mod m} for Ae ob AL(Q(Zlt År).

     Now let us define the infinitesimal counterpart of the functar

GL!K oi g 2• Let L!K 'be an ordinary dtfferentia! field

exteRsieR which is Åíini{ely gefterated as aa abstract iie}d exteRsien.

1.et XÅqyÅr =L afid we take yi, y2, ..., yft a$ abeve. Let us degete

by L- the difterentiai fieid (Li, {61, 62, ..., 6n}). We have the

eanonical embedding

     (3.5) j:L. .

                (v tcul, u2, ..., u,]1, {e/aul, a/au2, ..., a/eu,}).

Therefore we may identify S/eU. with 6. for 1SiS n. For                              i1
A e ab ALÅqLiÅr, we have the Ratura! iRclusiott LtC!esl c A{[Ul] aftd

keftee by {3.5År ÅqLi KgX,{6i, 5,-, ..., 6g}} is a" L" - algebra. ell
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the other hand, we have t c V[[t]1. We have a eanonical morphism

V . (Li[[U]1, {e/aUl, e!eU2, ..., elSUn}) and hence we have tc L-

ttt:] c (Lk [cull[[tl] = Lk c[t,u]], {elet, a/aul, e/au2, •.., s/eun})•

     Lemma (3.6). The natural differential morphism t & AC[U]] •
                                                       L-
A[[t, Ul], wQh(U).wh(U) for weS, h(U) E ACCU)] is an
injection for Ae ob ALÅqLhÅr.

     We define a group functor

     gLIK: AL(LD -, (Groups),

                                   .bY gLIK(A) = {f E Autx &vA[[ul](Z XL,AC[U]1), {elSt, SISUi, alaU2,

..., a!aUn}) lfE Id mod m, m being the maximal ideal of A} for A

E obAL(L ).

     Let us study Examp.le (2.3).

     Example (3.6.1). For L!K in Example (2.3), by Lemma(3.6) sc

QvAC[U" is isomorphic to a subalgebra of A[[t,Ul] for AE

ob AL(Lk)År which contains et by Example (3.3.1). XQ A[[U]] -
                                                      L-
automorphism f of ZQ A[[Ul] is determined by the image fÅqet).
                        L-
The argument of Exarnple (3.4.1} shows that we must have f(et) =

cet , c6A with ci1 mod m. Conversely if we put f(et) = cet

with cEA satisfying c :- 1 mod m, then f determines an
automophism. Thereofre we have gL!K(A) = (c G A l c i 1 mod m} for

A E ob AL(Ll )).
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    By L'emma (3.3), the riang t is uniquely determined and

independent of the cholce of a generator. Hence AL(Q(En)) depends

only on the extension LIK.

    Lemma (3.7). The functor gvK:AL(Q(t-)) . (Groupes) is

independent of the choice of a generator.
                                                                '

    The following question is an analogue of Conjecture Åq2.10).

     Conjecture (3.8). Is geLIK : AL(rrk) • (Groupes) a Lie functor?

     We have the canonical morphism t. t-t[T, UJ] and the

inclusion Zt[[Ul] . Sk[CT, U]]. Thereiore we have a eanonical

morphism of taking product as in Lemrna (3.6) Z X L,Zk[CUII • Sk:[T,

U]]. Similarly we have a natural morphism t Q A[[Ull -, A[[T, Ull
                                             v
of taking produet for AE ob AL(LD.

                                           '
     Lemma(3.9). The natural dlfferential morphism Z Q L,AF[U:1 '

A[[T, Ull is injective for AG obAL(Q(2 )).

     The composite E.ZQ A[[U]1 - At[t, U:] of canonical maps
                          Le
coineides wlth t:Z . tt[[T, Ul]. Let fE geL!K(A), then the
                            -1composite t. fe AC [Ul] - Z Q A[ [U]: . AC CT, U]1 is a
                 L" V
infinitesimal deformation of t, i.e. is in SLIK(A), where the last

and the second morphisms are canonical. Therefore gL/KIAL(Q(gl))
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operates 6n 5L/K.

                                        '     Lemma (3.10). The fol!owing conditions for L/K are equivalent.

     Åq1) (gL/KIAL(QÅqZt)), SLIK) is a principal homogeneous spaee.

     (2) The morphism of the operation gL!KIAL(Q(2-)X SLIK' fvK

1s surjective.

     Proposition (3.11). If the equivalent conditions of Lemma(3.8)

are satisfied, then a.L!KIAL(Q(gh)) is a Lie functor.

     The tollowing definition is consi'stent with the definitions ef

                                              'Galois extension and autorr!orphic extension.

     Definition (3.12). If LIK satisfies t.he following conditions,

we say that L/K is infinitesimally automerphic.

     Åq1) (gL/KIAL(Q(t-)), fLIK) is a principal homoxeneous space.

     (2) The group functor gL!K:AL(Lh) . (Groups) is a Lie functor•
deftned over K . Na' mely there exists a Lie functor H:AL(Kij) .

(Groups) such that HIAL(Kn). (Groups) such that HIAL(L)) is

isomorphic to gLIK.

     Conjectural Lemma (3.13). Let L/K be an ordinary differential

field extensian which is finttely generated as an abstract field

extension. Then there exists a canonical group functor H:AL(KNÅr •

(Groups} such that HIAL(V) is isomorphic to gL/K.

                             '
     Let us explain what we rnean bycondition (2) of Definition (3.12År
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and Conjectural Lemrna (3.13). Let LO be a differential K-algebra

af L such that the Kk•-algebra LO is ef finite type and L is

the quottent field of LO. rt is well-knewn and easy to show that we

ean f!nd such an LO. Let LOI = L[y!, y2,..., yra1 sueh that {yi, .

.., yn} ierm a tra"seendental base ei L/K. We can eeRstruct aR
algebra 2fi simi}&rly as Z. Nameiy, we can intrcduce derivatien

operators 6i ef Le as for L/K. We denote by Le- the
dtfferential algebra (LOh, {61, 62,..., 6n}). Let 20 be A =

{e!St, 61, 52, •.., 6n}-subal' gebra of V[[tll generated by i(LO),

LO" and XO A-subalgebra geperated by'iÅqK) and' LO'. •
                                     .We assun}e that Ki is algeb' raieally•clesed. We denete the K-scheme
Spec Le by X. Lat v:Spec K.X be a K#-ratienai peint. We may

identiÅíy y yith the Kt-mar?ghism ' v" :Le -. Ki ef Kl-algebras.

Therefore we have a tX-rnorphism Lg[[t, U]1,,-, KkCCt, Ulj. We have
therefore a morphisrn iv:scO. KnC[t,Ul]. We ean consider

deformattons of i whicth form a functor Ar.(K-) -. (Sets). As we                 v
have LO' . LOhC[Ul, U2,,.., Un]] . K4EtUl, U2,..., Unl] which we

          -..denote by v. We ean define a group Åíunctor
    gv:Le . KÅqAÅr " { 'Åí e aUt.xc gLe AKgu scO XI.,e,AKg311 f s id med

m, m being the maximal ideal eÅí A} for AG ob ALÅqKl). Here
AhtCUI1 is an LO'-algebra by LO -!-, KI{{Ul; -, AttU]1.

    What preci'sely Conjectural Lemma (3.13.1) means is the

followlng. Sinee AL(Lk) is a subcategory of AL(KD, we can

speak ot restrctlon.

    Ce"jectural Lemraa (3.;3.1År. There exists a fieR-empty
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Zarlski•-Open set U of X such that Yv:LO .Kk is independent of

the K-valued point v and gv:LO ., KJ AL(LN) is canontca!ly

isemerphic te ge               LlK'

    The condi.tion (2) of Definitton (3.14) means that the conelusion

of Cenjeetural Lemma (3.13.1År is satisfied.

    ;.et gs study Examp}e Åq2.3.1}.

    Example (3.14). By (3.".1) and (3.ff.1), Q(x, eX)!Q(x) is

ififikStesimally autfimerphie.

    'rhe argurnents used to study Example Åq2.3.1) show$ the following.

     Prgpgsitiaft Åq3.;5År. Let L!g be a stroRgly ftermal exteRsion.

Let G be the Galois group which is a group scheme Qver CK. Then
LIK is infinite$imally autornorphic and geLIK(A) = (w G G(A)lw ms 1

mcd m, m being the maximai ideral eÅí A} Åíor A E ob AL(L4}.

     We expect a similar result for an automophic extension and hence'

the proof is related with Conjecture (2.iO).

                                                               '
     Conjecture (3.17År. The $ame coftclusien as Preposltion Åq3.leÅr

holds also for an automorphie extension.

     Our iiRal re$uR is yet aeR3ectural.

     Conjenctural Theorem (3.12). Let L!K be an infinitesimally
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automorphic extension ana N an intermediate fietd between L and

K sueh that M!K is infinitesimally automorphie. Then there

exists a surjective rnorphism of Lie pseudo-•group functors gL/K -,

g XIK'
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