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o Introduction
Let R be a noetherian commutative ring with unit, Tn, n and t be positive
integers witht S m,n, and S be a polynomial ring R[xij•]isism with mn
                                                  1SJ' -Åqn
variables. We call the ideal Jt of S generated by t-minors of the matrix (xij)

a determinantal ideaL M. Hochster and J. A. Eagon proved that It is perfect

(i.e., pds S/It = gradeJt) of codimension (m -t+ 1)(n -t+ 1) [12]. The
quotient algebra S/It is Cohen-Macaulay when R is Cohen-Macaulay. They
also pToved that S/It is a normal domain when R is a normal domain. So
if R = Z, the ring of rational integers, then S/Jt is Z-flat, since it is torsion

free. With letting each xij• of degree one, S is a graded R-algebra and It is

homogeneous.
   Finding a (graded) minimal free resolution of SIIt has long been a
problem in commutative ring theory (we say that a finite free graded S-
complex F is minimal when the boundary map of F Xs K is zero, where
K is the S-module SIIi). If we get a minimal free resolution F of SIIt
when R = Z, then RQz F is a minimal free resolution of RXz S/Jt. Such a
resolution is constructed explicitly in the case t = 1 (the Koszul complex),

t = min(m, n) (the Eagon-Northcott complex) [8], and t = min(m,n) - 1
(the Akin-Buchsbaum-Weyman complex) [2].
   A. Lascoux constructed the minimal free resolution of S/It (for any m,
n and t) over a field of characteristic zero explicitly, using representations

of general linear groups [20]. In his proof, the complete reducibility of
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po}ynomial represektations ef general beear greups and the Bott's theorem
were important. But both of them are false when we consider the case
charaÅëteristic pu. After his result, Akin, Bpchsbaum, and Weyman devel-
eped ckaraeteristie-free repre3entatien theery cf geReraHinear groups akd
constructed the A-B-W resolution.
   Iri section 1, we review the results from characteristic-free representation

theory. The main pgrpo$e ef tkis sectieR is tg introduce Sckgr ccmp}exes.
In section 2, we review the Lascoux's approach in the version of (partially)

appliable to the case characteristic p. The most important tools are the
Bott's thecrem and the Kempf's vaRishing tkeerem. We also review some
ring-theoretical properties of S/lt. In section 3, we review three impor-
tant characteristic-free minimal free resolutions: Koszul complexes, Eagon-

NoTthcott cgmplexes, aRd Akin-Buchsbaum-WeymaR eomplexes. SectioR 4
mainly consists of a summary of our original result$ on the syzygies of S/lt.

In section 5, we briefly mention on PfaMan ideals and ideals generated by
minors of symmetric matrices.

1 Schur complexes
Schur modules, Weyl modules, and Schur complexe$ are the most important
objects in the characteristic-free representation theorey of general linear

groups.
   Let V be a free R-module of rank n. We denote the tensor (resp.
symmetric, exterior) algebra by:

          Tv : (ED Tiv sv :esiv Av= (D Aiv
                iÅro iÅro iÅro
Let g : W . V be a map of fuite free R-modules. We defue Sg d-.-ef

SYQAW. The a}gebra Sg is graded with the total grading, and we denote
the degree i component of Sg by Sig. This algebra is a chain complex with
the Koszu} boundary 0 giveR by

                              s-         e(a x wl A • - • A tv,) me 2(--1)iww1or ` gwi x tvl • -?• • w,.

                             i=1
Since the boundary preserves degTee, Sig is a subcomplex ef Sg for any
i År. O. It is wel}-known that Sg is a differential algebra with this structure.
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So the iterated multiplication

                 (*) Tig= gX•••Xg -Z )ke Sig

is a chain map (note that g : W . V is a chain complex of length one!).
We deRote the graded dual ef Sg' by Ag. N&mely, we defue Aig dif

(Sig")", aRd Asp == ei A' g. By defuitioR, Ag is a graded chain complex,
and we have A'g = (Sig")" = (g")' = g. Craking the dual of (*) for the
map g', we obtain a chain map

               A: Aig- (g" X•••X g")" at Tig•

For a chain complex A and n ) O, the symmetric group G. acts on T.A :
AQ". The action of cr G es. is given by

    e(ai x • • • x a.) me (-1)ÅíiÅqseiÅrej deg("iÅrdesl"jÅra...ii x • • • x a.-i..

   Let A = (Ai,...,A,) be a paytitieR ef n. 'The elemeRt 6(A) E S. is
defined as follows. Four example, if A = (5,3,2), then a(A) is the unique
permutation which maps the Young diagram Y to Y':

                  12 345 1479 10
              y,. 67 8 =yi=258
                  910 36
so that a(A)(2) = 4 and crÅqA)(6) = IC. We doll't give the precise defikition
here. Fer a partitieR A rc ()ti,...,A,), t'ke irgnspese X =: (X!,...,Xt) cf A

i$ the partitioR givea by X{ : #{3' I A,• År- i}. Fer example, if A == (5,3,2) as

above, then X = (3,3, 2, 1,1). The Schur map

        dA , A,g denyd AAi gx•••AAtg. Sxg d&f Ss,gXSx,g

is defined to be the composite map

AAi gx • • •AAs sp -Aftl2:::SeSXA TA, go x • •• x TA,sc) = T.g U(A)

                    T.g=Tx,gx••-Tx,g-23Xat::f!2neXM Sx,gxt••xSx,g.

We define the Schur cemplex ef g with respect te the partitioR A to be the
image ef dA. This definition eontains two important definitions on modules.
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If W me O, then LAg depends only•on the module iV, and eoncentrated in
degree zero. We define the Schur module LAV of V with respect to the
partkion A to be the degree zero eemponeRt of Lx(e - V). ff V = e,
then LAgo is concentr&ted in degree n. We define the Weyl module KAV
of W'with respect to the partition A to be the degree n component of
Lx(W - O). If R is a field of characteristic zero, and if Xi S rankW, then

KxV is an irredllcible polynomiatl representation of GL(W). If R centains
the rationais, then KxW ! LAI?V as a GL(W)-module, but not in general.

Theerem 1.1 (AkiB-Bxchsbaum-Weymak I31) The eemplex LAg is a
finite free complex (i.e., a complex offinite length with its each term finite

.free). If S is an R-algebra, then there is a natural isoTnorphism LA(S XR
gp) ! S &R Lisp•

   These notion can be naturaily extended to the case base scheme is not
aMRe. N&mely, instead efusiRg the base ring R, we fix a base scheme X
and consider a map of vector bundles g : W . V. Then we can define the
Scure complex hg of g, and it is a finite complex of vector bundles. By
the theorem, LA is compatible with taking the inverse image with respect
to a morphism ef schemes. The following results are fuudamental in the
characteristic-free representation theory.

Theerem 1.2 (Akik-Bxchsbaum-Weyman I31) LetX 5e a sckeme gnd
o . W -!2-År V -!Z. U --År O be an exact seguence of vector bundles on .X.

Then there is a guasi-isamorphism KAVV . LAg, and there is a guasi- '
isemerphism L}Åë . LxU fer any pgrtitien A.

Theorem 1.3 (Akin-Buchsbaum-Weyman [3], Boffi [41) LetX be a
scgeme, g : W . V 5e a mgp of vecigr 5undles en X, gndA 5e g pgrtiiien.
Then fork l) O, the degreek component ofLAg admits afiltration of bundies
whose associated graded ob2'ect is eep,. c:,.LpVxK.W, where p and u runs
gll partitiens and c)y is tke Littleweed-Richargsen ceeffcient.

Theorem 1.4 ([11]) LetX be a scheme, g: VV' ny V be a map of vector
bundles, and E a vecter buRdle on X. Then, fer any k ) e, the symmetric
pewer S(gXE) admits a filtratien ef cefnplexes ef bundies whose asseciated

graded obJ'ect is eALAgXLAE, where A runs over allpartitions ofk.
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Note that LA is a functor from the category of maps of bundles to the
category of complexe$ of bundles. Namely, if or : g . ab is a chain
map (regarding the maps g and cb as complexes of length one), there is a
functorial inap LAor : LAse . LAgb. If A is a $ingle-rowed partition (n),
theR we have LA : A" by definition. If A= (1,1,...,1) (n times 1), then
we have h == Sn.

2 Geometric background
Though our approach is (purely) algebraic (or combinatorial), there is some

indispencable geometrie background about this topie mainly due to A. Las-
coux [20]. In this section the base ring R = K is a field. Let V and W be
vector spaces over K of dimensiop, n} and n respeetively. The symmetric a}-
gebra S = S(VxW) can be ideRtified with the polynomial ring K[x{j]. We
set X = SpecS. The geReric matrix (ici3•) cerre$ponds to the universal map

of bgndles u : V - W" eR X = Hgm(V, W"). Thlls, the deter?}}ingRtal
varieiy Y = Spec Sllt is the zero of the map Atu : A`Y . A` W", where
It is the determinantal ideal generated bytÅ~t minors of (xi,'). We denote
the grassmanian of (t-1)-quotients of V by G and we set 0 dEf X Å~KG. We

denote the universal (t - 1)-quotient bundle and the universal (m - t + 1)-

subbundle on G by Q and R, respectively. There is a tautological exaÅët

sequence
                      o - R -t.v 2.Q . O

                            t -voR G. The cgmpesite map R ;eV f-År W"-,ell G determines & cgsectioR
s : RXW . ee. We dexete the zerg gf s by Z. SiRce u is a geReric map,
it is easy te see that Z is nen-siRgular variety, and the Koszu} cemplex

... -At(RXW).A i---1 (RQW) .•••.Rop W, 4Oo - oz .o

is a resolution of Oz. Geometrically, Z consist$ of the points (th,L) ff
X Å~ G = e such that cb : V - W" factors through the quotient L of
V. The ramk of such amap th is at most (t -- 1), so the projection map
sc : G . X induces amap rr : Z - Y. ff rank cb me t--1, theR (ip, L) E Z if
and oR}y if L = Im ab. So it is easy to see that ff is a biratioRal isc}mofphism.

Since the ccdimeRsiox ef Z in G i$ (m --t+1)•n, we have dim Z = dimY me
mn -- (fn -t + 1)(n -- t + 1). So we caR recover (the special case of) the
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resnit$ en normality of Hochster akd EagoR mentioRed in section e, as
follow$. CJearly, Y is a variety of dimension mn - (m -t + 1)(n •-- t + 1).

It is not so diracult to show that the singular locus of Y is defined by It-.i.

Since the cedimeRsieR of Spec S!It.i in Y is m + n - 2t + 3 ) 2 (uRless
t = 1!), we have Y is normal.

   We shall consider a double complex (a complex of Oe•-complexes)

        B.' :o. sh(pxw) -eL+••• SÅr Si(px w) - ots -- o

where h = (m - t + 1) • n, and the bouRdary d ; S(p X W) m S({? X W) X
A(V X W) - S(p X W) is ids(Qxvv) X 0', where S' is the Koszul boundary
derived from the cosection u# : VX W . O& obtained by u. By the
theorexx} 1.2, Si(pXW) is a eohemological resolutioR of Ai(RXW). IR fact,

A4(RX W) - Bl i a resolntion (of ee-complexes) (see for exampie, (11,
chapter n)•

Prgpositie;i 2.1 With the Retatien Es abeve, each term ef B: is r-escyclic
resolution of Oz. The complex rr.B: is a finite free complex.

   The proof depeR(ls eR the fo}lowiRg theoTem &nd the resu}ts oR the
characteristic-free repre$entation theorey $tated in section 1.

Theorem 2.2 (Kempf, [14]) Let T:e.X andQ be as above. Fera
partitien A and'i År- e, we kave

             Rt x* L2Q 2 ( 6"V [ilthA.i fiiig.a)"d i --- O) .

In the ,first case, T.LAp : vr.LA7r"V = LAV . "LA([2 = LAV is the identity

mgP•

   Since (cohomologically graded) all degree positive parts of B: are zero,

we have R'T.Oz = O. On the other hand, since Tlz : Z . Y is proper
biratioxxal and Y Rermal, we have kez = Oy. Now we caR recover the
results on Cohen-Macaulay property of Y due to Hochster and Eagon, using
the results of Kempf (15]. Angther consequence of the proposition is that
x.BJ i's a free resolutien of ey.
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Lemma 2.3 Let P=•••. Pi .•••. Po =S --ÅÄ S/It -. O be the
graded minimal free resolution of S/It. Then we have isomorphisms

           pi "=": sxTorf•(K, SII,)z e H`(C,Ak(RxW))
                                 k-l=i

as S-modules. if the characteristic of the base field K is O, P admits a
unigue GL(V) Å~ GL(W)-equivariant structure, and these isomorphisms are
GL(V) Å~ GL(W)-eguivart'ant.

Proof. The first isomorphism is clear. By the preceeding remark, we have
Ipt E• (K S/It) =N H{(K Xs T.B:). Since the boundary d : Si(p X VV) .
Si-i(p X W) vanishes after tensored with K, the homology Hi(K Xs T.B:)
is the direct sum ek.i.i Hi(T:Sk(p X VV)), where by Sk(p X VV) we mean
the complex on G, and T' : G . SpecK is the projection. Hence, we have

SxHi(Kxs T.B:) !!! e SxHi(T:Sk(pxW))
                   k-l=i
                    or- e Hi(SX T; Sk (p X VV)) Z O Hi(T. Sk (p x I7V)).

So the first assertion follows from the fact Sk(pXVV) is an acyclic resolution

of At(RX VV). The last assertion is a consequence of the complete reducibil-

ity of the polynomial representations of GL(V) x GL(VV). Q.E.D.

   By Theorem 1.4, the exact sequence O . Ak(RXW) . Sk (pXVV) . O
admits a filtration whose associated object is

            O.eK,RXL,W.eL,pXL,W-O,
                 xx
where A runs over al1 partitions of k (if the characteristic of K is zero, then

Ak(RxW) decomposes into the direct sum eA KARXLAW)). Hence, there
is a spectral sequence whose Eid-terms are of the form Hi(G, KxR) X LAi7V,
and converges to Hi(a, Ak(R x w)).

   lf the characteristic K is zero, then we have

            Ht(e, Ak(R x VV)) or e Hi(G, K,R) x L,W.

                                A
The cohomology in the right hand side is calculated by the Bott's theorem.
To state the Bott's theorem (in the special form for our need), we need
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seme preparation from cembiRaterics. For a partitioll A -- (Ai, . . . , A,), we

define ds(A) d----"f ggE{il Ai ) i} and call it the Durfee sguare numberofA. For

& positive integer t, we defiRe A(t) d--ef (Ai+t-1, . . . , Ad+t -- 1, Ad{.i, • •• , As),

where d= ds(A). For exampie, if A = (5,4,2) and t = 3, then ds(A) = 2
and X(t) = (7, 6, 2).

Theorem 2.4 (Bett) lf ihe characieristie ef tke base field K is zere, iheR

we have

Hi(G• KxR) = ( 8"(`'V [g,g.--,.d.S(.3) ' (` ' i)} A = #(t) for some ps)

Using this theorem, we have:

Theorem 2.5 (Lascoux, [20]) If the characteristic of the base field K is
zero, then the ith term of the minimalfree resolution of S/Xt is isomorphic

ie ee.Lg(t)VX L.(t)W, wkere the sum is taken ever gll partitieRs efi

   lf pa is a partition of (m •-t+1)(n-t+1), then both Lil(t)V and ll,(t)W
are nen-zero if and on}y if # = (n - t + 1, . ..,n -t + 1) ((m -- t + 1)-times

n-t+1) whieh we denete (n-t+IM-`+i). For this pa, we have d dgf ds(ps) =

min(m, n), P(t) == (md,(m •- t + 1)"-d), and pt(t) = (nd, (n - t + 1)m-d).

HeRce, we have S/lt is of type one if and oR}y ift =1 or m= n. This
result is first proved by T. SvaRes {23]. Note that this result remains true for

ground field of positive characteristic, since Gorenstein property of graded
Cohen-Macaulay domain depends only on its Poincar6 seTies (see [22b, and
it does net Åqlepend eR charecteristic for SIIt.

3 E-N and A-B-W re$olution
In this section, we shall try to make a brief sketch of three important
cha!acteristic-firee minima} free reso}utioRs of SIIt for specia} va}ues of t,

Tn, and n. Though R is an arbitrary noetherian commutative ring, we shall
use the notation in section 2. By abuse of notation, we denote S X V and
S X W simply by V and W, respective}y. All tensor preducts are over
S unless spectaed ctherwise. Without loss of generality, we may assume
that m S n. The first one is, the Koszul complex for t : 1. Namely,
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Su* - S/Ii me K -. O is the minimal free resolution of S/Ii, where
u# : V X VV . S is a natural map derived from the generic map u.
   For i År. O, there is a GL(W)-isomorphism wi : A' W'xA" MZ . A""-' W
given by

      Wi(Yal A ' ' ' A Yai X Xi A ' ' ' A Xn) -"""": (-1)eXa(i+1) A ' " ' A Xan

for a E G., where xi,...,xn is a basis of W, yi,...,y. is the dual basis.
Since (minor) determiRaRts are alternative about rows and celumns, there
is a well-defued map ei : A' VX A' W . S giyek by

            ipi(Vl A'''A vi (2iÅr wi A•'• wi) me det(v. Q wrs).

It is easy to see that the image of ipt is It.

   The secoRd eRe is fcr the case t = miR(m, n) = m, the EagoR-Northcett
complex. We shall describe this complex in the version re-construeted by
Buchsbaum-Eisenbud (7]. See also [8] and [5]. The key lemma is:

Lemma 3.1 Let A 5e a noetherian Ting, M be a finitely generated A-
medule, gng

                E:O. Ek .•••. El - Eo
be a finite free complex ofA-modules. ij for every prime idealp c A with
depth(p,M) Åq k the localized ceinplex (M opA E), is exact, then M QA E is

exact.

   For the proof of this lemma, we refer the reader to (6]

Theorem 3.2 (Eagon-Northcott complex) Ift = m, then the complex

           E : Am vx An'-mux An w -t-År s. sll. .e

is the minimal free resolution of S/I., where u : V . W' is the generic

map, and

f: Ei = Amvx IAn-m u],x A#w= Amvx An-m w* x An w

                                        . Eo me S= S(V op W)

is the compesite map ipmo id X wn.m.
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Preef. First note that

                    Ei `5 Eo . S/lm -dÅr O

is exact by the preceeding remark. We fix the bases xi,..•,xn and 4i,.••,xm
of W and V respectively, and denote the dual bases yi,..., y. of VV". The
compesite map E2 $' Ei 4Eg is zero. IR fact, fer 1 S i Åq.ww m aRd e E S.,

we have

    f O d2(4i A ' ' ' A 4m X 4i X Yei A '' ' A Ycr(n-m--1) op Xi (Eb ' ' " Xn)

 == Åí: =i(C{ X Xj)f(& A''' A Em X Yj A Yal A''' A Ye(n-m-" X Xi X ' '' Xn)
 = XkM.....+;(-1)k+i(ei X x.(.-..-i+k)) • det(e. X xa(n-m-i+p))pxk = O-

HeRce, E is certainly a comp}ex. Irhe minima3ity is cleaT by defiRitieR. Se
it suMces to show the acyclicity ef A"-Mu. By the }emma above, we may
localize at a prime p with depth(p, S) S n -- m - 1. Since dim S/It me mn ---

(n-m+1) and S/It is Cohen-Macaulay, we have depth(Jt, S) = n --- m+1.
HeRee, It is Bot coRtained in p, and up is a split injection. By Theorem 1.2,

[A"-M u], ny A"wwM up is acyclic as desired. Q.E•D•

Remark 3.3 The coTnplex A"-Mu is of the form

0 -' Dn--mV - Dn--m--1 X I?V' . ''' - DiVX A"-M--' W" .
       Di.b!V x An-Mewi+! W* • • • . V x An-m-1 w* . An-m w* . e

where DiV d=ef (SiV")" = K(i)V which is called the ith divided power of

V. Taking the duai of the mgliiplicgtign map tT{V" - SiV', we ebtain g
inclusion DiV pt TiV. Jn fact, DiV is the invariance (TiV)ei under the
natural action of Si on TiV. The construction above is extended to the case
bgse scheme is neR-gffne.

   The third one is for the case m == t + 1, the Akin-Buchsbaum-Weyman
complex [2]. The coRstructioR of this comp}ex is toe comp}icated to describe

in this short survay. Nete that the following argument without any preef
is a consequenÅëe of this complicated construction, but not (so far) proved
direct}y,

   Consider the deuble complex x.B: appe&red in section 2 again. First
taking the homology of T.Sk(p X W), we have a spectral sequence whose
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Erterms are ef the ferm Hi(G,Ak(Rx W)) which cexverges te S!It. As
a result, all Ei-terms are S-free in this case. So we obtain finite free S-

cemp}exes

x:•t•.Xi =H`wwi(G, A`"t-i(Rxw)) •sc' )• '
                             xi.: = Htwi(G, Ai+t"2(R x w)) . • • •

aRd

y , . . . . Yi --•.-.- H2(t--i)(G, Ai+2(t--i)(R op w)) .fSl,,,

                        Yi.i : H2(t-i)((i f, Ai'i +2(t-i)(R x w)) . • - •

whose hemolegies are E2-te!rrms ef this $pectfal seqxeRce. The fteR-vai}ishiRg
Erterms are Xi's for i ptÅr 1, Yi's for i År-. 4, and S me HO(e,AO(Rx VV)).

The Ron-vanishiRg E2-terms are H4(Y) or l,2" or H3(X), HKX) cr- It, aRd S.

Using the comparison theorem, we obtain a chain map f : Y - X whose
mapping cone C(f) is a resolution of It.
   Similarly to Eagek-Northcett complex, the minimal free resolutiok of
Xt2+i is isomorphic to L(.ew.,...)u. Hence, y as L(.dv.,.-.)u. The complex
X is coRstrueted cencrete}y, but f is ket giveR explicitely in I2].

Remark 3.4 Let X' be an algebraic K-scheme, V' and W' be vectar bun-
dies of rank m andn resptectively en X', andg: V' . W" 5e a map of
bundles. We denote the zero ofAtg byY'. The map ep determines asection
s(g) : X' - .2 ggf Hom(V', Wi"). Let u' : V' - W'" 5e the generic n;ap

on X. The section s(g) is determined by s(ep)'(u') = g. We denote the
zere gfAtg by V-. Let P 5e g reselxiien gfOg of#niie ccmplex ef lecgliy

free sheaves on X (the construction of T.B: generalizes to this case and
gives an example. ift = min(m,n), then the Eagon-2Verthcett cemplex is
aise an exampie]. ft heids thai s(g)"P is a resoiutien of Oy, if and oniy if

depth(Y',X') = (m ---t+1)(n --t+1) (the guestion is local, so we may
gssgme thgt ali sckemes are gfiine, and V' and W' are free medtties. In
th is cas e, pds S/ It x (m -t + 1)(n - t + 1) (S = r(X, Ox )?. .IVow use
Lemma 3.1 fer M nc s(g).exi).
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4 Calculations of the Betti numbers

We have seen that there exist$ a minimal free resolution ift = 1 ort År
mixx(m, n)--1. We shaR cgRsider Lhe remaiRing cases: 2 i!tr t }t miR(m, n)-2.

'The q'uestieR is, whether there is aRy miRimal free rosolutioRs ef S/It ever

any commutative ring R or not. By the general theory of resolutions,
the answer is yes when R is a field, since S/It is graded. To consider
the case R general, it suMce$ to consider the case R= Z, the ring of
integers, as meRtiened in sectieR g. FeT this preblem, the Betti xllmbers
Pl d--"f dimK Tori (K, SIIt) plays important roie, where p is a prime number

or zero, i -År O, and R = K is a base field of characteristic p. Since P,P• is the

rank of the i`h Åëomponent of the minimal free resolution of S/It over K, Pi

mu$i net depends on p for any i if there exists a minimal free resolutien F
over Z. The ceRverse is true.
   We define P,P•,,• d-e-f dimK [XlazaiS(K, SIIt)],, for i, 7' År-. O, wheTe O,• means the

degree j component.

PrepesitioR 4.1 (Roberts f211) The fellewiRgs gre eguiualent.

1 There exists a graded minimal free resolution ef Sllt over any commu-
     tative ring R.

2 The numbers B,P•"• are independent of the characteristic p for any nen-

     negative iniegersiggd j'. ' "
2' The Betti numbers of S/It is independent of the base field.

3 if the base ring R is Z, then for anyiÅr.- O, Tor,S• (S/Ii,S/It) is Z-free.

   Clearly, Sg --- 1 is indepeadext gf p. The fi]est Betti nllmbef Pr is the

Rumber of minimal generators of It. It is the nllmber of t-minors of the
generic matrix (xiJb) and independent of p, since distinÅët t-minors doesn't

have any common monomial with non-zero coeMcient and are linearly in-
dependent over K. The second Betti numbeT Bf is the number of minimal
geReraters ef the relatieR module ef Ii.
   Let M be the relation module of SIJt, namely, the kernel of the natural
map ipt : AtVxsAtW. It. We fix thebases 4i ...4. ofV and xi,•••,xn
of J'V. For sequence of integers J ---- (i(1),...,i(t+1)) with1 .Åq- i(1),...,i(t+

- m-
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1) S rn and J = G(1),...,7'(t+l)) with 1 S 2'(1),...,7'(t+1) S n, we
define:

           t+1y.},(I, J) d=ef Åí(-1)iiiei(i) & x,•g) • 6i(,) A • • • A 4i(,") X x,•(o A • •e• • Ax,•(,.i)

           lnX

        -2 (-1)`+t+ieiÅqtg) x x,•e) • C"År A • • • A ei(t) X xj•"År A • • :• • Axj•(t")

         j=1

and

re12(T,,J)d-e--f           :(--1)i+iei(o x x,•(i) • 4,(2) A - • • A Ci(t+i) X xi•(i) A • • :• - Axj(t+i)

           lmei

   -(-1)t Z(-1)iÅÄ`'ieiÅqi) x x,•(tK)a 4i") A • •: 4 • AeiÅqtÅÄo & x3•g) A • • • A xj'(t)•

         i=1

SiRce 45t(reli(I, jr)) (resp. ipt(Te}2(J, ,J))) is the differeRce ef the expantioR

of the same determiiiant det(4i(.) X x,•(s)) wkh re$pect te the first row aRd

the 1ast row (resp. the first row and the last column), it i$ equal to zero.
Hence, reli(I, J) and rel2(I, J) are relations of It (i.e., elements of M).

Theorem 4.2 The set

B dEf {ureli(I, J) li(1) Åq ••• Åq i(t), i(1) S i(t + 1), 2'(1) Åq ''' Åq 3'(t + 1)}

     U{rel2(X, J) i i(1) Åq ••• Åq i(t + 1), 7"(1) Åq •-• Åq 1'(t), d(1) sl j(t + 1)}

minimally generates the relatien module M ef Jt. In particular, we have
62P,j --- e fer.]' ptt+. 1 and 62',,n ur SEB. Se 3,' -- #B dees net depend en

the charaeteristic p.

   For the precise, we refer tke re&der to i17]. See alse I9, Remark 2.21.

   By the proof of Lemma 2.3, P,P•,j i calculated by Hj"i(G, A"(RXW)) =
Hi(HO(G, Sj(pXW))). In fact, the complex HO(G, Sj(pXW)) is isomorphic
te the degree 1' compoReRt gf

                Sl.ll, x, S(id...,,) X S/I, Q, Su#.

So this iRformatieR gives us Rething Rew. But the cemplex Sj(pX W)
admits a filtration of Pacyclic eomplexes whose associated graded object

-  1gg -
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is eA LAp X LA;?V, the sum is taken over partitions of i Hence, we obtain
some filtration {Mt'A} of S/Itxs S,•(idvQvv) whose associated graded object

is OA HO(G,LAp) X LAW. This filtration is constructed explicitely i [10,
section 2], using the characteristic-free representation theorey. We shall
discuss more about the complex HO(G, LAp). Note that the homologies of
HO(G, LAp) is cohomologies of KAR. So this is a characteristic p problem

of the Bott's theorem. The Bott's theorem does not ho}d, as below. To
describe this complex without grassmanian, we define t-Schur complexes.
   Let X be a scheme, and g : F . E be a map of bundles on X. For
k ) O and t ) O, we denote the truncated complex

     O . Dk-tF X At E . Dk.t-IF x At+1 E - . . . . Ak .E] --, o

of Akg by Ak'` go. For a partition A, we define Lt,Ag to be the image of
AAi,tgxAA2gx••• by the Schur map dA : AA go . LAso and call it the
t-Schur complex of g with respect to the partition A. This complex is a
complex of vector bundles, and a subcomplex of LAg. Using the Kempf van-
ishing theorem (theorem 2.2), it is not so diMcult to show that HO(G, LAp)
is isom.rphic to Z,,Aidv d---ef LAidv/L,,Aidv.

   Passing through some combinatorial argument, we obtained the follow-
ing result.

Proposition 4.3 Let K be a field, t ) 1, i, J' År- O, V be a vector space over

K with dimK V - t Åq-- 2, and A be a pa rtition of i if dimK HIi (Lt,Aidv) is

different from the valae forK = 9, then char(K) = 2, t ) 2, dimV-t = 2,
and A = (Ai, 2). In th is cas e, it ho lds i = J' -- t or i = 2' -t + 1.

   So the Ei-terms of the spectral sequence associated with the filtration
{Mt'A} of SIIt Qs Sidv depend on characteristic. But this dependence is
resolved in the E2-terrns. Hence, we have:

Theorem 4.4 ijt=m-2, then the Betti numbers P,P• of SIIt is indepen-
dent of the characteristic. Hence, there exists a minimal free resolution of

SIIt over any commuiative ring R.

   For the details, we refer the reader to [10, section 3]. This theorem is

first proved for the case n = m, using the Gorenstein property [11]. We
don't know any explicit form of the minimal free resolution, even in the case

-  1ee -

14



n =: m. On the other hand, the homologies of Xt,Aidv varies in quite caotic

way, depending on the Åëharacteristic. This really effects on the syzygies of
S/Jt, when t -Åq m --- 3.

Theorem 4.5 If 2 S t S m -- 3, then the third Betti number B3' of S/Xt
depends on characteristic. Mere preciseiy, B3P År fl30 if (and eRly if] p= 3.

Se Shere is Rg minimaljfiree resglutieR of SIJt everZ in thi3 cgse.

   For the precise, we refer the reader to {9].

5 PfaMan
matrices

ideals and    .mlnors of symmetric

The problem of syzygies of PfaMan ideals and the ideals generated by mi-
ners of symmet:ic manices is closely related to the prob}em of $yzygies of
determiRaRtal ideais.
   Let A = (aii•) be a akernative 2m x 2m matrix ever a cemmntative ring
R. Namely, aij '-'-' --a3•i for 1S i, 7' Åq- 2m aRd a" me e for 1Si Åq- 2m (the

second condition is indispensable if 2 is a zerordivisor in R!). We define the

Pfafiian of A, denoted by pf(A), by

           m!1. 2m [.;t.('-"1)eaa(i)a(2)'''ac(2m-i)cr(2m)] E R•

Note that in the sum in the bracket, the same ierms appear (m!•2M) times,
aRd this defuiiigR is effective (bgt awkward) fer agy.R. It helds that
det(A) i= pf(A)2. 0k the ether h&gd, det(A) = e fer asy &}tets&tive n x n

matrix with odd n.
   Now consider a noetherian commutative ring R and the polynomial
ring S= R[xiJ']isiÅqjÅqewn for n -År. 1. For 1 -Åq t -Åq [n/2], we define the PfaMan

ideal Pf2t by the ideal of S generated by pf(xi(.)i(p))is.s2t for aJl indices

J =(ii Åq•••Åq i2t), where xj•i d=ef -xiJ• for iÅqd and xii d---ef O. Note that

Y = Spec SIPf2t is the zero of A2t u# : A2` V. A2" V", where V=SxVo
is a raRk n free module over S, u# : V - V" is the map associated
with the geReric form u : A2 V - S oR X rc SpecS = Spec S(A2 Ve) =:
Hom(A2 Vg,R). It is kuewR that SIPf2t is R-ftee, aud is GereRsteiR =er-

mal demain if so is R. The resnit eR characteristic zeTe case is obtaiRed by

-  13e -
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J6zefiak-Pragacz-Weyman I13]. They also constructed the minimal free res-
olution of the ideals generated by the minors of generic symmetric matrices
(ibid.).

Theorem 5.1 (l19]) Let K = R be a field. We set p = char(K) if
char(K) År O and p me oo if char(K) = e. With the netaiien gs a5ove, the
relatieR meduie gfPf2t is genergted 5y the linear relatiens wken 2p År n-2t.
in partieglar, ihe secend Betii num5er ef SIPf2t is indepeRdent efp when
n- 2t Åq 3.

   On the other hand, the answer for the question of the existence of the
minimal free resolutions of S/Pf2t is negative in general.

Theorem 5.2 ([18]) With the notation as above, the relation module
Pf2t is net generated by the linegr relaiions when p me 2, t = 2, and n ==
TheTe is ne mini?nalfree reselgtieBs gf SIPf2t ever Z in thi3 egse.

of
8.

   Fer more abeut this problem, see {l9], {181, and refereRces there in.

   Let n ) t ) 1. Consider the polynomial ring S == RIxijhsis,'-Åqn• We
denote by Jt the ideals of S generated by t-minors of the generic symmetric
matrix (xi,•), where xj•i d&f xi,• for i Åq i

Theorem 5.3 ([161) With the notation as above, the relation module of Jt
is generated by the linear relations. In particular, the second Betti number
ef S/Jt is independent ef the chgyucieristic.

   Tke pTeblem of the existeRc`e' ef minimal ftee reselutieRs ef SIJt ever Z
is stM open. For mere abeut this pTeblem, see l16] and the references there
in.
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