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0 Introduction

Let R be a noetherian commutative ring with unit, m, n and ¢ be positive
integers with t < m,n, and S be a polynomial ring R{z;;]1 <i < m with mn
1<3<n
variables. We call the ideal I; of S generated by {-minors of t-hje—ma.trix (2i;)
a determinantal ideal. M. Hochster and J. A. Eagon proved that I; is perfect
(i.e., pdg S/I, = gradeI,) of codimension (m —t + 1)(n — ¢ + 1) [12]. The
quotient algebra S/I; is Cohen-Macaulay when R is Cohen-Macaulay. They
also proved that S/I; is a normal domain when R is a normal domain. So
if R =1, the ring of rational integers, then S/I, is Z-flat, since it is torsion
free. With letting each z;; of degree one, S is a graded R-algebra and I, is
homogeneous.

Finding a (graded) minimal free resolution of S/I; has long been a
problem in commutative ring theory (we say that a finite free graded S-
complex F is minimal when the boundary map of F ®s K is zero, where
K is the S-module S/I;). If we get a minimal free resolution F of S/I;
when R = Z, then R ®; F is a minimal free resolution of R ®z S/I;. Such a
resolution is constructed explicitly in the case ¢ = 1 (the Koszul complex),
t = min(m, n) (the Eagon-Northcott complex) (8], and ¢ = min(m,n) — 1
(the Akin-Buchsbaum-Weyman complex) [2].

A. Lascoux constructed the minimal free resolution of S/I; (for any m,
n and t) over a field of characteristic zero explicitly, using representations
of general linear groups [20]. In his proof, the complete reducibility of
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polynomial representations of general linear groups and the Bott’s theorem
were important. But both of them are false when we consider the case
characteristic p. After his result, Akin, Buchsbaum, and Weyman devel-
oped characteristic-free representaiion theory of general linear groups and
constructed the A-B-W resolution.

In section 1, we review the results from characteristic-free representation
theory. The main purpose of this section is to introduce Schur complexes.
In section 2, we review the Lascoux’s approach in the version of (partially)
apphiable to the case characteristic p. The most important tools are the
Bott’s theorem and the Kempf’s vanishing theorem. We also review some
ring-theoretical properties of S/I,. In section 3, we review three impor-
tant characteristic-free minimal free resolutions: Koszul complexes, Eagon-
Northcott complexes, and Akin-Buchsbaum-Weyman complexes. Section 4
mainly consists of a summary of our original results on the syzygies of S/I,.
In section 5, we briefly mention on Pfaffian ideals and ideals generated by
minors of symmetric matrices.

1 Schur complexes

Schur modules, Weyl modules, and Schur complexes are the most important
objects in the characteristic-free representation theorey of general linear
groups.

Let V be a free R-module of rank n. We denote the tensor (resp.
symmetric, exterior) algebra by:

TV=@QTV Sv=@PSV AV=AV

i>0 i20 i20

Let ¢ : W — V be a map of finite free R-modules. We define S¢ o
SV@®AW. The algebra S¢ is graded with the total grading, and we denote
the degree i component of S by S;¢. This algebra is a chain complex with
the Koszul boundary 8 given by
a(a Ruwi A--- Aws) — Z(_l)i-la cpw; @ wy - .".'. - w,.
=1

Since the boundary preserves degree, S;¢ is a subcomplex of Sy for any
i > 0. It is well-known that Sy is a differential algebra with this structure.
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So the iterated multiplication
(%) Tp=9p® - Q¢ = Sip

is a chain map (note that ¢ : W — V is a chain complex of length one!).
We denote the graded dual of Sp* by Ayp. Namely, we define A e =
(Si¢*)*, and Ap = @; \' . By definition, Ay is a graded chain complex,
and we have A’ = (S1¢%)" = (¢°)" = ¢. Taking the dual of (x) for the
map ¢*, we obtain a chain map

AN —(p"® - ®¢") = Tip.
For a chain complex A and n > 0, the symmetric group 6, acts on T,A =
A®". The action of ¢ € &, is given by
U(al ® “en ® an) — (_1)Ei<j,ci)cj deS(ﬂi)'deg(dj)aa..ll ® C . ® Qy-1y.

Let A = (M\,...,,) be a partition of n. The element o()) € S, is
defined as follows. For example, if A = (5,3,2), then o(A) is the unique
permutation which maps the Young diagram Y to Y

12 345 147910
910 36

so that o(A)(2) = 4 and ¢(A)(6) = 10. We don’t give the precise definition
here. For a partition A = (Ay,...,4,), the franspose A = (:\1, ... ,:\,) of A
is the partition given by A; = #{j|A; > i}. For example, if A = (5,3,2) as
above, then A = (3,3,2,1, 1). The Schur map

dx=/\Asodé’/\"so®~--/\*'so—*5x¢d-‘°‘—f5x.¢®5x,¢

is defined to be the composite map

/\"‘90®'“/\"‘PMTA:¢®"'®TA.¢=Tn¢ﬂ

Le=T5¢0 T3¢ ne-om, 5;190@"' ®S;'(p.
We define the Schur complez of ¢ with respect to the partition A to be the
image of d,. This definition contains two important definitions on modules.
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If W = 0, then Ly depends only on the module V, and concentrated in
degree zero. We define the Schur module L,V of V' with respect to the
partition A to be the degree zero component of Ly(0 — V). I V = (Q,
then L,y is concentrated in degree n. We define the Weyl module K,V
of W’ with respect to the partition A to be the degree n component of
Ly(W — 0). If R is a field of characteristic zero, and if A\; < rank W, then
K,V is an irreducible polynomial representation of GL(W). If R contains
the rationals, then K;W = L,W as a GL(W)-module, but not in general.

Theorem 1.1 (Akin-Buchsbaum-Weyman [3]) The complez Lyp is e
finite free complez (i.c., a complez of finite length with its each term finite
free). If S is an R-algebra, then there is a natural isomorphism Ly(S ®g
) = S®g L.

These notion can be naturally extended to the case base scheme is not
affine. Namely, instead of using the base ring R, we fix a base scheme X
and consider a map of vector bundles ¢ : W — V. Then we can define the
Scure complex Lyp of ¢, and it is a finite complex of vector bundles. By
the theorem, L, is compatible with taking the inverse image with respect
to a morphism of schemes. The following results are fundamental in the
characteristic-free representation theory.

Theorem 1.2 (Akin-Buchsbaum-Weyman [3]) Let X be a scheme and

0 — WLV LU —0 be an ezact sequence of vector bundles on X.
Then there 1s a quasi-isomorphism K,W — L,p, and there is a quass-
isomorphism Lyyp — Ly \U for any pariition \.

Theorem 1.3 (Akin-Buchsbaum-Weyman [3], Boffi [4]) Let X be a
scheme, o : W — V be a map of vector bundies on X, and ) be a partition.
Then fork > 0, the degree k component of Ly admils a filiration of bundles
whose associaled graded object is D, , ci,,L,,V@K.,W, where p and v Tuns
all partitions and c;\w i3 the Littlewood-Richardson coefficient.

Theorem 1.4 ([11]) Let X be a scheme, o : W — V be a map of vector
bundles, and E a vector bundle on X. Then, for any k > 0, the symmetric
power S(¢®E) admits a filiration of complezes of bundles whose associated
graded object is @, Lyp ® LyE, where A runs over all partilions of k.
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Note that L, is a functor from the category of maps of bundles to the
category of complexes of bundles. Namely, if a : ¢ — 1 is a chain
map (regarding the maps ¢ and ¥ as complexes of length one), there is a
functorial map Lya : Lyp — L. If ) is a single-rowed partition (n),
then we have Ly = A" by definition. f A = (1,1,...,1) (n times 1), then
we have L) = §,,.

2 Geometric background

Though our approach is (purely) algebraic (or combinatorial), there is some
indispencable geometric background about this topic mainly due to A. Las-
coux [20]. In this section the base ring R = K is a field. Let V and W be
vector spaces over K of dimension m and n respectively. The symmetric al-
gebra S = S(V ® W) can be identified with the polynomial ring K [z,;]. We
set X = Spec S. The generic matrix (z;;) corresponds to the universal map
of bundles u : V — W* on X = Hom(V,W*). Thus, the deferminantal
variely Y = SpecS/I, is the zero of the map A'u: A'V — A'W*, where
I; is the determinantal ideal generated by ¢ x ¢ minors of (z;;). We denote

the grassmanian of (t—1)-quotients of V by G and we set G L X xxG. We
denote the universal (# — 1)-quotient bundle and the universal (m —{ + 1)-
subbundle on G by @ and R, respectively. There is a tautological exact
sequence

0— RSV BQ—0

on G. The composite map R LV % W* on G determines a cosection
s: R®W — Og. We denote the zéro of s by Z. Since u is a generic map,
it is easy to see that Z is non-singular variety, and the Koszul complex

o — A(ROW) — AT ROW) — - — ROW 505 — 0z =0

is a resolution of Oz. Geometrically, Z consists of the points (¥,L) €
X x G = G such that ¥ : V — W* factors through the quotient L of
V. The rank of such a map ¥ is at most (t — 1), so the projection map
7:G — X inducesamap®:Z — Y. Hranky =t~—1,then (¢, L) € Z if
and only if L = Im 4. So it is easy to see that T is a birational isomorphism.
Since the codimension of Z in Gis (m—t+1)-n, we have dim Z = dimY =
mn — (m —t+1)(n —t+1). So we can recover (the special case of) the
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results on normality of Hochster and Eagon mentioned in section 0, as
follows. Clearly, Y is a variety of dimension mn — (m —t+ 1)(n — ¢t + 1).
It is not so difficult to show that the singular locus of Y is defined by I,_;.
Since the codimension of SpecS/Ii_y n Y ism +n —2t+ 3 > 2 (unless
t =1!), we have Y is normal.

We shall consider a double complex (a complex of Og-complexes)

B :0— Si(p@W) % - LS (p@W) — O — 0

where h = (m —t+1) - n, and the boundary d: SPpOW)=S(QW)®
ANV OW) — S(p®@W) is idg(gew) ® 8', where &' is the Koszul boundary
derived from the cosection u* : V @ W — (O obtained by u. By the
theorem 1.2, S;(p® W) is a cohomological resolution of A'(R® W). In fact,
AN(R® W) — B: is a resolution (of Og-complexes) (see for example, [11,
chapter I}).

Proposition 2.1 With the notation as above, each term of B is T-acyclic
resolution of Oz. The complez 7, B. is a finile free complez.

The proof depends on the following theorem and the results on the
characteristic-free representation theorey stated in section 1.

Theorem 2.2 (Kempf, [14]) Let 7 : G — X and Q be as above. For a
partition X and i > 0, we have

. ~ LAV (if/\1<ta,ndz'=0)
ErL@= { 0 (otherwise) '

In the first case, m.Lyp : m, Lyn*V = L,V — w, L Q = L,V is the identsty
map.

Since (cohomologically graded) all degree positive parts of B’ are zero,
we have R'm,0z = 0. On the other hand, since 7|z : Z — Y is proper
birational and Y normal, we have n,0; = Oy. Now we can recover the
results on Cohen-Macaulay property of Y due to Hochster and Eagon, using
the results of Kempf [15]. Another consequence of the proposition is that
7B 1s a free resolution of Oy.
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Lemma 2.3 LetP=:-- — P. — --. — Py =85 — S/I; — 0 be the
graded minimal free resolution of S/I;. Then we have tsomorphisms

P2 S@Toi(K,S/I) 2 @ H'(G,NRSW))
k=l=t
as S-modules. If the characlerisiic of the base field K is 0, P admils a

untque GL(V) x GL(W)-equivariant structure, and these isomorphisms are
GL(V) x GL(W)-equivariant.

Proof. The first isomorphism is clear. By the preceeding remark, we have
Tor$(K,S/I,) =& H,(K ®s 7.B.). Since the boundary d : Si(p ® W) —
Si-1(p ® W) vanishes after tensored with K, the homology H;(K ®s 7. B:)
is the direct sum @;_;=; H'(7.Sx(p ® W)), where by Sx(p ® W) we mean
the complex on G, and 7’ : G — Spec K is the projection. Hence, we have

S® H(K®smB)= P S®H (r.Si(poW))

k—=l=t

=P H(SQ®T.S(pOW)) = D H (n.S:(p ® W)).

So the first assertion follows from the fact Sx(p®W) is an acyclic resolution
of A'(R®W). The last assertion is a consequence of the complete reducibil-
ity of the polynomial representations of GL(V) x GL(W). Q.E.D.

By Theorem 1.4, the exact sequence 0 = A*(R®W) — Si(p@W) — 0
admits a filtration whose associated object is '

O—*@K,\R®L,\W—>®LAP®L,\W—>O,
A A

where A runs over all partitions of k (if the characteristic of K is zero, then
A*(R®W) decomposes into the direct sum @, KxR® L,W)). Hence, there
is a spectral sequence whose E;-terms are of the form H'(G, K\R) ® L\W,
and converges to H'(G, \"(R®@ W)).

If the characteristic K is zero, then we have

H' (G, A\*(RoW)) =P H'(G,K\R) ® L\W.
A

The cohomology in the right hand side is calculated by the Bott’s theorem.
To state the Bott’s theorem (in the special form for our need), we need



some preparation from combinatorics. For a partition A = (A4,...,,), we
define ds(}) wf #{i| A, > i} and call it the Durfee square number of A. For
a positive integer ¢, we define A(2) = (Ai+t=1,. . ha+t—=1, Aaga,- .-, AL),
where d = ds()). For example, if A = (5,4,2) and ¢ = 3, then ds()) = 2
and X(t) = (7,6, 2).

Theorem 2.4 (Bott) If the characteristic of the base field K is zero, then
we have

LV (ifI=ds(A)-(t—1), A = u(t) for some y)
0 (otherwise)

H'(G,K\R) = {

Using this theorem, we have:

Theorem 2.5 (Lascoux, [20]) If the characteristic of the base field K is
zero, then the i** term of the minimal free resolution of S/I, is tsomorphic
to @, L)V ® LynyW, where the sum is laken over all partitions of i.

If p is a partition of (m —t+1)(n —t+1), then both L)V and L,yW
are non-zero if andonly f gy = (n—t+1,...,n—1t+1) ((m —t + 1)-times
n—1+1) which we denote (n—t+1™~**?). For this u, we have d ) ds(p) =
min(m, n), j(t) = (m? (m —t+ 1)*%), and p(t) = (n% (n -t + 1)™9).
Hence, we have S/I; is of type one if and only if t = 1 or m = n. This
result is first proved by T. Svanes [23]. Note that this result remains true for
ground field of positive characteristic, since Gorenstein property of graded
Cohen-Macaulay domain depends only on its Poincaré series (see [22]), and
it does not depend on characteristic for S/I,.

3 E-N and A-B-W resolution

In this section, we shall try to make a brief sketch of three important
characteristic-free minimal free resolutions of S/I, for special values of ¢,
m, and n. Though R is an arbitrary noetherian commutative ring, we shall
use the notation in section 2. By abuse of notation, we denote S ® V' and
S @ W simply by V and W, respectively. All tensor products are over
S unless specified otherwise. Without loss of generality, we may assume
that m < n. The first one is, the Koszul complex for { = 1. Namely,



Su* — S/I = K — 0 is the minimal free resolution of S/I;, where
u* : V@ W — S is a natural map derived from the generic map u.

For i > 0, there is a GL(W)-isomorphism w; : A' W*QA"W — AW
given by

wi(yalA"'Aya.’®$1/\"'/\z")Z(wl)”za(i+1)A...Azon

for 0 € 6,, where z,,...,z, is a basis of W, y;,...,y, 1s the dual basis.
Since (minor) determinants are alternative about rows and columns, there
is a well-defined map ¢; : A'V @ A' W — S given by

$i(ri A A @ wy A - wy) = det(v, @ wg).

It is easy to see that the image of ¢, is I,.

The second one is for the case { = min(m, n) = m, the Eagon-Northcott
complex. We shall describe this complex in the version re-constructed by
Buchsbaum-Eisenbud [7]. See also [8] and [5]. The key lemma is:

Lemma 3.1 Let A be a noetherian ring, M be a fintlely generaled A-
module, and
E:0— Ef — .---— E, — E

be a fintle free complez of A-modules. If for every prime ideal p C A with
depth(p, M) < k the localized complez (M ®4E), is ezact, then M ®4E 1is
exact.

For the proof of this lemma, we refer the reader to [6]
Theorem 3.2 (Eagon-Northcott complex) Ift{ = m, then the complez
E:A"VRA"ud AW LS — 5/, -0

is the minimal free resolulion of S/I,,, where u : V — W" is the generic
map, and

f:El’—:AmV@ [An-mu][)@AﬂW:/\mV®An—-mW-®/\nW

is the composile map ¢, 0i1d @ Wpern.



Proof. First note that
E1 —f-*Eo -— S/Im —0

is exact by the preceeding remark. We fix the bases z;,...,z, and ¢, ..., 2,
of W and V respectively, and denote the dual bases y,...,y, of W*. The
composite map E, &, E, EN Ey is zero. In fact, for 1 <i < m and o € 6,
we have :

f°d2(£1/\"'/\£m ®£i®yal A"'Aya(n—m-—l)®zl ®"'zn)

= ;=l(£i ® zj)f(&l A A&m ® Y, AYsr A--- A Yo(n-m~1) Rz, Q- zn)

= ;n.:.‘.]l('—].)k.‘.l(&i ® zc(n—-m-1+k)) * det(ﬁa ® za(n-m—l-}-ﬁ))ﬁ#k = 0.
Hence, E is certainly a complex. The minimality is clear by definition. So
it suffices to show the acyclicity of A" ™ u. By the lemma above, we may
localize at a prime p with depth(p,S) < n—m —1. Since dim S/I; = mn —
(n—m+1) and S/I; is Cohen-Macaulay, we have depth(l;,S) =n—-m+1.
Hence, I, is not contained in p, and u, is a split injection. By Theorem 1.2,

[/\“"”‘ u]P 2 AV™ y, is acyclic as desired. Q.E.D.

Remark 3.3 The complez A\""™ u is of the form

0= DperiV— Dn-—m-—] QW" — ... — D,V® /\n—m—i wW* —

D,-_lV ® /\n—m-i+1 W . —Ve® /\n—m-l w* — An—m W* — 0
where D,V & (5;V*)* = KV which is called the i* divided power of
V. Taking the dual of the multiplication map T;V* — S;V*, we oblain a
inclusion D;V — T.V. In fact, D;V is the invariance (T;V)® under the
natural action of &1 on T;V. The construction above is exiended to the case
base scheme is non-affine.

The third one is for the case m =1 4 1, the Akin-Buchsbaum-Weyman
complex [2]. The construction of this complex is too complicated to describe
in this short survay. Note that the following argument without any proof
is a consequence of this complicated construction, but not (so far) proved
directly. .

Consider the double complex 7.B. appeared in section 2 again. First
taking the homology of 7.Sy(p ® W), we have a spectral sequence whose
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Ej-terms are of the form H'(G, \*(R ® W)) which converges to S/I,. As
a result, all E'-terms are S-free in this case. So we obtain finite free S-
complexes

X: - — X, = Ht—l(é, /\i+‘_1(R QW)) 2,
Xio = HHG N (ROW)) — -

and

Y: - — Y, = H2(t-—1)(é’ A£+2(t~1)(R W) 4,
K—l — H2(¢_1)(é’ Ai—1+2(t—1)(R ® W)) _—..

whose homologies are E,-terms of this spectral sequence. The non-vanishing
Ej-terms are Xs for i > 1, Y’s for i > 4, and S = H°(G,\°(R @ W)).
The non-vanishing E,-terms are H(Y) & IZ, | & Hs(X), Hy(X) £ I,, and S.
Using the comparison theorem, we obtain a chain map f: Y — X whose
mapping cone C(f) is a resolution of I.

Similarly to Eagon-Northcott complex, the minimal free resolution of
IZ,, is isomorphic to L(yp—pm-n)u. Hence, Y = L(,._. . u. The complex
X is constructed concretely, but f is not given explicitely in [2].

Remark 3.4 Let X' be an algebraic K-scheme, V' and W' be vector bun-
‘dles of rank m and n respectively on X', and ¢ : V! — W' be a map of
bundles. We denote the zero of A\' ¢ by Y'. The map ¢ determines a section
s(p): X' — X i Hom(V',W'"). Let v’ : V' — W' be the generic map
on X. The section s(p) is determined by s(p)*(v') = ¢. We denote the
zero of NP by Y. Let P be a resolution of Oy of finste complez of locally
free sheaves on X (the consiruction of n.B. generalizes {o this case and
gives an ezample. If t = min(m,n), then the Eagon-Northcott complez is
also an ezample). It holds that s(p)*P is a resolution of Oy: if and only if
depth(Y', X') = (m —t + 1)(n —t + 1) (the question is local, so we may
assume that all schemes are affine, and V' and W' are free modules. In
this case, pds S/I; = (m —t+1)(n -t +1) (S = I(X,04)). Now use
Lemma 3.1 for M = 8(¢).0x:).
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4 Calculations of the Betti numbers

We have seen that there exists a minimal free resolution if t = 1 or ¢t >
min(m, n)—1. We shall consider the remaining cases: 2 > ¢ > min(m,n)—2.
The question is, whether there is any minimal free rosolutions of S/I; over
any commutative ring R or not. By the general theory of resolutions,
the answer is yes when R is a field, since S/I; is graded. To consider
the case R general, it suffices to consider the case R = Z, the ring of
integers, as mentioned in section 0. For this problem, the Betti numbers
Jiid «f dimg Tor? (K, S/I;) plays important role, where p is a prime number
or zero, i > 0, and R = K is a base field of characteristic p. Since A7 is the
rank of the i** component of the minimal free resolution of S/I; over K, AF
must not depends on p for any i if there exists a minimal free resolution F
over I. The converse is true.

We define 5, def dimg [IQLS(K, S/It)]j for i, j > 0, where [J; means the
degree ; component.

Proposition 4.1 (Roberts [21]) The followings are equivalent.

1 There ezists a graded mintmal free resolution of S/I; over any commu-
tative ring R.

2 The numbers ff; are independent of the characteristic p for any non-

negalive inlegers 1 and j.
2’ The Betti numbers of S/I; is independent of the base field.
3 If the base ring R is 1, then for any i > 0, Tor; (S/I,,S/1,) is L-free.

Clearly, f§ = 1 is independent of p. The first Betti number 3 is the
number of minimal generators of I;. It is the number of ¢-minors of the
generic matrix (z,;) and independent of p, since distinct t-minors doesn’t
have any common monomial with non-zero coefficient and are linearly in-
dependent over K. The second Betti number A7 is the number of minimal
generators of the relation module of I,.

Let M be the relation module of S/I,, namely, the kernel of the natural
map ¢ : A' Vs A'W — I,. We fix the bases &; ..., of V and z4,..., 2,
of W. For sequence of integers I = (i(1),...,i(t+1)) with 1 < ¢(1),...,i(t+

12



1) < mand J = (j(1),...,7(t+ 1)) with 1 < j(1),...,5(t + 1) < n, we
define:
t+1 :
rely(1,J) € (=D 0) ® ziay - Eiy) A=+ Abigean) @ iy A=+ T AZjiean)
| ,
=2 (1) ® 20y Gy A Abiy @ Ziy A -7 AZjean)
I=1

and

t+1 It
def L
rely(I,7) = 3 (=1)* i) @ 20y - Ly A+ - Aiea) ® Zjy A+ 7+ - AZjean)
l==1
t+1

1
—(—1)* (1)) ® i) Ly AT Abigern) ® Ty A=+ A T
=1

Since ¢:(rely(7,J)) (resp. ¢¢(relz(7,J))) is the difference of the expantion
of the same determinant det () ® zj(5)) with respect to the first row and
the last row (resp. the first row and the last column), it is equal to zero.
Hence, rely(I, J) and rely(I, J) are relations of I; (i.e., elements of M).

Theorem 4.2 The set

B {rel,(1,])]

i) <---<it), (1) <i(t+1), j() <--- < jt+1)}
U{relo(1, J) |

i(1) <.~ <i(t+1), 5(1) <--- <j(2), §(1) <5t +1)}
minimally generates the relation module M of I;,. In particular, we have
5; =0 forj#t+1and B3, = #B. So f} = #B does not depend on
the characéteristic p.
For the precise, we refer the reader to [17]. See also [9, Remark 2.2].

By the proof of Lemma 2.3, A7} is calculated by H'~(G,N'(R®@W)) =
H:(H°(G, S;(p@W))). In fact, the complex H°(G, S;(p@W)) is isomorphic
to the degree j component of

S/Ig ®S S(idV®RW) & S/It ®5 SU#.

So this information gives us nothing new. But the complex S;(p ® W)
admits a filtration of I'-acyclic complexes whose associated graded object
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1s @, Lap ® LW, the sum 1s taken over partitions of j. Hence, we obtain
some filtration {M**} of S/I,®s S;(idvew) Whose associated graded object
is @, H°(G, Lxp) ® L\2W. This filtration is constructed explicitely in [10,
section 2], using the characteristic-free representation theorey. We shall
discuss more about the complex H°(G, Lyp). Note that the homologies of
H®(G, L,p) is cohomologies of K R. So this is a characteristic p problem
of the Bott’s theorem. The Bott’s theorem does not hold, as below. To
describe this complex without grassmanian, we define t-Schur complezes.

Let X be a scheme, and ¢ : F — E be a map of bundles on X. For
k > 0 and t > 0, we denote the truncated complex

0_>Dk‘—tF®AtE—>Dk_t_1F®At+1E——-)...__)AkE_>0

of A¥¢ by A®* . For a partition A, we define L; ¢ to be the image of
A e ® Ao ®--- by the Schur map dy : Ay — Lyp and call it the
t-Schur complex of ¢ with respect to the partition A. This complex is a
complex of vector bundles, and a subcomplex of Ly¢. Using the Kempf van-
ishing theorem (theorem 2.2), it is not so difficult to show that H°(G, L,p)

is isomorphic to Ly idy % Lyidy /Ly idy.
Passing through some combinatorial argument, we obtained the follow-
ing result.

Proposition 4.3 Let K be a field,t > 1,1,5 >0,V be a vector space over
K with dimg V —t < 2, and X be a partition of §. If dimg H;(L; idy) is

different from the value for K = Q, then char(K)=2,¢t > 2,dmV -t =2,

and A = (A1,2). In this case, it holdsi=j—1 ori=j—1+1.

So the El-terms of the spectral sequence associated with the filtration
{M**} of S/I, ®s Sidy depend on characteristic. But this dependence is
resolved in the E2%-terms. Hence, we have:

Theorem 4.4 Ift =m — 2, then the Betti numbers 7 of S/I; is indepen-
dent of the characteristic. Hence, there exists a minimal free resolution of
S/I, over any commautative ring R.

For the details, we refer the reader to [10, section 3]. This theorem is
first proved for the case n = m, using the Gorenstein property [11]. We
don’t know any explicit form of the minimal free resolution, even in the case

14



n = m. On the other hand, the homologies of fmidy varies in quite caotic
way, depending on the characteristic. This really effects on the syzygies of
S/I, whent < m - 3.

Theorem 4.5 If 2 <t < m — 3, then the third Betti number 8% of S/I,
depends on characteristic. More precisely, 85 > (3 if (and only if) p= 3.
So there is no minimal free resolution of S/I; over I in this case.

For the precise, we refer the reader to [9].

5 Pfaffian ideals and minors of symmetric
matrices

The problem of syzygies of Pfaffian ideals and the ideals generated by mi-
nors of symmetric matrices is closely related to the problem of syzygies of
determinantal ideals.

Let A = (a;;) be a alternative 2m x 2m matrix over a commutative ring
R. Namely, a;; = —a,; for 1 < 4,7 < 2m and a;; = 0 for 1 < i < 2m (the
second condition is indispensable if 2 is a zero-divisor in R!). We define the

Pfaffian of A, denoted by pf(A), by
1

m!.2m

Y- (=1)7851)02) - * - Go(2m—1)o(2m)| € R.

€S

Note that in the sum in the bracket, the same terms appear (m!-2™) times,
and this definition is effective (but awkward) for any R. It holds that
det(A) = pf(A4)>. On the other hand, det(A4) = 0 for any alternative n x n
matrix with odd n.

Now consider a noetherian commutative ring R and the polynomial
ring S = R|[z;]icici<n for n > 1. For 1 <t < [n/2], we define the Pfaffian
ideal Pf5 by the ideal of S generated by pf(z(a)i(s))1<a<2: for all indices
I = (i < -+ <iy), where z wf ~z;; for i < j and z; %/ 0. Note that
Y = Spec S/Pfu is the zero of A% u? : A2V — A?* V", where V = S®V,
is a rank n free module over S, u* : V — V" is the map associated
with the generic form u : A’V — S on X = Spec S = Spec S(A?Wp) =
Hom(A? Vp, R). I is known that S/Pfy is R-free, and is Gorenstein nor-
mal domain if so is R. The result on characteristic zero case is obtained by

—130—
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Jézefiak-Pragacz- Weyman [13]. They also constructed the minimal free res-
olution of the ideals generated by the minors of generic symmetric matrices

(ibid.).

Theorem 5.1 ([19]) Let K = R be a field. We set p = char(K) if
char(K) > 0 and p = oo if char(K) = 0. With the notation as above, the
relation module of P fy; 13 generaled by the linear relations when 2p > n—21.
In particular, the second Belli number of S/ P fy is independent of p when
n-—2<3.

On the other hand, the answer for the question of the existence of the
minimal free resolutions of S/P fa is negative in general.

Theorem 5.2 ([18]) With the nolation as above, the relation module of
Pfy is not generaled by the linear relations when p = 2,1 =2, and n = 8.
There is no minimal free resolutions of S/Pfy; over T in this case.

For more about this problem, see [19], [18], and references there in.

Let n > ¢t > 1. Consider the polynomial ring S = R[z;j]i<i<j<n- We
denote by J; the ideals of S generated by ¢-minors of the generic symmetric
matrix (z,,), where z;; e z;; for i < j.

Theorem 5.3 ([16]) With the notation as above, the relation module of J;
is generaied by the linear relations. In particular, the second Betli number
of S/J: is independent of the characteristic.

The problem of the existence of minimal free resolutions of S /J; over 1 |

is still open. For more about this problem, see [16] and the references there
n.
References

[1] K. Akin and D. A. Buchsbaum, Characteristic-Free Representation
Theory of the General Linear Group, Adv. in Math. 58 (1985), 149-
200. :

— 131 —

16



[2] K. Akin, D. A. Buchsbaum and J. Weyman, Resolutions of Deter-
minantal Ideals: The Submaximal Minors, Adv. tn Math. 39 (1981),
1-30.

[3] K. Akin, D. A. Buchsbaum and J. Weyman, Schur Functors and Schur
Complexes, Adv. in Math. 44 (1982), 207-278.

[4] G. Boffi, The Universal Form of the Littlewood-Richardson Rule, Adv.
in Math. 68, (1988), 40-63.

[5] D. A. Buchsbaum, A New construction of the Eagon-Northcott com-
plex, Adv. in Math. 34 (1979), 58-76.

[6] D. A. Buchsbaum and D. E. Eisenbud, What makes a Complex Exact?,
J. Alg. 25 (1973), 259-268.

[7] D. A. Buchsbaum and D. E. Eisenbud, Generic Free Resolutions and
a Family of Generically Perfect Ideals, Adv. in Math. 18, (1975), 245-
301.

[8] J. A. Eagon and D. G. Northcott, Ideal defined by matrices and a
certain complex associated with them, Proc. Roy. Soc. A 269 (1967),
147-172.

[9] M. Hashimoto, Determinantal ideals without minimal free resolutions,
to appear in Nagoya Math. J. 118.

[10] M. Hashimoto, Resolutions of determinantal ideals: ¢ minors of (¢ +
 2) x n matrices, preprint.

[11] M. Hashimoto and K. Kurano, Resolutions of Determinantal Ideals:
n-minors of (n + 2)-square matrices, to appear in Adv. in Math.

[12] M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory,
and the generic perfection of determinantal loci, Amer. J. Math. 93
(1971), 1020-1058.

[13] T. Jézefiak, P. Pragacz, J. Weyman, Resolutions of determinantal va-
rieties and tensor complexes associated with symmetric and antisym-
metric matrix, Astérisque 87-88 (1981), 109-189.

—132 —

17



[14] G. R. Kempf, Linear systems on homogeneous spaces, Ann. Math. 103
(1976), 557-591.

[15] G. R. Kempf, On the Collapsing of Homogeneous Bundles, Invent.
math. 37 (1976), 229-239.

[16] K. Kurano, On Relations on Minors of Generic Symmetric Matrices,
J. Alg. 124 (1989), 388-413.

[17] K. Kurano, The First Syzygies of Determinantal Ideals, J. Alg. 124
(1989), 414-436.

[18] K. Kurano, Relations on Pfaffians II: A counterexample, preprint.
[19] K. Kurano, Relations on Pfaffians I: Plethysm Formulas, preprint.

[20] A. Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30
(1978), 202-237.

[21] P. Roberts, “Homological invariants of modules over commutative
rings,” Les Presses de ’Université de Montreal, Montreal (1980).

[22] R. Stanley, Hilbert functions of graded algebras, Adv. in Math. 28
(1978), 57-83. :

[23] T. Svanes, Coherent cohomology of Schubert subschemes of flag
schemes and applications, Adv. in Math. 14 (1974), 369-453.

[24] J. Weyman, A short proof of a theorem of M. Hashimoto, working
notes (1988).

18





