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1 Introduction

A normal projective algebraic variety X is called a Q-Fano variety if
1. X is Q-factorial.
2. X has at most canonical singularities.
3. —Kx is ample.

Recently Mori completed the minimal model program in dimension 3 ([4]).
And the minimal model conjecture is expected to be true in all dimension.
Roughly speaking minimal model conjecture reduces birational geometry of
algebraic varieties to the study of minimal varieties and Q-Fano varieties.
Hence it is expected that Fano varieties play essential roles in the classifica-
tion theory of algebraic varieties.

About Fano manifolds the following conjecture is well known (cf. [7, p.
599]).

Conjecture 1 There ezists a positive constant C(n) which depends only on
n such that for every Fano manifold M of dimension n

G(M) < C(n).
holds.



The conjecture is known to be true classically in the case of surfaces
(Del Pezzo surfaces). And Mori and Mukai proved that ¢} of Fano 3-folds
are bounded by 64 ([6, Corollary 11]). In the case of toric Fano manifolds,
Batyrev proved the conjecture affirmatively in all dimensions ([1]). But his
estimate for C'(n) is fairly crude even in this very special case. The purpose
of this paper is to prove the following partial answers.

Theorem 1 There ezists a constant C(n) depending only on n such that for
every Fano manifold M of dimension n and by =1

(M) < CO(n).
holds.

Theorem 2 Let M be a n-dimensional rationally connected Fano manifold.
Then there ezists a constant C(n) depending only on n such that

(M) £ C(n).

Remark 1 Theorem 1,2 holds not only for Fano manifold but also Q-Fano
variety with only quotient singularities. This generalization can be obtained
only by replacing Fano manifolds to Fano orbifolds in the proof.

The following conjecture is well known.
Conjecture 2 Every Fano manifold is rationally connected.

Hence by Theorem 2, the first conjecture is reduced to the second con-
jecture.

Our bound for ¢} comes essentially from the Mori theory. Hence the
bound seems to be quite natural. But we do not know that the bound is
sharp or not. We should note that ¢} < cf(P™) does not hold in general for
a Fano manifold M of dimension greater than 3 ([1]).

The proof of Theorem 1,2 much depends on the method in [7].

2 Reduction to differential geometry

Let M be a Fano manifold of dimension n and let wy be a Kahler form on
M such that
[wo] = 2nc, (M),

where | | denotes the de Rham cohomology class.
Let us consider the equation:

(1 = t)wp + tw = Ric,, (1)

where ¢ is a parameter in [0,1].

To prove Theorem 1,2, we shall prove the following theorem.



Theorem 3 Assume that M is rationally connected. Then the equation (1)
has a smooth solution w for

1
¢ —_
€ [0, 1)

For the first we shall show that Theorem 3 implies Theorem 2. In fact
Theorem 3 implies that for every positive number ¢, a rationally connected
Fano manifold M admits a Kahler form w such that

1. w] =2rc1(M),

2.

1
n+1

Ric, > (

- &)w.

By Myer’s theorem the diameter of (M,w) is bounded by a constant depend-
ing only on n. We note that

G = ;™ [ wr.

Then by the volume comparison theorem ([2]), we see that c}(M) is bounded
by a constant depending only on n.

3 Rationally connectedness

In this section we shall prepare the algebro-geometric tools for the proof of
Theorem 1,2,3. First we recall the definition of rationally connectedness.

Definition 1 Let X be a projective algebraic variety over an algebraically
closed field. X is said to be rationally connected, if for general two closed
points on X, there ezists a chain of rational curves which contains the points.

Using the Mori theory, Miyaoka proved the following theorem.

Theorem 4 ([3]). Let X be a Fano manifold over C with by(X) = 1. Then
X is rationally connected.

By using the deformation theory of curves, we obtain the following coro-
rally.

Cororally 1 Let X be a Fano manifold of dimension n over C with by(X) =
1. Then for every pair of points (p,q) on X, there ezists a chain of curves
C = Y. C; such that
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1. p,q € C.
2. (—-Kx)'C; <n+1.

Proof. Let p,q be general points on X. Then by Theorem 4 there exists a
chain of rational curve C = Y%, C; such that p,q € C. We may assume that

1. pe Cl.
2. q € Ci.
3. CinCijn # dpfori=1,2,...,k—1.

Assume that there exists some ¢ such that (—=Kx)-C; > n+ 1. Let us
choose two points p;,g; on C; such that p; € C;NC;_, (if : = 1, we set p; = p)
and ¢; € C;NCi41 (if ¢ = k, we set ¢; = ¢). Then by the deformation theory of
morphisms and Riemann-Roch theorem, we can construct a nontrivial family
of morphism from the normalization C; of C; with the base points p;, ¢; which
contains the noramlization C; — C;(cf. [5]). Then by the argument in [35],
we can find a chain of rational curves 3_7, Cij(m > 2) which contains p; and
¢;- Continueing this process, we obtain a chain of rational curves thorough
p,q with the desired properties. Q.E.D.

Cororally 2 implies that every Fano manifold of Picard number 1 contains
abundant of curves of low degree (with respect to the anticanonical polar-
ization). In other word, every two points in compact Kahler manifold with
positive Ricci tensor and b, = 1 can be connected by a chain of minimal
surfaces of small volume, if the Kahler form is in the anticanonical class.

4 Blow up of the solution

Let to be the maximal existence time for the equation (1) in Section 2. To
prove Theorem 3, we may assume that t; < 1 holds. We note that for every
te [Oato),

[w] =27 Cl(M )

holds. We set

w = wp + V—180u. (2)
Let 2 be a smooth volume form on M such that
wo = RicQ = —/—180log Q2. 3)
Then the equation (1) is equivalent to the equation
log (1o + (;-laau) = —tu on M x [0,%). (4)

We shall study how the solution w of (1) blows up at ¢ = t,.
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Lemma 1 w(tp) = lim;_, w ezists as e positive d-closed (1,1)-current.
Proof. We set w(t) := w( ,t). Then since all w(t) is cohomologous to wy for
all t € [0,¢tp), we have

/M w(t) Awt™ = (21) " (M).

We note that every w(t) is positive for every t € [0,%p). This implies the
lemma. Q.E.D.
We set u(t) := u( ,t). Let us set

o(t) = u(t) — sup u(t)(t € 0, o). (5)

Lemma 2 v(tp) = lim;—., v(t) ezists as a upper semicontinuous function to
[_001 0] .

Proof. The lemma follows from Lemma 1 and the 83-Poincaré lemma.
Q.E.D.

Since w(tg) is a d-closed positive (1,1)-current, v(tg) is locally a sum of
plurisubharmonic function and a smooth function. Hence

§ ={p € M| v(to)(p) = —o0}

is locally a pluripolar set. In particular S is of measure 0 with respect to wy.
The following proposition is crucial.

Proposition 1
S = {p € M | exp(—tou(to)) is not locally integrable around p}.

To prove Proposition 1, we localize Siu’s estimate in [7, pp.589-595] by a
perturbation of w(?y). Let us prove Propositon 1 by contradiction. Assume
that there exists a point p € S such that exp(—tov(?o)) is integrable on an
open neighbourhood U of p. We may assume that there exists £, > to such
that exp(—t,v(tp)) is integrable on U. Let B be a open geodesic ball with
center p such that the closure B is contained in /. Let f be a smooth
function on M such that

1. SuppfCU.
2.0 f<lon M.
3. f=1on B.
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For t € [0,%5) and € € [0,¢], let us consider the following equation

log (20 V20RO (1 - = ) + £ -u(i)) ®
log S xP(—to{(l — flu(to —€) + f - u(to)}wg
og
Jm Wt

If we replace to to € < t < ty, we have a smooth solution of (6) by the solution
of Calabi’s conjecture ([9]). Hence

w(t)e = wo + V—188u(t),
exists as a d-closed positive (1, 1)-current on M for 0 < € < to. We note that
Ric(w(t)) > tw(t). (7)

and

exp(—t1f - u(to)) (8)
is integrable on (M,wp). Now we note the following proposition due to Siu.
Proposition 2 ([7, p. 589, Proposition 2.1 and p.592, Proposition 3.1))

Given any small positive number € there ezists a positive constant C? such
that for 0 <t < to,

sup(~u(t)) < (n + &) sup(u(t)) + C7
M . M
and
sup(u(t)) < (n + ) sup(—u(?)) + C:
M M
hold on M.

Then by the Bochner-Kodaira formula letting ¢ tend to ¢y, for a suffi-
cuently small € we obtain that

osc((1 = flu(to — €) + fu(ty)) < o0

by Proposition 2 and the same argument as in [7, pp. 592-595 and p. 596
Proposition 4.3] (In the proof, we do not need the lower bound of the Ricci
curvature of w(t). but the inequality (7). Because we only need the following
inequality,
/ V=10k A Ok AW 2_)\1/ | h 2 w?,
M M

where w is a Kahler form on M and }, is the first eigenvalue of the Laplacian
of (M,w) and f is a smooth function on M such that

/ hw™ = 0).
M
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This is the contrtadiction because

Suppf NS # ¢

and S is of measure 0. Q.E.D.
By Proposition 1 and the result in 8], we obtain the following corollary.
For the definition of Lelong number and its basic properties, see [8].

Cororally 2 Let n(w(to),p) be the Lelong number of the d-closed positive
(1,1)-current w(to) at p € M. Then we have:

1. n(w(to),p) = 1/to forpe S.

2. S is a proper subvariety of M.
Now we prove Theorem 1,2 and 3. Let p be a point on S and let q be a
point on M — S. Then by Cororally 1, there exists a chain of rational curves
C = 3 C; which satisfies the properties in Cororally 1. Then there exists an
irreducible component C; of C' which intersects with S with finitely many
points. We note that the restriction w(to) | C; is well defined. Let us choose

a point po on C; N S. Then by the structure theorem of d-closed positive
(1,1)-current in [8], we have

n(w(to) | Cj,p0) = n(w(to), po) 9
Since (—Kp) - C; £ n+1, we have
n(e(to) | Gy po) S m+ 1. (10)

Then (9),(10) and Cororally 2, we have

1
to > .
0"'n+1

This completes the proof of Theorem 1,2 and 3.
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