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A Method for The Construction of

Pfaffian Systems with Finite Monodromy

Makoto Namba

Introduction. ILet §2 be a square-matrix-valued

meromorphic 1-form on a complex manifold M such that
a2 + 27082 = 0., For an unknown square-matrix-valued function

F, the differential equation
dF = FS2

is called a Pfaffian system.

There is an important class of Pfaffian systems, called

the class of Pfaffian systems of Fuchsian type (Deligme [2] ).

Some important differential equations such as Gauss'
hypergeometric differential equations can be expressed as
DPfaffian systems of Fuchsian type.

For a Pfaffian system, its monodromy group is defined. It
is however a difficult probiem in general to compute the
monodromy group of a given Pfaffian system.

Hence it is alsc a difficult problem to determine if the
monodromy group is finite or not. As for Gauss' hypergeometric
differential equations, this problem was solved by Schwarz [97] .

In this paper, we discuss the converse problem. That is,

we give a general method for the construction of a wide class
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of Pfaffian systems, including those of Fuchsian type, with

given finite monodromy groups.

1, Finite Galois coverings of complex manifolds. ZLet

M be a complex manifold. (The connectedness is always assumed.)

We fix M once for all. A finite (branched) covering of M is

y by definition, a finite proper holomorphic mapping
T ¢ XM

of an irreducible normal complex space X onto M,
Let m: X——>M and M : Y—>M be two finite coverings

of M. A morphism (resp. an isomorphism) of 7T to A is, by

definition, a holomorphic (resp. biholomorphic) mapping @ of
X onto Y such that M-P = 7. When there is a morphism (resp.

an isomorphism) of 7 to AL, we denote

TTZ M o UL TT (resp. 7T o= ().

~=

The set Aut(7C) of all automorphisms of 7T forms a

group under compositions and is called the automorphism group

of 7L, which acts on every fiber of T7L.

A finite covering T : X—>M 1is called a finite Galois

covering if Aut(7 ) acts tramsitively on every fiber of 7L.
In this case, the quotient complex space X/Aut(7C) (see
Cartan [ 1 J) is naturally biholomorphic to M.

Let 1 ¢ X—>M be a finite covering. We put

RTL = {peX 7. is not biholomorphic around p}
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and
BTC = TL(RH_) -

Then R; and Bx are hypersurfaces (i.e., codimension 1 at
every point) of X and M, respectively (see Fischer [3 1),

called the ramification locus and the branch locus of 7T,

respectively.
Let B be a hypersurface of M, A finite covering 7L:

X———M is said to branch at most at B if 3B contains the

branch locus By of 7. In this case, the restriction x' of

r to X -7 N(B)
At X -7 (B)——> M - B ceee (1)

is a usual (unbranched) covering. Its mapping degree is (
independent of B and is) called the degree of 7 and is
denoted by deg 7.

We have easily

Lemma 1.1. let B be a nhypersurface of M. Let 7. and
M be finite coverings of M which branch at most at B. Let
7' and AM' Dbe the restrictions of n and i, respectively,
as in (1). Then (i) T »M if and only if 7' 4' and (ii)
LU if and only if ' A___z/{,('.

Lemma 1.2. Under the same notations as in Lemma 1.1,
(1) Aut(w) 4is naturally isomorphic to Aut{w') and (ii) o
is a finite Galois covering if and only if 7' is a finite

Galois covering.

Corollary 1.3. #Aut(n) < degm, where F#G means the
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order of the group G. The equality holds if and only if

is a finite Galois covering.
The following theorem is deep.

Theorem 1.4 (Grauert-Remmert [ 43, see also Grothendieck-
Raynaud [57). Let B be a hypersurface of a complex manifold
M, Let n': X'—>M - B be a finite unbranched covering. Then
there exists a unique (up to isomorphisms) finite covering 7 :

X ——M Dbranching at most at B whose restriction to X -1(B)

is isomorphic to ='.

Let o be a fixed point of M - B. We denote by 7, (M - B, o)
the fundamental group of M - B with the reference point o.

By Theorem 1.4,

Theorem 1.5. Let B be a hypersurface of a complex manifold

M. Then there exists a one-to-one correspondence 7L+——H = H(x)
between the set of all isomorphism classes of finite Galois
coverings 7T of M ©branching at most at B and the set of all
normal subgroups H of finite index of 7, (M - B, o), which
satisfies the following two conditions: (i) T > M if and only
if E(m)C E(u) and (ii) Aut(7m) is naturally isomorphic to
T, (M - B, 0)/H(T).

2, Pfaffian systems of meromorphic type with finite

monodromy. Let G = (wjk) be an (mX m)-matrix-valued meromor-

phic 1-form on 2 complex manifold M which satisfies the
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integrability condition:
ase+ sens2 = 0. cr e (2)
Let Bjk be the polar set of wjk' We put

B = j,kBjk

and call it the polar set of 52. B is a hypersurface of M.
We put M' = M - B and denote by ' the universal covering
space of M',

A theorem of Frobenius asserts that the Pfaffian system
dF = F&2 c e (3)

has a solution F such that (i) F is an (mXm)-maitrix-valued
nolomorphic function on M', (ii) the determinant det F of F
is nowhere vanishing and (iii) any other solution of (3) can be
written as A¥, where A is a constant (mXm)-matrix.

We call such an F a fundamental sclution of (3).

Let o€M' = M - B be a fixed point. The fundamental group
T, (M', o) naturally acts on M'. Let F be a fundamenial
solution of (3). For each element b’é?[1 (M', o), we put
¥Y*F = P-¥ . Then, by (3),

a(Y*F) = y¥aF = §XEQD = (Y¥P)Q.
Hence we may write
YXF = R(Y)F for Y& (M', o), ----(4)
where

R: 3’67’[1(M', o) > R(¥)€ GL(m,C)
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is a homomorphism, called the monodromy representation of the

Pfaffian system (3). Its image G = R(7E1(M', 0)) is called

the monodromy group of (3).

Assume now that the monodromy group G is a finite subgroup
of GL(m,C). In this case, (3) is called a Pfaffian system with

finite monodromy. The kernel Ker(R) of R is a normal subgroup

of finite index of ‘Hﬁ(M', o). By Theorem 1.5, there corresponds

a unque (up to isomorphisms) finite Galois covering
7T X—N -+ - -(5)

such that Aut(L) 2=~ G naturally. A fundamental solution F
can be regarded as a holomorphic function on X' = n71(M') =
X -7V (®). In general, F has essential singularity along = 1(B).

The Pfaffian system (3) is said %o be of meromorphic type

with finite monodromy if (i) its monodromy group G is a finite

subgroup of GL(m,C) and (ii) F can be extended to a meromorphic

function on the normal complex space X in (5).

Proposition 2.1. ZEvery Pfaffian system of Fuchsian type

with finite monocdromy is of meromorphic type with finite

monodromy.

Proof. If the Pfaffian system (3) is of Puchsian type,
then (see Deligne [2] ), around a gemeric point q of B, S¢

can be written as
Se = A1(w)dw1/w1 + Az(w)dw2 e+ An(w)dwn,

where (i) (w1,w2, .. -,wn) is a local coordinate system in M
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around g such that q = (0,0,---,0) and B={w1=0}
(around gq) and (ii) Aj(w) = Aj(w1,w2,° - ,w) are (mXm)-
matrix-valued holomorphic functions.

By Yoshida-Takano [11] , a fundamental solution F of (3)

can be written as
F(w) = (expClogw1)(eXleogw1)G(w)

around q, where C is a constant (mXm)-matrix, N is a
diagonal (mX m)-matrix with integral coefficients and G(w) is
an (mX m)-matrix-valued holomorphic function with det G(w)
nowhere vanishing.

If (3) is of finite monodromy, then C must be diagonali-
zable and every eigenvalue of C must be a rational number. Thus
F(w) can be meromorphically extended to an open neighborhood of
7)) in X

By Levi's extension theorem (see Fischer [3]), F can be

meromorphically extended to X.

3. Construction. Put s = m2 and let Y = P® be the

s-dimensional complex projective space. ¥ 1is the disjoint
union of C€° angd He, where H, is the hyperplane at infinity.
We identify C€° with the set of all complex (m¥X m)-matrices.

GL(m,C) acts on C€° as the product of matrices:
(4, y)e€ 6L(m,C) X5 —— ay eCS,

This action can be naturally extended to that on Y by defining
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(4, (0:y))€GL(m,C)X Hp ——>(0:Ay)€ H,, .

Put

A ={yem5fdety=o}\jnm_ oo - (6)
Then Lﬂ is a hypersurface of Y which is invariant under the
action of GL(m,C).

The (m¥X m)-matrix-valued meromorphic 1-form

lay we = (7)

5=y
on Y is clearly GL{(m,C)-invariant.
Now, suppose that the Pfaffian system (3) on a complex
manifold M is given and is of meromorphic type with finite
monodromy. Then the fundamental solution F of (3) can be

regarded as a meromorphic mapping

F: X—>Y = P5,
where L : X —>M is the finite Galois covering in (5).
(4) means that the meromorphic mapping F 1is equivariant under
the actions of 4ut(®) omn X and of the monodromy group G
on Y. Hence a meromorphic mapping

f: M ——>N = Y/G .o o (8)

is indeced from F and makes the diagram

F
3. Y
x l,u
f
N =

—

2 b

Y/G

commutative. ( it is the natural projection.)

In general,
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Definition 3.1. Let G be a finite subgroup of GL(m,C).

A meromorphic mapping g: M——N = Y/G 1is said to be G-primitive
if (i) there is a hypersurface B of M such that g 1is
holomorphic on M - B and g(M-B)/\M(A) = ¢, where /\ is
defined in (6) and (ii) there is no decomposition of g as
follows: g = heY . Here, h: M ——Y/H is a meromorphic mapping
and Y : Y/H —>N = ¥/G is the natural projection, where H

is a proper subgroup of G.

Remark %.2. In Namba (8], a meromorphic mapping

g: M——>N = Y/G was said to be G-indecomposable if g satis-

fies (i)' g(M)CCM(Fix 6) and (ii) in Definition 3.1. Here,
Fix G = UFix A, where Fix A 1is the fixed point set of A and
the union runs over all elements A of G with A 1. It is

clear that a G-primitive meromorphic mapping is G-indecomposable.

We can easily show (see Namba [ 87 ) that the meromorphic
mapping f: M——>N = Y/G in (8) is G-primitive.

The (mXm)-matrix-valued 1-form =, on Y in (7) is
GL(m,C)-invariant. So, it is G-invariant. Hence it can be
regarded as an (m X m)-matrix-valued rational {-form on L/C,
(see Iitaka (61), where I = C(N) is the field of meromorphic

functions on N = Y/G.

In fact, if we take algebraically independent elements

Uyy Upy = -t e, Ug (s = m%)

in L, then L/C(u1,u2, - - ,us) is a finite extemsion. Put

E=C(Y). Then E/L is 2lso a finite extension. By Iitaka [6],
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10

55 can be written as

— = T _du

1942y du, + -+ -+=_du -+ --(9)

+
L

where Ezj are (mXm)-matrix-valued meromorphic functions on

Y. For each element A of G, we have

- _
= A’*:;\1du1 + A*Clzduz +-0 4+ A*Eﬂsdus.

Since du1, du2,' T, dus are linearly independent over K,

*x .
pl= =

we have

(1 <3 <s). Hence E‘j are (mXm)-

matrix-valued meromorphic functions on N = Y/G. Thus S can

be regarded as an (mXm)-matrix-valued rational 1-form on L/C.

Example 3.3. Put m=2 and G = {1, A§ , where

We put

and
P= VT2 @7 Iiqdor

T = Vqp¥22r 5T Yq2¥220
P = V479229220 B = Tq¥22*qa2e
Then p, g, r, s, t and u generate the ring

c [y11, Yo1r Y427 yzzt]G of G-invariants and have the

following two relations:
t + u = pr,

tu = pzs + r2q ~ 4gs.
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1

In this case, ‘5 =y 'dy is written as

~udp+rdg 2sdr-rds
-pu+2qr -ru+2ps
L.
o=

2qdp~pdg -udr+pds

-pu+2gr -ru+2ps

which is a (2X2)-matrix-valued rational 1-form on L/C, where

. R G
L is the guotient field of C [y11, Yoqr Yqp0 y22:] .

Now, let fo
M ——3N

° .
SN
M N
be the resolution of indeterminacy of the meromorphic mapping
f in (8), where id is the identity mapping and € is a
proper modification (see Ueno C 107 ).

We operate f? on = . Then, by (9), we have

*o o ¥ g % S 2] % ¥y * .
%9 = (£58)altiu,) + (£52 5)d(ghu,) + + (£3 us)d(fous)

This is well defined by the condition (i) in Definition 3.1 and
is an (mXm)-matrix-valued meromorphic i-form on M . Moreover,
we can easily see that the original meromorphic 1-form &2 on

M is recovered by the relation

= 962, - --(10)

)
L

*

5

(Note that 9 : M, - §“1(S)————>M'- S is biholomorphic, where
S is the points of indeterminacy of f.)

Conversely, if f: M——N = Y/G is a G-primitive
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meromorphic mapping for a given finite subgroup G of GL(m,C),
then we can define an (mX m)-matrix-valued meromorphic 1-form

S on M by (10). S2 satisfies the integrability conditiomn (2),
for =, satisfies it. Let M XyY be the fiber product of M,

and Y over N. Then M XY is irreducible (see Namba [81 ).

Let
(o' Gl Xo——-—————>Mo><NY

be its normalization and put T, = 75'.0( y where
r.
7T s MOXNY —_ I-'Io
is the natural projection. Then
ot Xo“m--”)Mo
is a finite Galois covering with Au‘c(Io)Q G naturally. By

Theorem 1.4, 7T, induces a finite Galois covering
gLt X —— N

with Aut(m) o~ G naturally. Moreover, there is a commutative
X

0

7o)

M

o

where 7 1is a proper modification.

diagram:

T

=2 e—M

L/
S

Now, look at the following commutative diagram:

o( 2]
X, ——>M Xyl — Y
7ol x| M|
M > M >N = ¥/G
°© g f

Here, id 4is the identity mapping and (% is the natural
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projection. The holomorphic mapping

FO = g-d : XO~—-——%Y
infuces a meromorphic mapping

F:X— 5 Y =pPS (s:mz)

s . -
such that F-T7] FO.
It is now easy to see that F gives a fundamental solution

of the Pfaffian system
dF = F&2,

which is of meromorphic type with the monodromy group G. Thus

we conclude

Theorem 3.4. Let M be a complex manifold and G be a

finite subgroup of GL(m,C). Then every Pfaffian system on M
of meromorphic type with the monodromy group G can be obtained
by G2 in (10) for a G-primitive meromorphic mapping

f: M—0N = P5/6 (s = m?).

Remark 3.5. (i) 4An idea similar to our method can be
found in Klein[U 70 . (ii) Our method can also be applied to
Pfaffian systems with discrete monodromy groups. (iii) It is not
easy in genmeral to check the condition (ii) in Definition 3.1
for a given meromorphic mapping £: M ——Y/G. If a meromorphic
mapping f: M——>Y/G satisfies only the condition (i) in
Definition 3.1, then, by the same method, we still have a
Pfaffian system on M of meromorphic type with finite monodromy,

whose monodromy group is however a subgroup of G. (iv) If
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fo: Mo—-——éY/G is surjective with connected fibers, then we

can show that f: M —>Y/G is G-primitive (see Namba {87 ).

Example 3.6, We take the same group G = {1, A} as in

Example 3.3 and use the same notations. A meromorphic mapping

f: M3 N = P4/G can be written as

by

(f1 ’f29f3’f41f5’f6) = (P’q’rysrt’u);

where fj (1 €3 <;6) are meromorphic functions on M such

that -
f5 + f6 = f1f3 and
f_f, = £2Ff, + £2f, = 4f.f
sTe = T4y + I3%; oty -

In this case, £ is G-primitive if and only if (i)
f% - 4f2f4 # 0 and (ii) one of the following quadratic equations
does not have a solution in C€(M), the field of meromorphic

functions on M: x2 + f1x + f2 0,

2

X o+ f3x + f4 0.

Suppose that f is G-primitive. Then the Pfaffian system
dF = FS2 is of meromorphic type with the monodromy group G =
{ 1, A} , where

-fsdf1 + f3df2 2f4df3 - f3di'4
—f1f6 + 2f2f3 —f3f6 + 2f1f4

R =
-f1f6 + 2f2f3 _f3f6 + 2f1f4

.

Conversely, by Theorem 3.4, every Pfaffian system on M
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of meromorphic type with the monodromy group G = {1, A} can

be obtained in this way.

Example 3.7. Put G = {1, A, B, AB} , where

1 0 -1 0
A= and B =
0 -1 0 1/
We put
Y11 Y12
y=
Y214 Y22
and 2 2

u, y11: Us = ¥Yq94Y120 u3 = Y90

= 2 - -
V4 = J2q0 V2 T Ypq¥220 V3 T 22

Then Uy Upy u3, Vis Vo and v3 generate the ring
G . .

C [y11, Y420 Yoq> yzél of G-invariants and have the

following two relations:

_ _ .2
WUz = Uz, VVz = Vo

Hence a meromorphic mapping f: M——N = E4/G can be written

as f = (f1’f2’f39g1’g2’g3) = (u1’u2’u3’v1’vzvv3)’

where f, and g (1 £ j <3) are meromorphic functions on
M such that _ 2 _ .2
fif5 = £; and gq83 = &;-

In this case, £ is G-primitive if and only if (i)
f1g3 # f3g1 and (ii) none of the following two equations
has a solution in €(M):

2
x - f1 = 0, x2 . g = 0.
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Suppose that f 1is G-primitive. Then the Pfaffian system
dF = F& is of meromorphic type with the monodromy group G =
{ 1, 4, B, AB} » where

(£185+To85)d8,  (f8+15e,)dg,
2f, _ 2g1

2 =

183 = T38,
(£18p+758,)dey _ (£18y+7 58 )df,

2g1 2f

1

(f2g3+f3g2)df3 __(f2g3+f3g2)dg3
2f3 2g3

(£185+To85)d8;  (£,6,+158,)df;
285 2f5

Conversely, every Pfaffian system on M of meromorphic
type with the monodromy group G = {1, 4, B, AB} can be

obtained in this way.

4, Finite projective monodromy groups. Next, let PGL(m,C)

be the prcjective linear group and
1 —— ¢*——GL(n, ) 2—>PGL(m,¢) —> 1

the the natural exact sequence, where ¢* = ¢ - {o}.
For a Pfaffian system (3), let R be its monodromy

representation. The homomorphism
R = AR: T, (M - B, o) —>PGL(m,C)

is called the projective monodromy representation of (3). Its
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image % is called the projective monodromy group. The Pfaffian

system (3) is said to be with finite projective monodromy if @

is a finite subgroup of PGL(m,C). In this case, we have a finite

Galois covering o€ s X SM

which corresponds to ker ﬁ. Put

= [Ps-1 = CS/C* (S = mz)o

<

Then a fundamental solution F of (3) induces a holomorphic
mapping F:x -7 l(B) —>71. e e (11)

(B is the polar set of R.)

The Pfaffian system (3) is said to be of meromorphic type

with finite projective monodromy if (i) it has a finite

projective monodromy group and (ii) F in (11) can be extended
7N
to a meromorphic mapping F: I—>Y,

A similar argument to the proof of Propositian 2.1 shows

Proposition 4.1. Every Pfaffian system of Fuchsian type

with finite projective monodromy is of meromorphic type with
finite projective monodromy.
A meromorphic mapping
g: M——)/N\ = ?/@
for a finite subgroup (6 of PGL(m,C) is said to be @Lgrimitive

if (i) there is a hypersurface B of M such that g is
holomorphic on M - B and gM-B)A\WA) = &, where

A ={§E/Y\‘dety=0}

— 224 —
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~ o, . . o .
and ) ¢ Y—>N is the natural projection (¥ is the image of
y under the natural projection €5 —% = p5°1) ang (ii) a

similar condition to (ii) in Definition 3.1.
1

The (m x m)-matrix-valued meromorphic 1-form & = y~

o dy

on € (s =m?) is 6L(m,C)-invariant. In particular, it is
C*~invariant. Hence it can be regarded as an (mX m)-matrix-

~ -
valued meromorphic 1-form on Y = P° T and is PGL(m,C)-invariant.

A similar argument to the proof of Theorem 3.4 shows

Theorem 4.2. ILet M ©be a complex manifold and T be a

finite subgroup of ZPGL(m,C). Then every Pfaffian system on M of
meromorphic type with the projective monodromy group G can be
obtained by §2 in (10) for a @—primitive meromorphic mapping

£:m—>R =518 (s = n?).
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