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Introduction

Since a beautiful relationship between irreducible unitary representations of the
fundamental group 71(X) of a compact Riemann surface X and stable vector
bundles on X of degree zero was found out by M. S. Narasimhan and C. S.
Seshadri in [16], their results have been extended to correspondences between
representations of fundamental groups of various algebraic varieties and bundles
with parabolic structure and with Higgs structure (and recently parabolic Higgs
bundles). Stable parabolic bundles of parabolic degree zero correspond to irre-
ducible unitary representations of the fundamental group of such a Riemann sur-
face that a finite number of points are deleted from a compact Riemann surface.
And stable Higgs bundles of degree zero correspond to irreducible (non-unitary)
representations of the fundamental group of a compact Riemann surface. In
the case of Higgs bundles, the results have been extended to higher dimensional
cases. Moreover, in each case, the moduli of stable “bundles” had been con-
structed and proved that those moduli spaces are homeomorphic to those of
the corresponding representations. In this paper, we shall give a definition of
parabolic bundles in the higher dimensional cases and construct their moduli
spaces.

In §1 we shall extend various notions on parabolic bundles on curves to that
on non-singular projective varieties. We shall exploit C. T. Simpson’s description
of parabolic bundles on curves for our case. It leads us to simpler descriptions
of parabolic homomorphisms, parabolic Hilbert polynomials, parabolic exact se-
quences than our original forms or Seshadri’s. The moduli functor will be defined
in this section. In §2 we shall deal with the boundedness of palabolic sheaves
and the openness of the parabolic stability. C. T. Simpson’s techniques on the
estimation of dimensions of #%(E(m)) for semi-stable sheaves £ enabled us to
get a simpler proof of the “fundamental lemma” in {8]. §3 is devoted to con-
structing the moduli space. The method in this paper is a natural generalization



of that used by U. N. Bhosle [2].

Notation and Convention

Let f: X — S be a smooth, projective, geometrically integral morphism of
locally noetherian schemes, E be a coherent O x-module and let Ox (1) be an
f-very ample invertible sheaf. For a coherent O x-module F and a numerical
polynomial H, we denote simply by Quot(E, H) the Quot-scheme Quotg/x/s.
If s is a geometric point of 5, then X, means the geometric fiber of X over s and
E, = EQogsk(s). For a coherent Oy -module F, the degree of F' with respect to
Ox(1) is that of the first Chern class of F with respect to Ox,(1) = Ox(1)®Ox,
and it is denoted by degp (1) F' or simply deg F. Moreover the rank of F is
denoted by rk(F), u(F) = deg F/rk(F) and h'(F) = dimy,) H'(X,,F). For
polynomials fi(n) and fa(n), fi(n) < fo(n) (or, fi(n) % fo(n)) means that
fi(n) < fa(r) (or, fi(n) < fa(m), resp.) for all sufficiently large integers n.
For a polynomial H and a number m, H[m] denotes the polynomial such that
H[m|(z) = H(m + z).

1 Elementary Notions on Parabolic Sheaves

Let X be a non-singular, projective variety over an algebraically closed field %,
D C X be an effective Cartier divisor and let Ox (1) be a very ample invertible
sheaf on X.

Definition 1.1 Let E be a torsion free coherent Ox-module. A quasi-parabolic
structure ( with respect to D ) is giving a filtration

(1.11)  E= Fy(E)D Fo(E) D --- 2 Fi(E) D Fiy1(E) = E(-D),*

where [ is called the length of the filtration, F;(E)/Fi;1(F) is denoted by G;(E)
and the Hilbert polynomial x(G;(E)(m)) is called the i-th multiplicity polyno-
mial of (E, F,).

Definition 1.2 A quasi-parabolic sheaf (E, F,) is said to be a parabolic sheaf
if it has a system of weights a;,as,...,q;such that 0 < oy < o < --- <y <1
where [ is the length of the filtration. The weight ¢; is called the weight of the
filter F;(E) and x(G;(m)) is called the mutiplicity polynomial of the weight «;.

Let (E, F,, a.) be a parabolic sheaf. For all real numbers a, we put

Ea = F(E)(~[e]D)
1E(-D) is the Image (E® Ox(-D) — E)




if ai-1 < @ —[a} € a; where ag = oy ~ 1 and a;41 = 1. In particular, we have
E,, = Fi(E)fori=1,2,...,1+ 1. Then we have the following filtration

(131)  GjE=|J E(-mD)= |J EaD> - 2E.2E2---,

meZ a€R
where j is the inclusion of X — D to X. This filtration satisfies the following
conditions:

1. fa < 8, then E, D Eg.

2. If ¢ is a sufficiently small number, then E,_. = E,.
3. Eo41 = Ey(—D) for all real numbers a.

4. By = E.

5. The length of the filtration for 0 < a < 1 is finite.

Conversely, if | J,,cz E(—mD) has a filtration | J,cr £~ which satisfies the above
conditions, then F has a unique parabolic structure giving the filtration. So we
often denote a parabolic sheaf (E, F., a.) by simply E..

Definition 1.4 Let E, and F, be two parabolic sheaves. An Ox-homomorphism
f: E — Fis called a homomorphism of parabolic sheaves when the following
condition is satisfied:

f(Ey) C F, forall0 < a< 1.

We denote by HomP*(E., F.) the k-module consisting of all parabolic homo-
morphisms of E. to F, and by HomP*(E., F,) the sheaf of all parabolic homo-
morphisms.

Definition 1.5 A parabolic sheaf F, is a parabolic subsheaf of a parabolic sheaf
E, if the following conditions are satisfied:

1) F is a subsheaf of E and E/F is torsion free.

2) Fy C E, for all a.

3) If F, C Ej for some 3 > a, then F, = Fp.

Definition 1.6 A homomorphism f : E. — F, of parabolic sheaves makes F.,
a quotient parabolic sheaf of E, if the following conditions are satisfied:

1) f is surjective.

2) If f(E4) C Fp for some 3 > a, then F, = Fg.

Let E, be a parabolic sheaf and F be a subsheaf of E such that E/F is
torsion free. If we put F, = E, N F, then we get a parabolic subsheaf F, of
E.. ? This parabolic structure of F is the maximal one among all parabolic

*Since E/F is torsion free, E(~D)N F = F(-D).




subsheaves of E, with the underlying subsheaf F. We call this structure of F
the induced sub-structure. Let f be a surjective homomorphism of E to a
torsion free sheaf G. Put G, = f(E,). Then we get a parabolic quotient sheaf
G. of E,. This parabolic structure of G is the minimal one among all parabolic
quotient sheaves of E, with the underlying quotient sheaf f : E — G. We call
this structure of G the induced quotient structure.

Definition 1.7 Let f : E, — F. and g : F. — G. be two parabolic homomor-
phisms. The sequence

(1.7.1) 0—E-LF L6 —o0

is said to be exact if for all real numbers « the sequence

(1.7.2) 0— E, L2 F, 22 Gy — 0

is exact.

Note that if the sequence (1.7.1) is exact, then E, and G. have the induced
structures. Conversely, the sequence (1.7.1) is exact when E. and G, have the
induced structures and the sequence

0—E-L.Fif.c—0

is exact.
Every torsion free sheaf E has a natural parabolic structure:

E = F(E) C Fy(E) = E(~=D),0q = 0.

This structure is called the special (parabolic) structure .
For a locally free sheaf M on X, E. ® M has a natural parabolic structure
such that
(B« @ M), = Eq @M.

Hence, we regard E. ® M as a parabolic sheaf with this structure.

Definition 1.8 1) The parabolic Euler characteristic of E, is

1
X(E(-D))+ Y aix(Gi),

=1

where [ is the length of the filtration. It is denoted by par-x(E.). The poly-
nomial par-x(E.(m)) is called the parabolic Hilbert polynomial of E, and the
polynomial par-x(E.(m))/rk(F) is denoted by par-Pg,(m).



2) The parabolic degree of E. is

H n-=1 a.l
deg E + (n - 1)! x { the coefficient of m of the polynomi } 7

£'=1 atX(Gl(m))

where n is the dimension of X, r is the rank of E and Ox®", has the special
structure The parabolic degree of E, is denoted by par-deg E, and we denote
par-deg E./rk(E) by par-u(E.). The second term of the right side is denoted
by wt(E.).

It is easy to see that

1
(1.9.1) pa.r-x(E,.,(m)):/0 X(Ea(m))da
and
(1.9.2)

par-deg(E.)

(n = 1)! x the coefficient of m™~! of the polynomial
. ( par-x(E.(m)) — par-x(Ox®7.(m)) )

1
/ deg Eqda + 7 - deg D,
0

where r is the rank of E. Hence, if (1.7.1) is exact, then we have
par-x(E.(m)) + par-x(G.(1m)) = par-x(F.(m)),

par-deg( E.) + par-deg(G.) = par-deg(F.)

and

wt(E.) + wt(G.) = wt(F.).

Definition 1.10 1) E, is said to be parabolic stable (or, parabolic semi-stable)
if for every parabolic subsheaf F. of E, with 0 # F # E, we have

par-Pr (m) < par-Pg,(m) (or, X, resp.).

2) E, is said to be parabolic p-stable (or, parabolic y-semi-stable) if for every
parabolic subsheaf F, of E, with 0 # F # E, we have

par-u(F.) < par-pu(E.) (or, <, resp.).

3) Let e be an integer. FE. is said to be of type e if for every parabolic
subsheaf F, of E, with 0 # F' # E, we have

par-u(F.) € par-u(E.) +e.



Remark 1.11 1. Let f: E. — F. be an injective parabolic homomorphism
of parabolic sheaves with the same rank. Since [; x(Fu/Ea(m))da > 0,
par- Pg,(m) < par-Pp,(m) and if the equality holds, then f is an isomor-
phism of parabolic sheaves. Moreover, we have par-u(E.) < par-u(F.).
Hence, to verify the (u-) stability (or (u-) semi-stability) of E., it is enough
to check the inequality for only parabolic subsheaves F, such that E/F is
torsion free and F, has the induced structure.

2. For a parabolic sheaf E. with the special structure, the parabolic Hilbert
polynomial is not x(E(m)) but x(E(—D)(m)). So in general, the stability
of a sheaf E does not mean the parabolic stability of a parabolic sheaf E.
with the special structure.

Every parabolic semi-stable sheaf has a Jordan-Hélder filtration. More pre-
cisely, every parabolic semi-stable sheaf E, has a filtration

E=E°D>E'D>---DE™=0
such that for all i, (E*/E*!), with the induced structure is parabolic stable and
par-Pg,(m) = par-P(gi/gisry,(m) for all m.

We denote by gr(E.) the direct sum of parabolic sheaves @7 (E'/Et1).. It
exists unique up to isomorphisms. The proof of this fact is given by the similar
arguments as the case of semi-stable sheaves. (cf. [9]) Two parabolic sheaves E.
and F, are said to be equivarent if gr(E.) is isomorphic to gr( F.).

Remark 1.12 We have two induced structures on (E/E**1), i.e. the induced
sub-structure from the induced quotient structure of E/E*t! and the induced
quotient structure from the induced sub-structure of E'. But it is easy to see
that the two structures coincide.

Moreover every parabolic sheaf E,. has the Harder-Narasimhan filtration, i.e.
there exists the unique filtration

E=E°>E'D>---DE™=0
such that all (E*/E**!), are parabolic u-semi-stable and for all i
par-p((E'/E™),) < par-p((E"H/E™?),).

We can show this by a similar proof to that in the case of semi-stable sheaves.
(cf. [21])

Let f: X — § be a smooth, projective, geometrically integral morphism of
noetherian schemes, D C X be a relative effective Cartier divisor with respect
to f and let Ox (1) be an f-very ample invertible sheaf.



Definition 1.13 A coherent Ox-module F is said to be f-torsion free if it is
flat over S and for every geometric fiber X, of f, E ® Ox, is a torsion free
Ox,-module.

Note that if F is f-torsion free, then the canonical homomorphism
E®@ Ox(-D)— E

is injective. In fact, if it is not injective, then D contains an associated point z
of E and the point z is the associated point E ® O-1(s(;y) by the flatness of
E over S. The torsion freeness means that 2 is the generic point of the fiber
f~Y(f(z)). It contradicts the flatness of D.

Now we shall define the moduli functor for the family of parabolic semi-
stable sheaves. Let (Sch/S) be the category of locally noetherian schemes over
S. Let H and H,,H,,... H; be polynomials and fix a set of real numbers a, =
{a1,02,...,y} suchthat 0 € oy < a2 < -~ <y < 1.

Let T be an object of (Sch/S), E be a coherent Ox,-module, F, be a filtra-
tion of E as in Definition 1.1 and a. be a system of weights as in Definition 1.2.
(E, F.,a.) is called a flat family of parabolic sheaves on X1 /T if E is fr-torsion
free and all E/F;(E) are flat over T ( hence, all F; are flat over T'). Note that a
flat family of parabolic sheaves has a filtration as in (1.3.1), hence we denote it
simply by E..

Definition 1.14 For an object T of (Sch/S), set

E. is a flat family of parabolic sheaves } /

wHaae _
par-Ep;x/s(T) = {E' on X7/T with the property (1.14.1)

where ~ is the equivarence relation defined by (1.14.2).

(1.14.1) For every geometric point ¢t of T', (Ey, F. ., a.) is parabolic semi-
stable, x(Ey(m)) = H(m) and x((E:/Fi+1(E),)(m)) = Hi(m), where F,,
is the filtration :

Ei = R(E), D K(E), D -+ D Fiy1(E), = Eo(-D).

(1.14.2) E. ~ E, if and only if there exist filtrations E = E® 5 E' D
+DE™=0and E' = E°> E1>... 3 E™ = 0 such that for every
geometric point ¢ of T, their restrictions to X; provide us with Jordan-
Hélder filtrations of E,. and E;,,, respectively, gr(E.) = @ E'/EH! is
T-flat and that gr(E.) = gr(E.) ® L for some invertible sheaf L on 7.

For a morphism ¢ : T° — T in (Sch/S), g~ defines a map of par-'fg?;/'s(T)

wHeae

to pa.r-ED/X/s(T'). Then par-fgx‘;;s is a contravariant functor of (Sch/S) to

(Sets). We denote by pa.r-Eg;';.'/‘s the sub-functor of par~fg;’;;5 consistiong of
all flat families of parabolic stable sheaves.



2 Boundedness and Openness

Let f : X — § be a smooth, projective, geometrically integral morphism of
noetherian schemes, D C X be a relative effective Cartier divisor with respect to
Jf and let Ox(1) be an f-very ample invertible sheaf. Assume S is connected. We
denote by h the degree of Ox (1) on fibers. Fix polynomials H and Hy, Hs,... H;
and a set of real numbers a. = {a1,a2,...,;}such that 0 < ey < a2 < --- <
a; < 1.

Let F(H, H.,o.) be the family of classes of parabolic sheaves on the fibers
- of X over § such that E, is contained in F(H, H,,a.) if and only if E, is a
parabolic semi-stable sheaf on some geometric fiber of X over S, x(E(m)) =
H(m), x((E/Fi+1(E))(m)) = H{(m) and the system of weights is a.. For every
member E. of 7(H, H.,ax), the parabolic Hilbert polynomial has the following

description;
i

(2.0.1) par-x(E.(m)) = H(m) - Ze,-H,-(m),
=1
where £; = a1 — a; ( set ajpp = 1).
If E, is of type ¢, then E is of type e + deg D. In fact, we have

the coefficient of m™~1 of

the polynomial x(E|p(m)) ) =rk(E)deg D.

wt(E.) < (n—-1)x (
Hence, u(F) < par-u(F.) € par-u(E.)+ e € p(E) 4+ deg D + e.
By the boundedness result on the family of coherent sheaves (cf. [10]), we
have

Proposition 2.1 The family F(H, H.,a) is bounded if one of the following
conditions is satisfied :

1) S is a noetherian scheme over a field of characteristic zero.
2) The rank is not greater than 3.

3) The dimension of X over S is not greater than 2.

Definition 2.2 Let e be a non-negative integer and let E, be a parabolic sheaf
on some geometric fiber X,.

1) E is said to be of c-type e if for general non-singular curves C =
Dy«D3e---+Dyy,D; € |Ox,(1)], every subsheaf E'(# 0) of E ® O¢ has a
degree < rk(E")(u(E) + e).

2) E, is said to be parabolic e-stable (or, parabolic e-semi-stable) if E, is
parabolic stable (or, parabolic semi-stable, resp.) and E is of c-type e.

3) E. is said to be strictly parabolic e-semi-stable if it is e-semi-stable and
if for every parabolic quotient sheaf F, of E, with par-Pg, = par-Pr,, F, is
parabolic e-semi-stable.



Let F°(H, H.,a.) be the sub-family of F such that E. is contained in
F¢(H,H.,a.) if and only if E, is parabolic e-semi-stable.
By Lemma 3.3 in {8], we have

Proposition 2.3 The family F°(H, H,, a.) is bounded.

Let u-F(e,r) be the family of coherent sheaves on the fibers of X over §
such that E is contained in u-F(e,r) if and only if E is y-semi-stable, E is of
c-type e and rk(E) < 7. The following proposition is Corollary 2.5 in [22] for
our case. (See for the proof, C. T. Simpson [22].)

Proposition 2.4 For each p-F(e,r), there erists an integer B such that for all
members E of p-F(e,r), we have

R%(E(m)) < h-tk(E)(m + B + u(E)/h)*/n! for allm > =B — u(E)/h,
and h°(E(m)) = 0 for all m < —B — u(E)/A.

In the case of stable sheaves, the following was proved by M. Maruyama (8]
using the fundamental lemma 2.2 in [8]. C. T. Simpson got a simpler proof in the
case of caracteristic zero using the Harder-Narasimhan filtration ([22]). In the
parabolic case, we can also prove the following using the fundamental lemma 2.2
in [8]. Lemma 2.6 is equivalent to it. We give a simple proof using the technique
of C.T.Simpson in [22].

Proposition 2.5 There exists an integer N such that

1) if E. € F(H,H.,.) is parabolic stable, then for allm > N and all
parabolic subsheaves F, of E, with 0 # F # E,

/ " RO(Fo(m))de/tk(F) < / ' KO B. (m))de/rk(E),
0 0

2) ifE.€ f”(H,H.,a.) is not parabolic stable, then for allm > N and
all parabolic subsheaves F, of E. with 0 # F # E,

/0 " RO(Fo(m))da/rk(F) < /0 ' WO Ba(m))de/rk(E),

and there erists a non-trivial parabolic subsheaf E', of E. such that forallm > N
and i > 0,

/ * BB o(m))doJrk(E") = / ' hO( Ea(m))da/1k(E),
0 4]

R'(E'(m)) = 0 and E'(m) is generated by its global sections.
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Lemma 2.6 (Fundamental lemma 2.2 in [8]) Let S be a locally noetherian,
connected scheme, f : X — § be a smooth, projective, geometrically integral
morphism of relative dimension n and let Ox(1) be an f-very ample invertible
sheaf on X. Let a be a rational number, r be a positive integer and P(m) be a
polynomial of degree n with the highest term hm™[n! where h is the degree of
Ox (1) on fibers of f. Then there ezist integers L and M such that if F is a
torsion free coherent Ox,-module of rank r' < r for some geometric point s of
S and if F has the properties ;

1) for general non-singular curves C = Dy - Dy ---- - Dn._1,D; € |Ox,(1)|,
every coherent subsheaf E(# 0) of F @ Oc¢ has a degree < rk(E)a,
) u(F)< M,

then for all m > L, the following inequality holds ;
R°(F(m)) < #' P(m).
To prove Lemma 2.6, we need the following lemma

Lemma 2.7 Assume that u and a are rational numbers with v < a and 7 is
a positive integer. Let F(a,u,r) be the family of classes of coherent sheaves
on fibers of X over S such that F is contained in F(a,u,r) if and only if F is
torsion free, tk(F) < r, u(F) < u and F satisfies the condition 1) in Lemma 2.6.
Then there exist an integer B, a non-negative number C and a polynomial ®(z)
of degree < n — 2 such that

h-tk(F)

n!

u + (rk(F) - 1)a)"

R(F(m)) < ()

(m+ B+ +®(m) ifm+ B> —u/fh,
if —a/h <m+B < —u/h, RO(F(m)) < C and if m+ B < —a/h, h°(F(m)) = 0,
B does not depend on u and ®(z) has the property ;

forallz > ~B —ufh, ®(z)>0 and ®(—-B-u/h)>0.

Proof. We prove the assertion by an induction on n. In the case of n = 1,
apply Proposition 2.4 to the case u-F(0,r), then we have an integer B, depending
only on X,Ox(1) and r such that for all u-semi-stable sheaves £ of rank < 7,
we have

RO(E(m)) < h-rk(E)(m + B, + ﬂ?) if m+ By > —u(E)/h,
and h%(E(m)) = 0if m + B; < —u(E)/h.

Let F = F! D F? 5 ... F* D 0 be the Harder-Narasimhan filtration of F'
and let Q' = F*/F**, Then we have 4(Q') < u(F) < u and by the assumption



1) in Lemma 2.6, 4(Q*) < u(Q!) < a. Since all Q* are in u-F(0,r), we have

RO(F(m) < Do h%Qi(m))

IA

Z h-rk(Q')max{(m + B + E-(—-,?—i—)),[)}

IA

h(tk(F) = 1) max{(m + B + %), 0}
+h-max{(m + B + %),0}.

This is the desired one in the case of n = 1.
Let H be a general hyperplane in [Oy,(1)]. By the exact sequence

0 — F(m—-1) — F(m) — Flg(m) — 0

and the induction hypothesis, there exist Bn_;,Cn-1 and ®,_(z) such that if
m+ By 2 —’U,/h,

W2 (F(m)) = A(F(m - 1)) <
h - rk(F) u+ (tk(F)=1)a ™}
(n—1)! h - rk(F) )

if ~a/h < m+ B,y < ~ufh, RO(F(m))=h®*(F(m-1)) £ Cpy andif m+B,_; <
—a/h, B°(F(m)) = h®(F(m - 1)). Set B, = By—1 + 1 and Cr = Cn_1(252).
Then, if m+ B, < ~a/h, we have h°(F(m)) = 0 and if —~a/h < m+ B, < —u/h,
we have h°(F(m)) < C,. Moreover, if m 4+ B,, > —u/h, then we have

(m + Bn—l + + Q71—1(7'77')7

RO(F(m)) < Cat

m+1 h- rk(F) u+ (rk(F) - 1)a nel
/-B,._,_u/h ( (n- 1“’)! (4 Ba—1 + _hrr(—F—)_m) + Qn_l(z)) dz.

We can take a polynomial &,(z) so that ®',(z) = ®(z +1), Bn(~Bn—u/h) >0
and if m + B, > —u/h, the right-hand side of the above inequality is smaller

than
u+ (tk(F) - 1)a®
Thok(E) ) + &a(m).

Then B,,C, and ®,(z) satisfy the desired conditions. O

Proof of Lemma 2.6. Let P(m) = h-m™/n!+ aym™~! + (terms of degree <
n — 2) and u be a rational number such that

BBt B+
n.

ut(r'=1)

h(B + o a) < ay for all positive integers r' < r.

11



Then there exists an integer L > —B — u/h such that for all m > L and
0 <7 <r, we have

h u+(r'=1a
ai(m B4 =

Then for M = u and L, the assertion of Lemma 2.6 holds. 0O

)" + &(m) < P(m).

Proof of Proposition 2.5. By the boundedness of F°(H, H.,a.), there exists
an integer Ny such that forall E, € F°(H, H.,0.),i>0,m > Nyand0 < a < 1,
we have hi(Ea(m)) = 0. Hence f[) h®(Eq(m))da/tk(E) = par-Pg,(m). Let us
apply Lemma 2.6 to the case P(m) = par-Pg,(m), r = rk(EF) and @ = u(E) + e
where E, is a member of F°(H, H,, a.). Note that these don’t depend on choices
of E.. Then we obtain integers L and M satisfying the conditions in Lemma
2.6. We may assume that L > N;. Let F be a coherent subsheaf of E. Since F
satisfies the condition 1) in Lemma 2.6, for all a with 0 < a < 1, the subsheaf
Fy = Eo N F of E also satisfies it. If u(F) < M (hence, u(F,) < M ), then we
have

hO(Fy(m)) < tk(F)P(m) forallm > L.

Therefore we have
1

f hO(Fa(m))da/rk(F) < P(m) forall m > L.
()

Let G be the family of classes of parabolic sheaves on the fibers of X over § such
that F, is contained in G if and only if for some member E. of F°(H, H.,a.),
F. is a parabolic subsheaf of E. such that E/F is torsion free, u(F) > M and
F. has the induced structure. Since F°(H, H.,a.) is bounded, G is bounded by
Corollary 1.5.1 in [11]. Therefore there exists an integer L’ > L such that for
all F. € G,i>0,m > L' and 0 < a < 1, we have h*(Fy(m)) = 0 and F(m) is
generated by its global sections. The set of all parabolic Hilbert polynomials of
F, with F, € G is a finite set. Hence, there exists an integer N > L’ such that
forall F, EGandm > N,

'[) " WO(Fa(m))da/tk(F) = par-Pr.(m) < P(m)

and moreover if F, is a parabolic subsheaf of a parabolic stable sheaf E, €
Fe(H,H.,a.), we have

1
f RO(Fa(m))da/tk(F) < P(m).
o
If F, is a parabolic subsheaf of E. € F°(H, H.,a.) and p(F) > M, then there

exist F/, € G and an injective parabolic homomorphism of F,. to F’,. Then
we have [} hO(Fy(m))da/tk(F) < [y h%(F'a(m))da/tk(F') < P(m). Hence,

12
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the assertion 1) and the previous part of the assertion 2) was proved. If E. €
F¢(H,H.,a.) is not stable, then there exists a non-trivial parabolic subsheaf
E'. of E, such that par-Pg; = par-Pg,. For such E'., we have u(E') >
par-u(E) — deg D. We may assume that par-u(E) — degD > M. Hence,
E’, must be contained in G. Therefore, we have [ h%(E’s(m))da/rk(E’) =
Jo h°(Ea(m))da/rk(E) and E’'(m) is generated by its global sections. O

Strictly parabolic e-semi-stablility is an open property. In fact, we have:

Proposition 2.8 Let g: Y — T be a smooth, projective, geometrically integral
morphism of locally noetherian schemes, Oy(1) be a g-very ample invertible
sheaf, D C Y be a relative effective Cartier divisor and (E,F.,a.) be a flat
familly of parabolic sheaves on Y/T. If H*(Y:, Oy(1)®k(t)) = 0 for alli > 0 and
t € T, then there exist open sets T*° and T® of T such that for all algebraically
closed fields k,

T (k) {t e T(K)|(E, F.,a.) ® k() is strictly parabolic e-semi-stable }
T°(k) = {teT(k)(E,F.,a.)®k(t) is parabolic e-stable }.

Proof. First, we shall prove that the property that a parabolic sheaf is of
type e (or, parabolic semi-stable or, parabolic stable, resp.) is open. Before
prove the above, we shall prepare some lemmas.

Lemma 2.9 Let X — § be a projective morphism of locally noetherian schemes,
Ox (1) be an f-very ample invertible sheaf, ¢ : E — F be an O x-homomorphism
of coherent Oy -modules flat over §. Then for all polynomials P(m), the follow-
ing subset of § is closed :

Z(P) = {s € §| x(ker(¢5)}(m)) = P(m)}
Moreover, if for all points s € S, rk(ker(e,)) = r, then
W(a) = {s € S| deg(ker(¢s)) 2 a}.
is closed.

Proof. We may assume that S is connected and noetherian. Set C = F/¢(E).
For sufficiently large integer m and all points s of §, we have

K(C(m)ly,) = dim £.(C(m)) @ K(s).

Hence, for sufficiently large m, the function h%(C(m)]| ) is upper semicontinuous
and since h°(F(m)|x,) is constant on S, the function hd((qi(m),)(E(m))) is lower
semicontinuous. Moreover, since hO(E(m)ix,) is constant on .5, the function
h®(ker(¢(m),)) is upper semicontinuous. Obviously, ker(¢(m),) = ker(¢,)(m).



If we choose a large M such that for all points s of S, h®(ker(¢,)(M))
x(ker(¢,)(M)) and x(ker(¢,)(m)) > P(m) if and only if x(ker(¢,)(M))
P(M), by the upper semi-continuity, we know that Z(P) is closed.

Since the degree of a coherent sheaf A" on X, of rank r is (n — 1)!x ( the
coefficient of m™~! of the polynomial x(K(m)) - r - x(Ox,(m))), the closedness
of W(a) is the immediate result of that of Z(P). O

vV i

The following lemma is an easy exercise, hence, we leave the proof to the
reader.

Lemma 2.10 Let {f1, f2,... fi} be a finite set of upper semi-continuous func-
tions on a topological space T such that for all i and integers N, the set fi(T)N
{r € R|r < N} is finite. Then the function S_, fi is upper semi-continuous.

We may assume that T is connected. Let G be the family of coherent sheaves
on fibers of Y over T such that F is contained in G if and only if F is a subsheaf
of E; such that E,/F is torsion free and deg F' > rk(F)(u(E;) — deg D + e) where
t is a point such that F' is on ¥;. By Corollary 1.5.1 in [11], G is bounded. Let
© be the set of all Hilbert polynomials of members of G. Then © is a finite set.

For each member 4 of @, let Qg be the quot-scheme Quot(E, H ~ 8) where H
is the Hilbert polynomial of E on fibers. The universal quotient on Yg, defines
the exact sequence:

0—F —E®0g — G —0.

For every a such that 0 < a < 1, let ¢, be the canonical homomorphicm of F
to E/E, ® Og,. Then by virtue of Lemma 2.9, the function deg(f’{yq)a is an
upper semi-continuous function on &p. Moreover by Lemma 2.10, the function
par-deg(Fly,)_ is also upper semi-continuous. Hence, the set

Zy = {q € Qo| par-p((Fly,),) > par-p(E.ly,) + €}

is a closed subset of Q4. Set

U=T- | mlZe)
g€

where 74 is the projection of Qg to T. Then U is an open subset of T and it is
the set of all points ¢ of T such that E.|y, is of type e. In fact, for all points
q of Zy, E.Iyq is not of type e. And if t; be a point such that E‘.IY‘0 is not of
type e, then there exists a subsheaf F of E;, such that Ey,/F is torsion free and
par-u(F.) > par-u(E.}Ko)-{- e, (hence, u(F) > p(E) — deg D + e), where F, has
the induced structure. So, F is contained in §G. Therefore tg is in 74(Zy) where
6 is the Hilbert polynomial of F.

The proof of the openness of the property that a parabolic sheaf is parabolic
semi-stable (or, parabolic stable, resp.) is similar to the above if we use the

14



(parabolic) Hilbert polynomials instead of (parabolic) degrees. Note that by
Lemma 2.9 and 2.10, for large integer m, the function pa.r—x((F}Yq (m)) is

upper semi-continuous on g when @4 and F defined as above.

Now by a similar proof as in Lemma 3.5 of [8], we see that the property
that a parabolic sheaf is parabolic e-semi-stable (or, parabolic e-stable, resp.) is
open. Moreover, the proof of this Proposition 2.8 is similar to that of Lemma
3.6 in [9] if we use the technic as above. Hence, we omit the rest of the proof.
a

Remark 2.11 By the above proof, we know that the property that a parabolic

Haaee

sheaf is parabolic e-stable is open. Hence, pa.r-ED/X/S (or, par—fg;;/';, resp.)

is an open subfunctor of par- ED/A/S (or, par-_fg;';/'s, resp.) consisting of all flat
families of parabolic e-stable (or, strictly parabolic e-semi-stable, resp.) sheaves.

3 Construction of Moduli Space
From now on, we shall fix the following situation:

(3.0) Let S be a scheme of finite type over a universally Japanese ring Z
and let f : X — 5 be asmooth, projective, geometrically integral morphism such
that the dimension of each fiber of X over § is n. Let Ox(1) be an f-very ample
invertible sheaf such that for all points s in § and i > 0, H'(X,,0x(1)®0x,) =
0. Let D C X be a relative effective Cartier divisor.

Fix a non-empty family 7°(H, H., a.). By the boundedness of 7¢(H, H.., a.),
there exists an integer Np such that for every member E, of 7°(H, H.,a.), the
conditions 1), 2) in Proposition 2.5 and the following conditions are satisfied:

(3.0.1) For all i and m > Ny, F;(E)(m) and (E/F;(E))(m) are generated
by its global sections.

(3.02) Hi(F(E)(m)) = 0 and Hi(E/F(E))(m)) =0 forall j > 1,
and m > No.

Fix an integer m > Np and let V;, be a free =-module of rank H(m). Let Q
be the Quot-scheme Quot(Vin @ Ox, H[m]) and let V;» ® Ox, — E(m) be the
universal quotient. Moreover, let (; be the Quot-scheme Quot(V;, ® Ox, Hi[m])
and let V, ® qu', — E.’(m) be the universal quotient for i = 1,...,/.

Let v : @ — Picx/s be the morphism determined by the invertible sheaf
det E(m) (cf. [8]) and let P be a finite union of connected components which
contain ¥(Q). Then we have a P-morphism 7 of @ to the Gieseker space Z
defined in [8}. Z/P is the P"-bundle in étale topology and for a K-valued

15



geometric point z of P, a fiber Z, is P(Hom(A™V;, @ k(z), H°(~L,,))V) where L,
is the invertible sheaf corresponding to z and r is the rank of E on fibers. (For
details, see §4 in [8].)

Q

I~ z
N
p
We shall define a sequence of morphisms

Ri—-Ry— - > Ri—Q,

coherent Ox, -module E;(m) and surjections E;1,(m)® Oxg, — E;(m), induc-
tively. Let R; be the Quot-scheme Quot(E(m), Hi[m]) and let E(m)® Oxz, —
Ej(m) be the universal quotient. Assume that those are defined for j > i+ 1. Let
R; be the Quot-scheme Quot(E;4y(m), H;[m]) and let E;+1(m)®0x&, — Ei(m)
be the universal quotient.

Then we have the sequence of surjections of O xn,»modules which are flat
over R;.

11

Vin ® Oxp, 2. Em)e Oxpg, 2L B(m)® Oxg, — - 2, Eq(m).

Note that R; is a closed subscheme of Q x Hfi=i Qj. (Use the lemma 4.3 in
(23].) Let ¢/, : E(m)® Oxg,(=D) — Ei(m) ® Oxjp, be the restriction of ¢
to E(m) ® Oxg, (—=D). By the lemma 4.3 in (23], there exists a unique closed
subscheme T of R; such that for all morphisms g : T — Ry, g"(¢';) = 0 if and
only if g factors through I'. Let Q° be an open subscheme of @ such that for every
algebraically closed field K, Q°(K) = {z € Q(K)|E(m) ® k(z) is torsion free}
(cf.[11]). Note that the restriction of v to Q° is an immersion (see Propaosition
4.9 in (8]). Set R? = R; Xq Q%and =T XqQ Qo

I — R} — Q°x[,@ — @Q°
l l ! l
I - R — @X M@ _, Q

On Xpe, we have the sequence of surjections:

-~ - 1. =
Vin 8 Oxg 2 E(m) @ Ox g 2+ Ei(m) @ Oxg 22 -+ 24 Ey(m) @ Ox g
Let F;11(E(m)) be the kernel of the homomorphism

@i 0 Pi10--- 0 E(m) @ O0x0 — Ei(m)® Oxpo

— 101 —
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fori=1,...,1 and let Fy(E(m)) = E(m)® Ox_,. Since F1(E(m)) is (f X 1po)-
torsion free, the homomorphism E(m)® Oxo(=D) = E(m)® Ox,, is injective
and hence, Fi41(E(m)) =.E(m) ® Oxpo(~D). Then (E(m)® OXrO,F.,a.) is
a flat family of parabolic sheaves on Xro over I'C.

Let U; be the maximal open subscheme of Q; such that for all points z of
Ui and j > 1, H(Ei(m) ® k(z)) = 0 and Vi, ® Oy, — fin(Ei(m) ® Ox,, ) is
surjective where f; is the projection of Xy, to U;. Then f;_(E’,—(m) ®0x,. )is a
locally free Ors,-module of rank H;(m). Hence we have a morphism v; : U; =G,
where G; is the Grassmann scheme Grass(V,, ® Og, Hi(m)). Set

i
.. TO 0 .
T =T X gouqyi_, 0 (@ IT V-

Then, we obtain a homomorphism ¥ : T' — Z x [T, Gi.

r ¥ Z x I, Gi
EN T x v
QO X Hé:l Ui

By virtue of Proposition 2.8, there exists an open subscheme I'** (or, I'* ) of
I such that a geometric point z of I is contained in I'** (or, I'* ) if and only if the
corresponding parabolic sheaf (E(m) ® Oxp, F.,a.) ® k(z) is strictly parabolic
e-semi-stable (or, parabolic e-stable , respectively) and the homomorphism

(3.0.1) HO(¢® k(2)) : Vi ® k(z) — HO(E(m) ® k(z))
is an isomorphism.
Proposition 3.1 The morphism ¥ : T — Z x [I.., Gi is an immersion.

Proof. Let V;,, ® Og, — H; be the universal quotient on G; and let J; be the
kernel of the quotient.

0 —Ji — Vn®0Og, — H; — 0.

Moreover, the universal quotient sheaf on X¢ defines the following exact se-
quence. ~ _
0— K — V,®0xq, — E(m) — 0.

From these sequences, we have the following exact commutative diagram of
Oxgyc,-modules. (Set X = Xgxa;-)

— 102 —
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0
’I‘\':@O:“\, == E@O}

|

0—’J.‘®0} —_— Vm®(9x, —"H.*®0}—’ 0

I | |

L®0z — Em@0y— F ——0

| l

0 0

where 7 = V,;, ® O /(Ix ® Ox + Ji ® O3) that is not flat over @ x G;. Let
us consider the Quot scheme Quot(H, ® O ,H;[m]). Set X = X x Quot(H; ®
O3, Hi[m]). On X, we have the universal quotlent
(3.1.1) H:®@O05 — F —0.
Let 6 be the following homomorphism of K® Oy to F.

EQOy —V,®0y — H;® Og — F.
Then by Lemma 4.3 in [23], we have a closed subscheme A; of Quot(H; ®
O3, Hi[m]) such that for every morphism g : T — Quot(H; ® 0%, Hi[m]),
(1x x ¢)*(6) = 0if and only if g factors through A;. Then, on X4, the surjection
(3.1.1) is factored as follows:

Hi® Ox,, — FQ Ox,, 2 Fe Oxa,-
Set

A = {z € Ai| Ay, is isomorphism}.

Since A = A; — ma,(Supp(kerA)), A? is an open subset of A;. Let 7 be the
projection of Quot(H;® O, H; [m]) to @ x G; and let A; be the scheme theoretic
image of A; by 7. Since 7 is proper, 7|5, : Ai — A; is surjective. Set

A? = {z € A;| The Hilbert polynomial of Fly, is Hifm]}.

Then AO is an open subset of A; . In fact, for all points z of A; — A?, the
Hilbert polynomial of 7|y _ is not equal to that of F |x,- Hence,

A = A; —n(a-AY)
(A7)

- 103 —
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Let ¢ : [[; A% — A? be the flattenning stratification of F® Ox ,,- (For the

definition, see for example Lecture 8 in {15].) Then by the universality of [[; Z?j ,

n:A% = A9 factors through II; Z?j — A? . Moreover, by the universality of
A9, the morphism ¢ : [[; A% — A? factors through 5. Therefore there exists an
isomorphism of A? to 1; Z?j and we obtain the following commutative diagram:

A? isomorphism Uj Z?j
N A
&0

In particular, ¢ is proper. Therefore, all Z?j are closed subscheme of 5?
and those images are open. Note that : may not be an isomorphism, since, in
general, 5? is not reduced. But we have known that : A? — 5? is a closed
immersion.

By Lemma 4.3 in (23], we know that Quot(H; ® Og, Hi[m]) is a closed
subscheme of Q x Q;. Hence, A is a subscheme of ) X Q; and we obtain an
immersion: .

A? XQ Ag XQ * XQ A? — QX HQ,
i=1

Moreover, we have an immersion determined by n: A? — A? :

i

AY XQ A XqQ - XQAfJ —'»QXHG,'.
i=1
We know that I'** is a subscheme of Q x Hﬁ=1 @Q; and the projection of I'"* to
Q x Qi factored by A?. Hence, I'** is a subscheme of A9 xg A xq --- xg AY.
Therefore, I'** is a subscheme of @ x Hi':l G;. Since v : Q° — Z is an immersion
and I'** is contained in Q° x Hf-=1 Qi, ¥ :I'** - Zx H£=1 G; is an immersion.
a

From now on, we assume that all a; are rational numbers. Set G = SL(V;)
which acts on I', @, Q;, Z and G;. ¥ is the G-morphism and I'** (or, I'*, respec-
tively) is the G-invariant open set of T.

We shall define a G-linearized invertible sheaf on Z x Hf-=1 G;. Let E, be a
member of F°(H,H.,a.) and let ¢; = a;41 — a; for i = 1,...,1l, where we put
a1 = 1. Let Oz(1) be a tautological invertible sheaf which has the canonical
G-linearization and let Og;(1) be a tautological invertible sheaf on G; which
has also the canonical G-linearization. Now, let L be the G-linearized invertible
sheaf:

{
Oz(par-Pg,(m)) ® ® Og;(&i)-

=1
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The open set consisting of all semi-stable ( or, stable ) points with respect to this
G-linearization is denoted by (Z x [T'=, G:)* (or, (Z x [T'; G:)’, respectively).
Those are G-invariant open sets of Z x [I'_, G;.

Recall some facts on stable points of Z or G;. Let z be a K-valued geometric
point of Z x [T}, Gi. We denote the point of Z(K) (or, Gi(K)) determined by
z by T (or, giz, respectively). We use the same symbol g; . for the surjection
Jiz ¢ Vi @ K — J; ;. which corresponds to z and moreover, we denote its kernel
by W;,. T is identified with the homomorphism T; : A" Vi, ® K — H°(L.)
where L, is the invertible sheaf corresponding to p(z) € P. Each subspace
W of V,, ® K has the maximal (or, minimal) T;-dimension which is denoted by
dim7, W (or, dimy, W, respectively). (See for the definitions of these dimensions,
Definition 3.1in [23].) In general, dimy, W < dimz, W and if equality holds, then
it is denoted by dimg, W.

Lemma 3.2 Let z be a K -valued geometric point of Z x [[}, G:i. Assume that
the point T, in Z(K) has the following property:

(3.2.1) For all subspaces W of V, ® K, dimp W = HEIT,W.

Then the point z is semi-stable (or, stable ) with respect to the G-linearized
invertible sheaf L if and only if for all non-trivial vector subspaces W of V,, ® K,
the following inequality holds:

par- Pg, (m)(dimz, W - dim(Vy, ® K) — rdim W)

1
+ Y e(dimW - dim Wi, — dim(Vin ® K) - dim(W;z N W)) > 0
i=1
(or,> 0, respectively).
Let o(W, z) be the left-hand side of the above inequality. Since dim(V,, ®
K) = H(m) and dimW;; = H(m) — Hi(m). Hence, we have the following
description of o(W, z):

{
o(W,z) = dimW(Y_ e H(m)— Hy(m)) - par-x(E.(m)))

=1

4
+H(m)(par-Pg,(m) - dimg, W - ) _ &; dim(W; - N W))

=1

1 ! :
= dimW((1 - a))H(m) =Y e;Hi(m) - H(m) + 3 & Hi(m))
=1 i=1
!
+H(m)(par-Pg,(m) - dimg, W - 3 &; dim(Wi . N W)

i=1

i
= H(m)(par-Pg (m)-dimr,W — Y & dim(Wiz: N W) — ay dim W).

i=1
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Proposition 3.3 1) ¥(I'**) C (Z x [T\, G)™.
2) ¥(I*) € (Z x 11 Gi)'.
3) If a point z is in T** but not in ['*, then ¥(z) is not in (Z x [['2, G:)’.
Proof. Let z be a K-valued geometric point of I'’* and W be a non-trivial
vector subspace of Vi, ® K. Let the surjection ¢, : V,® Ox, — E(m) and E.(m)

correspond to z € I'**. By the definition of I'**, H%(¢,) : Vin ® K — H°(E(m))
is an isomorphism. Set F(m) = ¢ (W ® Ox,). Then we have

(3.3.1) dimr, ,, W = rk(F).
Since W and H®(F(m)) are subspaces of Vo, ® K 2 HY(E(m)), W C H°(F(m)),

hence, we have

(3.3.2) dim W < R°(F(m)).

The subspace W} y(5) of Vin ® K is identified with HO(Fiy1(E)(m)) by H(¢2).
Since

HY((Fi41(E) N F)(m)) = H(Fipa(E)(m)) 0 HO(F(m)),

we have
(333) dim w’i,‘l‘(r) nw S ho((R.;.x(E) n F)(m))
Therefore, we obtain

o(W,¥(z)) 2 H(m)(par-Pg.(m) - rk(F)

l
=(arh®(F(m)) + Y eih®((Fia (E) N F)(m))))

i=1

H(m)(par-Pg,(m) - rk(F) - /0 1 R Fa(m))da).

By virtue of Proposition 2.5 and Lemma 3.2, the assertions 1) and 2) have been
proved. Let E. be a parabolic subsheaf of E. which satisfies the last condition
in Proposition 2.5. Set W = H°(E’(m)). Then we have

H((E' A Fea(B))(m))'= W N Wi go).

Since E’(m) is generated by its global sections, dimr, ,, W = rk(£"). Hence,
1 :
a(W,¥(z)) = H(m)(par-Pg,(m) - tk( E") —/ hO(E'4(m)da) = 0.
0

So, ¥(z)isnot in (Z x [T'.; G))'. O

Let T be the scheme theoretic image of I'** in (Z x [J', Gi)”’. Then by
virtue of Theorem 4 of [18], there exists a good quotient £ : [ >YandYis
projective over 5. Set M, =Y — E(f“” —TI'**). Then M, is quasi-projective over
S. Moreover M, contains M, = £(T'*) as an open subscheme. By the similar
arguments as in §5 in [8}, we have



Theorem 3.4 M, is a coarse moduli scheme of par-Eg?;;;, that is, M. has
the following properties.

1) For each geometric point s of S, there exist a natural bijection :
8, : par-Z17¢ 75 (k(s)) — Me(k(s)).

2) For T € (Sch/S) and a flat family of parabolic sheaves E. on X7 /T such
that E. has the property (1.12.1) and for every geometric point t of T, E,|x, is
parabolic e-stable, then there exists a morphism

fE.: T — M.
such that for all points t in T(k(s)), fg.(t) = 8;(E.|x,) Moreover, for a mor-
phism g : T" = T in (Sch/S),

fB. 09 = fixxa)y By

3) If M’ € (Sch/S) and maps

¢’y : par- Eg; 75 (k(s)) — M'(k(s))

have the above property 2), then there exists a unique S-morphism T of M, to
M’ such that T(k(s))o8, =0, and To fg = f'g, for all geometric points s of
S and for all E., where f'g, is a morphism given by the property 2) for M’ and
8.

By the similar arguments as in §5 of [8], we know that there exists a unique
morphism v, . of M. to M, if € < €’. Moreover, M, can be regarded as an open
subscheme of M, through v, .. Taking inductive limit of {M.}, an S-scheme

Mg/;/‘s is obtained. By the same proof as Theorem 5.6 of [8], we have

H.a. Ha,ae

Theorem 3.5 The functor par-ED/j\,/S has a coarse moduli scheme MD/X/S in
(Sch/S). Moreover, Mg/-f/.s is separated and locally of finite type over S.

For the functor par~ED7f/'Se, by the similar argument as in §4 of [9}, we have

Theorem 3.6 M. has the following properties.
1) For each geometric point s of S, there ezists a natural surjection :

B, : par-Tpyars (k(s)) — Mo(K(s)).

— 107 —
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2) For T € (Sch/S) and a flat family of parabolic sheaves E. on X7/T such
that E. has the property (1.12.1) and for every geometric point t of T, E.|y, is
strictly parabolic e-semi-stable, then there exists a morphism

5. T — M.

such that for all points t in T(k(s)), f§.(t) = 8([E.|x,]) where [] means the
equivarence class defined by (1.12.2). Moreover, for a morphism ¢ : T' — T in
(Sch/S),we have

fB. 29 = flixxg)(EM)
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