Elliptic 3－folds and Non－Kähier 3－folds
 by Yoshinori Namikawa（ Sophia university ）

Introduction

The purpose of this report is to study the relationship between Calabi－Yau 3－folds with elliptic fibrations and compact non－Kahler 3 －folds with $K=0, b_{2}=0, q=0$ ．The non－Kähler 3 －folds referred to here have firstly appeared in Friedman＇s paper［ 3 ］．In this paper he has shown that if there are sufficiently many（ mutually disjoint） （－1，－1）－curves on a Calabi－Yau 3－fold，then one can contract these curves and can deform the resulting variety to a smooth non－Kähler 3－fold with $K_{2}=0, b_{2}=0, q=0$ ．For example，in the case of a （general）quintic hypersurface in \mathbb{P}^{4} ，one can do this procedure for two lines on it．This phenomenon is analogous to the one for （－2）－curves on a K3 surface．In fact a（－2）－curve on a K3 surface often disappears in deformation，and this fact just says that one can contract this（－2）－curve to a point and can deform the resulting variety to a（smooth）K3 surface．By this phenomenon，we can explain the varience of the P1card number of $K 3$ surface in deformation，and it is well－known that a general point of the moduli space of K3 surfaces corresponds to a non－projective（but Kähler）K3 surface on which there are no（－2）－curves．Taking such a non－projective surface into consideration，one has a famous theorem that two arbitrary $K 3$ surfaces are connected by deformation．But there is a difference between Calabi－Yau 3－folds and K3 surfaces，that is， a（－1，－1）－curve never disappears like a（－2）－curve in deformation． This is closely related to the fact that Calabi－Yau 3－folds have a
large repertory of topological Euler numbers. For the speculation around this area, one may refer to the paper of M. Reld [12]. The main results of this paper is the following:

Theorem A.

Let X be a Calabi-Yau 3-fold which has an elliptic fibration with a rational section. Then the bimeromorphic class of X is obtained as a semi-stable degeneration of a compact non-Kähler $3-f o l d$ with $K=0$, $b_{2}=0$ and $q=0$, $1 . e$. there is a surfective proper map f of a smooth 4-dimensional variety \mathfrak{x} to a l-dimensional disc Δ such that

1) $f^{-1}(t)$ is a compact non-Kähler 3-fold with $K=0, b_{2}=0, q=0$ for $t \in \Delta^{*}$.
2) $f^{-1}(0)=\sum_{i=0}^{n} X_{i}$ is a normal crossing divtsor of x, and
3) X_{0} is bimeromorphic to X.

Here we will explain the motivation of the formulation in Theorem A. If there are sufficiently many (-1,-1)-curves on X in the Friedman's sense explalned above, one has a flat morphism f of a complex analytic varlety x to a disc Δ whose central fibre is the varlety obtained by contraction of these curves, and whose general fibre is a non-Kahler 3 -fold with $K=0, b_{2}=0, q=0$. In this situation, $\mathfrak{X}_{0}:=f^{-1}(0)$ has a number of ordinary double points, but one may assume that the total space $\mathfrak{x} 15$ smooth \ln a suitable condition (e.g. (1.1) in this report). Next blow up these points. Then the central fibre consists of a number of irreducible components, namely, the smooth variety $\tilde{\mathfrak{x}}_{0}$ obtalned by the blowing ups of the ordinary double points on \mathfrak{x}_{0} and the \mathbf{P}^{s} 's corresonding to each point blown up. However this is not yet a semi-stable degeneration because the multiplicity of each \mathbf{P}^{3} is two. So taking a suitable base change. one has a semi-stable degeneration. This is a typical example of Theorem A.

The Construction of the Proof

In this report, a Calabi-Yau 3-fold means a smooth projective 3-fold with $c_{2} \neq 0, q=0, K$ trivial. Since $c_{2} \neq 0$, those 3 -folds are excluded which are, up to etale covers, Abelian 3-folds or the products of $k 3$ surfaces and elliptic curves. Here we will briefly review the Friedman's construction of non-Kahler 3 -fold with $K=0$, $b_{2}=0$. Assume that X is a smooth compact 3 -fold with K_{X} trivial and that mutually disjoint $(-1,-1)$-curves C_{1}, \ldots, C_{n} are given on X. Here a (-1,-1)-curve means a smooth rational curve \mathbb{P}^{1} whose normal bundle $N_{\mathbb{P} 1 / X}$ is ismorphic to $\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P} 1}(-1)$. Then one can contract these curves to points and one has a compact 3 -fold \bar{X} with ordinary double points: $\pi: X \longrightarrow \bar{X}$. For simplicity we will write $P_{i}=\pi\left(C_{i}\right)$, $Z=\underset{i}{\operatorname{u}} P_{i}$ and $C=\underset{i}{\amalg} C_{i}$. We have the following commutative exact diagram:

In the above diagram, the map α is interpreted as follows:
First we have an isomorphism $B: H^{0}\left(T_{\bar{X}}^{1}\right) \rightarrow H_{Z}^{2}\left(T_{\bar{X}}^{0}\right)$ by using the exact sequence defined locally at each P_{i} :

$$
\left.0 \rightarrow \mathrm{~T}_{\bar{X}}^{0} \rightarrow \theta_{\mathbb{C}^{4}}\right|_{\bar{X}} \rightarrow \theta_{\bar{X}} \rightarrow \mathrm{~T}_{\bar{X}}^{1} \rightarrow 0
$$

Here we note that (X, P_{1}) can be embedded into ($\mathbb{C}^{4}, 0$) because P_{i} is an ordinary double point. By the isomorphism B, α is identified with the natural map $H_{Z}^{2}\left(\mathrm{~T}_{\bar{X}}^{0}\right) \rightarrow H^{2}\left(\mathrm{~T}_{\bar{X}}^{0}\right)$. In our case it is easily shown
that $\pi_{*}{ }^{\theta} X=T_{\bar{X}}^{0}$. Next using the Leray spectral sequences: $H_{Z}^{\mathrm{p}}\left(\mathrm{R}^{\left.q^{\pi_{*}} \theta_{X}\right)} \Rightarrow H_{C}^{p+q^{\prime}}\left(\theta_{X}\right)\right.$ and $H^{\mathrm{p}}\left(R^{\left.q^{\pi_{*}} \theta_{X}\right)} \Rightarrow H^{p+q^{\prime}}\left(\theta_{X}\right)\right.$, we have $H_{Z}^{2}\left(T_{\bar{X}}^{0}\right)=H_{C}^{2}{ }^{\left(\theta_{X}\right)}$ and $H^{2}\left(T_{\bar{X}}^{0}\right)=H^{2}\left(\theta_{X}\right)$, which implies that the above map is identified with the following maps:

$$
\begin{array}{ccc}
H_{C}^{2}\left(\theta_{X}\right) & \rightarrow & H^{2}\left(\theta_{X}\right) \\
\| & & \| \\
H_{C}^{2}\left(\Omega_{X}^{2}\right) & \xrightarrow{\rightarrow} & H^{2}\left(\Omega_{X}^{2}\right),
\end{array}
$$

where the vertical identifications come from the fact that K_{X} is trivial. If the map θ is surjective, then we have $\mathbb{T}_{\bar{X}}^{2}=0$. On the other hand, $H^{0}\left(T_{\bar{X}}^{1}\right) \simeq H_{Z}^{2}\left(T_{\bar{X}}^{0}\right) \simeq H_{C}^{2}\left(\Omega_{X}^{2}\right)$ are isomorphic to a n-dimensional vector space $\mathbb{R}_{i=1} \mathbb{C}$, where each factor corresponds to C_{i}. θ is nothing but the map which associates each basis of the above vector space to the fundamental class of C_{i} in X. Summing up these results, we have the following fact(1.1):
(1.1) Let X be a Calabi-Yau 3-fold and $C_{1} \ldots, C_{n}$ mutually disjoint (-1,-1)-curves on X. We employ the same notation as above. Then since $H^{2}\left(\Omega_{X}^{2}\right)=H^{4}(X, \mathbb{C})=H_{2}(X, \mathbb{C})$ by the Hodge decomposition and the Poincare duality, the map θ can be identified with the map i_{*} : ${ }_{i=1}^{\text {® }_{1}} H_{2}\left(C_{i}, \mathbb{C}\right) \rightarrow H_{2}(X, \mathbb{C})$. In particular, if i_{*} is surjective and there is an element $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{Ker} i_{*}$ such that $a_{i} \neq 0$ for all i, then \bar{X} is deformed to a smooth compact non-Kähler 3-fold with $K=0, b_{2}=0$ and $q=0$.

A typical example of (1.1) is a general quintic hypersurface X in \mathbb{P}^{4} and two lines on it. In this case, since $\operatorname{Pic}(X)=\mathbb{Z}$, it is rather easy to check the conditions in (1.1). But in general it is very difficult to find the curves satisfying the condition in (1.1) even
if a Calabi-Yau 3-fold X is given explicitly. In another sense, (1.1) tell us an interesting example where the class 8 is not stable by small deformation. In fact, \bar{X} is a Moishezon space, hence is in class 6 . But the non-Kähler 3 -fold V obtained by a small deformation of X is not in class 8 . This is shown as follows. First one has $h^{0,2}(V)=0$, because $h^{0,1}(V)=0$ and $K_{V}=0$. If V is in class \mathbb{B}, then it is bimeromorphic to some compact Kähler manifold Y. Since $h^{0,2}(V)=0, h^{0,2}(Y)=0$. In fact, by the desingularization theorem [4], we have a complex manifold \tilde{V} which dominates both V and Y, birationally and properly. Using spectral sequences and Chow lemina[5] for (\tilde{V}, V) and (\tilde{V}, Y), we have the result. But $h^{0 \cdot 2}(Y)=0$ implies that Y is a projective manifold. Since the algebraic dimension of V equals to 0 , this is a contradiction. So V is not in class 8. Since $K(\bar{X})=0$, this is a counter-example to a question posed in [2].

To return from the digression, we will explain the construction of the proof. First we define a Weierstrass model.

(1.2) Definition

A Weierstrass model $W(\mathscr{L}, a, b)$ over a variety S is a closed subvariety in $\mathbb{P}_{S}\left(\theta \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{3}\right)$ defined by the equation $Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}$, where $\mathscr{L} \in \operatorname{Pic}(S), a \in H^{0}\left(S, \mathscr{L}^{-4}\right), b \in H^{0}\left(S, \mathscr{L}^{-6}\right)$ and

$$
Z: 0 \rightarrow 0 \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{3}
$$

$$
X: \mathscr{L}^{2} \rightarrow 0 \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{3}
$$

$$
Y: \mathscr{L}^{3} \rightarrow 0 \oplus \mathscr{L}^{2} \oplus \mathscr{L}^{9}
$$

are natural injections.
We denote by Σ, the section of $W(\mathscr{L}, a, b)$ over S defined by $X=Z=0$, and denote by π the natural projection of $W(\mathscr{L}, a, b)$ to S.

Next let X be a Calabi-Yau 3-fold which has an elliptic fibration with a rational section. Then by [8](Theorem 3.4), X is birational equivalent to a Weierstrass model $W=W\left(K_{S}, a, b\right)$ with only canonical singularities, where S is one of the following: $\mathbb{P}^{2}, \Sigma_{i}(0 \leq$ $i \leq 12)$. This is a starting point of our proof. Since W has singularities in the case $S=\Sigma_{i}(3 \leq i \leq 12)$ if we take a and b generally, we must set up the following definition.

(1.3) Definition

Let $W=W\left(K_{S}, a, b\right)$ be a weierstrass model over $S=\Sigma_{i}(3 \leq i \leq 12)$. Then W is called general if
(1) W has singularities only on $F=\left\{p \in W ; p \in \pi^{-1}\left(D_{0}\right), X=Y=0\right\}$, where D_{0} is a negative section of S, and (2) let $m D_{0}$ and $n D_{0}$ be the fixed components of $\left|K_{S}^{-4}\right|$ and $\left|K_{S}^{-6}\right|$, respectively, then $\operatorname{div}(a)=G+m D_{0}$ and $\operatorname{div}(b)=H+n D_{0}$, where G (resp. H) intersects D_{0} transversely and G. $D_{0} \cap H . D_{0}=$. Here G. H_{0} (resp. H. D_{0}) denotes the intersection of D_{0} and G (resp. H).

We will employ Definitions(1.2),(1.3). Let $W=W(\mathscr{L}, a, b)$ be a Weierstrass model over S. Then W is obtained as a double cover of $\mathbb{P}_{S}\left(\theta \oplus \mathbb{Z}^{2}\right)$ branched over $B=\left\{X^{3}+a X Z^{2}+b Z^{3}=0\right\}$. If W has singularities, then we can use the following.

(1.4) Canonical Resolutions

Let Y be a smooth variety and B a reduced Cartier divisor on it. Assume that $\theta_{Y}(B)=L^{22}$ for a line bundle L on Y. Then we have a double cover X of Y branched along B. To resolve the singularities on X, we consider the following process:

Perform a succession of monoidal transformations $\nu_{1}(1 \leq i \leq m)$ with smooth centres $D_{1} \subset B_{1} \subset Y_{1}(1 \leq 1 \leq m)$, where $Y_{1}=Y, B_{1}=B$, $Y_{j+1} \xrightarrow{\nu_{j}} Y_{j}$ and $B_{j+1}=\nu_{j}^{*} B_{j}$ for each j. And if we write $B_{m}=\vec{B}+$ $\Sigma_{k} \mu_{1} \mu_{k} E_{k}$, where B is a proper transform of B by $v:=\nu_{R} o \ldots o v_{1}$ and $E_{k}{ }^{\prime}$ s are v-exceptional divisors, then $\bar{B}+\sum_{k, \mu_{k} \text { odd }} E_{k}$ is a smooth divisor. If the above process is possible, then we have a double cover branched along $\bar{B}+\underset{i, \mu_{i}: \text { odd }}{ } E_{i}$ and obtain a smooth variety \tilde{X} which is a resolution of X. We call the above process a canonical resolution.

Let $W=W\left(K_{S}, a, b\right)$ be a general Weierstrass model over $S=\Sigma_{i}(3 \leq i \leq 12)$ in the sense of Definition(1.3). Then we can perform a canonical resolution on W. In our case, it is easily verified that $\operatorname{Sing}(W)=\left\{q \in \mathbb{P} ; q \in p^{-1}\left(D_{0}\right), X=0 \quad Y=0\right\}$, where $\mathbb{P}=\mathbb{P}_{S}\left(\theta \oplus K_{S}^{2} \oplus K_{S}^{3}\right), D_{0}$: negative section, and that the singularities are locally trivial deformations of a rational double points except for a finite number of points which are so-called dissident points. So the problem is how to overcome the difficulties which arise at these dissident points. For example, consider the case where $i=5$. (In the case where $i=3,4,6,8,12$ there are no dissident points.) Since G and H never vanish simultaneously on a point q of Sing(W) in Definition(1.3), we may consider two cases: (1) only G vanishes at q, and (2) only H
vanishes at q. But it follows that q is dissident only in the case (2). So we may consider the situation where $q=(0,0,0,0), W: y^{2}=$ $x^{3}+t^{3} x+s t^{4} \ln (x, y, s, t)-s p a c e\left(=\mathbb{C}^{4}\right)$. Then the process of a canonical resolution will be found in (Figure 1). As a consequence, we have the following Proposition.

(1.5) Proposition

Let $W=W\left(K_{S}, a, b\right)$ be a Weierstrass model over S, where S is one of the following: $\mathbb{P}^{2}, \Sigma_{i}(0 \leq i \leq 12)$. Then:
(0) $K_{W}=\theta_{W}$
(1) In the case $S=\mathbb{P}^{2}$ or $\Sigma_{i}(0 \leq i \leq 2)$, a general Weierstrass model W is smooth and Pic $(W)=\pi^{*} P i c(S) \oplus \mathbb{Z}[\Sigma]$. Moreover W is simply-connected.
(2) In the case $S=\Sigma_{i}(3 \leq i \leq 12)$, a general Weierstrass model W has canonical singularities such that $\operatorname{Sing}(W) \simeq \mathbb{P}^{1}$ and that they are locally trivial deformations of rational double points except for finite number of points. Moreover W has a canonical resolution $\mu: \tilde{W} \rightarrow W$ such that $a) \tilde{W} \rightarrow S$ is a flat morphism if $3 \leq i \leq 8$ or $i=12$, b) if we view \tilde{W} and W as fibre spaces over \mathbb{P}^{1} by means of the ruling $S \rightarrow \mathbb{P}^{1}$, then, for a general point $t \in \mathbb{P}^{1}, \mu_{t} \tilde{:} W_{t} \rightarrow W_{t}$ is a minimal resolution of a surface with rational double points, and c) $K_{\tilde{W}}^{\sim}=\theta_{\tilde{W}}^{\sim}$.
Remark. In the case where $9 \leq i \leq 11, \tilde{W}$ is not flat over S. But we can factiorize μ into $\tilde{W} \rightarrow \bar{W} \rightarrow W$, where $\overline{\bar{W}}$ is a normal variety with the singularities which are locallytrivial deformations of a rational double point of A_{1}-type along $C_{i}(1 \leq i \leq r)$, where $C_{i}(1 \leq i \leq r)$ denote mutually disjoint smooth rational curves on \bar{W}. Moreover $\overline{\bar{W}}$ is
flat over S, and $\tilde{W} \rightarrow \overline{\operatorname{W}}$ is a trivial resolution of the above singularities. For details, seb (Figures 1,2).
(3) For an arbitrary point $t \in \mathbb{P}^{1}$ except for a countable number of points, \tilde{W}_{t} is naturally an elliptic $K 3$ surface and its Mordell Weil group is trivial.
(4) Let $E_{j}(1 \leq j \leq m)$ be μ-exceptional divisors. Then Pic $(\tilde{W})=$ $(\pi \circ \mu)^{*} \operatorname{Pic}(S) \oplus_{i} \underline{E}_{1} \mathbf{Z}\left[E_{j}\right]$.
(5) \tilde{W} is simply-connected.

Theorem A'

Let W and \tilde{W} be a general Weiertsrass model and its resolution as above. Then we have:
(1) In the case $S=\mathrm{P}^{2}$ or $\Sigma_{i}(0 \leq i \leq 2)$, there are $\mathbf{m u t u a l l y}$ disjoint $(-1,-1)$-curves C_{1}, \ldots, C_{4} on W such that $i_{*}:{ }_{i}{ }_{9}{ }_{1} H_{2}\left(C_{i}, \mathbb{C}\right) \rightarrow H_{2}(W, \mathbb{C})$ is surjective and that one can obtain, by the procedure of (1.1), a smooth compact non-Kahker3-fold with $K=0, b_{2}=0$ and $q=0$.
(2) In the case $S=\Sigma_{i}(3 \leq i \leq 12)$, there are mutually disjoint (-1,-1)-curves $C_{1}, \ldots, C_{n(i)}$ on the variety \tilde{W}, which is obtained from \tilde{W} by the composite of flops of $(-1,-1)$-curves. For $C_{i} s$, $\left.i_{*}:{ }_{j=1}^{n}{ }_{1}^{i}\right) H_{2}\left(C_{j}, \mathbb{C}\right) \rightarrow H_{2}(\tilde{W}, \mathbb{C})$ is surjective, and one can obtain. by the procedure of (1.1), a smooth compact non-Kahller 3-fold with $K=0$, $b_{2}=0$ and $q=0$.

Example (without proof)
Set $S=\Sigma_{0}$. Let $p: S \rightarrow \mathbb{P}$ denote one of its ruling. Then por: $W \rightarrow P^{1}$ is a K3-fibration. Let l_{1} and l_{2} be mutually distinct
fibre of p, and let D_{1} and D_{2} be mutually distinct section of p with $\left(D_{i}\right)^{2}=0$. Note that $\pi^{-1}\left(l_{i}\right) \xrightarrow{g_{i}} l_{i}(i=1,2)$ and $\pi^{-1}\left(D_{i}\right) \xrightarrow{h_{i}} D_{i}(i=$ 1,2) are elliptic $K 3$ with canonical sections which comes from Σ, respectively. Let us consider the following four mutually disjoint (-1,-1)-curves:
C_{1} : a section of g_{1} with $\left(C_{1} \cdot \Sigma\right)_{W}=0$
C_{2} : a section of g_{2} with $\left(C_{2}, \Sigma\right)_{W}=1$
$C_{9}:$ a section of h_{1} with $\left(C_{s} \cdot \Sigma\right)_{W}=0$
C_{4} : a section of h_{2} with $\left(C_{4} \cdot \Sigma\right)_{W}=1$.
Then the condition in (1.1) is satisfied.

As for Theorem $A^{\prime}\left(\right.$ in particular Theorem $A^{\prime}(2)$), it is impossible to give a proof in this report. Details will be found in [io].

The aim of this report is to explain how to derive Theorem A from Theorem A '. Let X be a Calabi-Yau 3 -fold which has an elliptic fibration with a rational section. Then, as is mentioned before, X is birational equivalent to a weierstrass model W with only canonical singularities. But W is not general in the sense of Definition(1.3). Though W has only canonical singularities, its singularities are possiblly worse than the ones described in Definition(1.3). Let us consider the complete linear system $|\mathscr{L}|$ on $P_{S}\left(\theta \oplus K_{S}^{2} \oplus K_{S}^{9}\right)$, where $\mathscr{L}=$ $\theta_{\mathbb{P}}(1) \otimes \pi^{*} K_{S}^{-6}$ and $\theta_{\mathbb{P}}(1)$ is a tautological line bundle of $\mathbb{P}\left(\theta \oplus K_{S}^{2} \oplus K_{S}^{9}\right)$. Let Λ be a sublinear system of $|\Psi|$ which consists of the elements of the following form :

$$
\varphi_{1} Y^{2} Z+\varphi_{2} X^{9}+\varphi_{9} X Z^{2}+\varphi_{4} Z^{9}=0,
$$

where $\varphi_{1}, \varphi_{2} \in H^{0}\left(S, \theta_{S}\right), \varphi_{S} \in H^{0}\left(S, K_{S}^{-4}\right)$ and $\varphi_{4} \in H^{0}\left(S, K_{S}^{-6}\right)$. Then consider the universal family over $T=\mathbb{P}(\Lambda), g: \| T$. Assume that $g^{-1}\left(t_{0}\right)=W$. If we choose a general point t on T, then $\|_{t}=g^{-1}(t)$ has the property in Theorem A^{\prime}. Let C be a curve in T passing through t_{0} and t. Then we have a family of weierstrass models over C, which we denote again by $g: \| C$. In the case where $S=\mathbb{P}^{2}$ or $\Sigma_{i}(0 \leq i \leq 2)$, a general fibre of g is smooth. But in the case where $S=\Sigma_{i}(3 \leq i \leq 12)$, a general fibre has singularities by Proposition (1.5)(2). In this case we have the following proposition.

(1.6) Proposition

Let S be a surface isomorphic to $\Sigma_{i}(3 \leq i \leq 12)$ and C a curve.
Consider the following flat family of Weierstrass models over S :

V: $Y^{2} Z=X^{9}+a X Z^{2}+b Z^{9} \quad, \quad a \in H^{0}\left(S \times c, p_{2}^{*} K_{S}^{-4}\right)$, $b \in H^{0}\left(S \times c, p_{2}^{*} K_{S}^{-6}\right)$

Assume that $\|_{t}$ is generai for every $t \in C$ except for a finite number of points $\left\{t_{1}, \ldots, t_{n}\right\}$. Then thers is a projective resolution $\Xi: \tilde{\boldsymbol{r}} \rightarrow \boldsymbol{r}$ such that $\Xi_{t}: \tilde{\boldsymbol{r}}_{t} \rightarrow \mathbb{F}_{t}$ becomes the resolution in Proposition(1.5) for every $t \not\left\{\left\{t_{1}, \ldots, t_{n}\right\}\right.$.

So we have a flat projective morphism $\tilde{g}: \tilde{\mathbf{r}} \rightarrow C$ whose general fibre is smooth. For a general point $t \in C, \tilde{r}_{t}$ satisfies Theorem $A^{\prime}(2)$, that is, there is a sequence of flops of $(-1,-1)$-curves $D_{j} \subset \|_{t}^{(j)}$:

and there are (-1,-1)-curves on $\tilde{\pi}$ to be contracted. Let us consider the irreducible component H of $H i l b \tilde{w} / C$ which contains [$\left.D_{0}\right]$. Note that Hilb $\tilde{\boldsymbol{r}} / C$ is etale over C at $\left[D_{0}\right]$ because D_{0} is a (-1,-1)-curve on $\tilde{\boldsymbol{r}}_{t}$. Hence H is determined uniquely, and H is etale over C at [$\left.D_{0}\right]$. Taking a suitable finite cover of C, we may assume that $H_{r e d}$ is birational to C. Then we have the following diagram:

where \mathscr{I}_{t} is a (-1,-1)-curve on $\tilde{\boldsymbol{r}}_{t}$ for every point $t \in C^{*}$: a Zariski open subset of C. Restrict $\tilde{g}: \tilde{\boldsymbol{r}} \rightarrow C$ to C^{*}, and consider \tilde{g}^{*} : $\tilde{r}^{*} \rightarrow C^{*}$. Then by [1](Corollay 6.10), we can perform a flop of g^{*} relatively over C^{*}, and get $\tilde{g}^{(1) *}: \tilde{r}^{(1) *} \rightarrow c^{*}$. Here $\tilde{\boldsymbol{r}}^{(1)^{*}}$ is in general not a scheme, but an algebraic space. We can compactify $\tilde{r}^{(1) *}$ by $[\|]$ and have a proper surjective map $\tilde{g}^{(1)}: \tilde{\boldsymbol{F}}^{(1)} \rightarrow c$. $\tilde{\boldsymbol{r}}^{(1)}$ is assumed to be smooth by [4], and $\tilde{\tilde{F}^{(1)}}$ is birational to $\tilde{\boldsymbol{r}}$ over C. Since $\tilde{r}_{t_{0}}$ contains an irreducible component birational to W and both $\tilde{\boldsymbol{r}}$ and $\tilde{\boldsymbol{r}}^{(1)}$ are smooth, $\tilde{\boldsymbol{r}}_{t_{0}}^{(1)}$ also contains an irreducible
component birational to W. As a consequence, by repeating this process, we may assume from the first that there are (-1,-1)-curves to be contracted on $\tilde{\boldsymbol{r}}_{t}$. In the case where $S=\Sigma_{i}(3 \leq i \leq 12)$, we consider $\tilde{g}: \tilde{\|} \rightarrow C$ which is obtained by repeating above process. And in the case $S=\mathbb{P}^{2}$ or $\Sigma_{i}(0 \leq i \leq 2)$, we consider the original $g: r$ $\rightarrow C$. Then we can use the following, if necessary, after a base change by a finite cover of C :

(1.7) Proposition

Let $h: a y C$ be a proper flat morphism with connected fibres of an irreducible smooth 4-dimensional algebraic space g to a smooth curve C. Let $t_{0} \in C$ be a fixed point and W an irreducible component of ${ }^{9} t_{0}$. Assume that there is a proper flat family of curves in 9 :

 disjoint (-1,-1)-curves on ${ }_{t}$, (2) these curve satisfy the condition in (1.1), and (3) we can obtain from ${ }_{t}$ a non-Kähler 3-fold with $K=0, b_{2}=0$ and $q=0$ by the process in (1.1). Then there is a proper surjective map of a 4-dimensional complex manifold \mathfrak{x} to a 1-dimensional disc Δ such that
() $f^{-1}(t)$ is a compact non-Kähler 3-fold with $K=0, b_{2}=0$ and $q=$ 0 , for $t \in \Delta^{*}$,
2) $f^{-1}(0)=\sum_{i=1} W_{i}$ is a normal crossing divisor of \mathfrak{F}, and
3) W_{0} is bimeromorphic to W.

Proof) Let C^{*} be a suitable Zariski open subset in C. Then by [1] (Corollary 6.10), we can contract g_{i}^{*} 's on 9^{*} relatively over C^{*}, and obtain $\overline{\mathrm{y}}^{*}$. We can compactify $\overline{\mathrm{y}}^{*}$ and have proper flat map of a normal algebraic space \bar{y} to C. Then \bar{y} is birational to over C. Consider the function field K of y, and let v be a discrete valuation ring which corresponds to W. Let L be a suitable Galois extension of K, then the normalizations of ay and \bar{y} in L become schemes by the argument of [il] (proposition 1). Denote them by \mathscr{I} and $\bar{\Phi}$, respectively. Then (resp. \bar{y}) is the quotient of \mathscr{q} (resp. $\bar{q})$ by the Galois group $G=\operatorname{Gal}(L / K)$. Let v_{1}, \ldots, v_{k} be the extension of v in L. Then each element $g \in G$ induces a permutation of $v_{i} s$. If g sends v_{i} to v_{j}, then we will write $j=g(i)$. By [7](p153), for v_{1}, there is a variety $\overline{\mathcal{T}}_{v_{1}}$ birational to $\overline{\mathscr{I}}$ such that $(1) \overline{\mathscr{q}}_{v_{1}}$ is projevtive over $\overline{\mathscr{X}},(2) \overline{\mathscr{I}}_{v_{1}} \supset\{z \in \overline{\mathscr{I}} ; \overline{\mathrm{X}}$ is isomorphic to \mathscr{I} at z, and (3) if v_{1} dominates a point y of $\overline{\mathscr{Y}}_{v_{1}}$ and a point y, on \mathscr{I}, then θ_{y} dominates θ_{y}. In this case we may assume that $\overline{\bar{w}}_{v_{1}}$ and $\overline{\bar{Y}}$ are isomorphic at every point except for points over $t_{0} \in C$. We denote $\overline{\underline{\Phi}}_{v_{1}}$ by $\overline{\mathscr{T}}_{1}$, and define $\overline{\bar{Y}}_{g}$ for each $g \in G$ by the following fibre product:

$\overline{\underline{x}}_{1}$	\sim	\bar{x}_{g}
\downarrow		\downarrow
$\overline{\text { I }}$	$\stackrel{\sim}{\leftarrow}$	$\overline{\text { T }}$

On the other hand, viewing $\overline{\bar{x}}_{g}$'s as $\overline{\bar{x}}$ - schemes, we have :
(*)

$$
\begin{aligned}
& \bar{\Phi}_{1}-\rightarrow \bar{\Phi}_{g!}^{\text {birat. }} \underset{\sim}{t} \ldots \ldots \rightarrow \bar{\Phi}_{g_{\ell}} \\
& \sim G=\left\{1, g_{1}, \ldots, g_{\ell}\right\} .
\end{aligned}
$$

Take a closure $\tilde{\mathscr{I}}$ of the graph of $(*)$ in $\underset{g}{\Pi} \overline{\mathscr{I}}_{g}$, and embed $\overline{\mathscr{I}}$ into $\underset{g}{I} \overline{\mathscr{I}}$ in such a way that $z \rightarrow \prod_{g} z$. Then the natural projection from
 the action of G to $\underset{g}{\Pi} \overline{\mathscr{I}}$ defined in such a way that g sends $g_{i}-$ th factor $\overline{\mathscr{I}}$ of $\underset{\boldsymbol{g}}{\boldsymbol{I}} \overline{\mathscr{I}}$ to $g g_{i}-$ th factor $\overline{\mathscr{Y}}$ of $\underset{g}{\overline{\mathscr{I}}}$ and that this map of $\overline{\mathscr{Y}}$ to itself coincides with the natural g-action of $\overline{\mathscr{y}}$. Clearly $\overline{\mathscr{V}}$ is stable by this G-action, and this action colncides with the original
 take a normalization of \tilde{q}, then the action of G naturally extends. So we may assume that $\tilde{\mathscr{I}}$ is normal. Then the quotient \tilde{y} of $\tilde{\mathscr{V}}$ by G is an algebraic space by $[6](9.1831 .8)[15]$, and we have a birational morphism of \tilde{y} to \bar{y}. This morphism is an lsomorphism over a general point $t \quad C$. But by the construction, $\tilde{y}_{t_{0}}$ contains an irreducible component birational to W. So, from the first, we may assume that ${ }^{\Phi} t_{0}$ has an irreducible component birational to W. Now let us consider the Kuranishi space (थ, u_{0}) of $\bar{y}_{t_{0}}$, which is a complex space and has versal property at every point u near u_{0} [13] [14]. On the other hand, \bar{y}_{t} can be deformed to a non-Kähler 3 -fold with $K=0, b_{2}$ $=0$ and $q=0$ for every point t near t_{0}, which implies that ther is a flat deformation $f: \bar{x} \rightarrow \Delta \operatorname{such}$ that $f^{-1}(0)=\bar{y}_{t_{0}}$ and that $f^{-1}(t)$ is a non-Kähler 3 -fold with $K=0, b_{2}=0$ and $q=0$. Then the semi-stable reduction for f is a desired one. Q. E. D.

Figure 1
E_{6}-type

Figure 2. (μ-exaptional divisons)

$i=3 .\left(A_{2}-t y\right.$ yee $)$

$i=5$ ($E_{6}-$ type $)$.

$i=7 .\left(E_{7}-\right.$ type $)$.

$i=.9,10,11 . \quad\left(E_{8}\right.$-type $)$
There are 3,2 on 1 dissident prints according to
$\underset{w}{=}$

$$
\begin{gathered}
i=12 \quad\left(E_{8} \text {-type }\right) \\
=w \\
w=w
\end{gathered}
$$

References

1. Artin, M : Algebraization of formal moduli ll, Ann of Math (2)91 (1970)
2. Campana. F : The class $\mathscr{8}$ is not stable by small deformations. Preprint
3. Friedman, R : Simmultaneous resolution of threefold double points, Math. Ann 274 (1986)
4. Hironaka, H : Bimeromorphic smoothing of a complex analytic space, Math. Inst. Warwick Univ. 1971
5. —— Flattening theorem in complex analytic geometry, Am. J. Math, 97 (1975)
6. Knutson, D : Algebraic spaces, Lecture Note in Math. 203 (Springer)
7. Nagata, M , Miyanishi, M , Maruyama, M : Abstract algebraic geometry (in Japanese), (Kyoritsu)
8. Nakayama. N : On Weierstrass models, Algebraic Geometry and Commutative algebra in honor of M. Nagata (Kinokuniya) (1987) 9. —— The lower semi-continuity of the plurigenera of complex varieties, Adv. Studies of Pure Math 10 (1987)
9. Namikawa, Y : in preparation
10. Raoult, J-C : Compactification des espaces algebriques normaux,
C.R. Acad. Sc. Paris, t. 273 (1971)
11. Reid, M : The moduli space of 3 -fold with $K=0$ may neverthless be irreducible, Math. Ann 278
12. Grauert. H : Der satz von Kuranishi für Kompakte Komplexe Räume, Inv. Math 25 (1974)
13. Palamodov, V.P : Deformation of complex spaces, Russian Math. Surveys 31:3 (1976)
14. Cartan. H : Quotient d'un espace analytique par un groupe d'automorphismes, in Algebraic Geometry and Topology, Princeton Univ. Press (1957)
