
  EIIiptic 3-folds and Non-Kh'hler 3-folds

by Yoshinori Namikawa { Sophia university )

                   Introduction

     The purpose of this report is to study the re!ationship between

Calabi--Yau 3-foids with elliptic fibrations and compact non-Kahler

3-folds with K = O, b2 = O, q = O. The non-Kahler 3-folds referred to

here have firstly appeared in Friedman's paper [3 ]. In this paper

he has shown that if there are sufficiently many ( mutually disjoint)

(-1,-1)-curves on a Calabi-Yau 3-fold, then one can contract these

curves and can deform the resulting variety to a smooth non-K' a' hler

3-foid with K2= O, b2 = O, q = O. For example, in the case of a

(general) quintlc hypersurface in P4, one can do this procedure for

two lines on tt. This phenomenon is analogous to the one for

(-2)-curves on a K3 surface. In fact a (-2)-curve on a K3 surface

often disappears in deformation, and this fact just says that one can

contract this (-2)-curve to a point and can deform the resulting

variety to a (smooth) K3 surface. By this phenomenon, we can explain

the varience of the Picard number of K3 s,urface in deformation, and

it is well-known that a general point of the moduli space of K3

                                              }-surfaces corresponds to a non-projective (but Kahler) K3 surface on

which there are no (-2)-curves. Taking such a non-projective

surface into consideratton, one has a famous theorem that two

arbitrary K3 surfaces are connected by deformation. But there is a

difference between Calabi-Yau 3-folds and K3 surfaces, that is,

a (-1,-1)-curve never disappears like a (-2}-curve in deformation.

This is closely related to the fact that Calabt-Yau 3-folds have a
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!arge repertory of topologtcal Euler numbers. For the speculation

around this area, one may refer to the paper of M. Retd [t2]. The

main results ef thls paper ls the foilowing:

     Theorem A.

Let X be a Catabt-rau 3-fotd whtch has an eettptte ftbratton wtth a

yaticnae gectte#. rken the bimeremerpkic c;agg ef X ig ebtaCned aB a

sem"stabte degeneratton of a compact non-Kiihter 3-fotd wtth K ww O,

b2 ww O and q = O, 1.e. there tg a surdeettVe proper map f of a smooth

4-dtmengtonat ttartety X to a l-dtmensLonat dtge A sueh that
  i} f'l{t} ts a eempac't non-Kh'hger 3-fetd wttk X me e, b2 = e, q ur g

     for tE Aes ,

              n  2) f'i(O) =t li e Xt ts a normae crosstng dtvtsor of ee, and

  3} Xc is bCmergmerphic te X.

 "ere we wlll expiain the metlvatlcn gf the fermuiatton iR Theorex A.

 If there are sufftclentiy many {-i,-1}-curves on X in the Friedman's

 sense explalned above, one has a flat morphtsm f of a complex

 anaiytic vartety se to a dtsc A whose central fibre is the varlety

cbtalued by co"tracÅíleR ef these cgrves, and wkese yeRerai flbre is e

 non-Kahier 3-fold wtth K = O, b2 = O, q m O. In this sltuation,
!o:me f"1(o} has a number of ordinary double potnts, but one may

 assume tl}at the total space es ls smooth ln a sultabie coltdltlo!}

 {e.g. {l.i} k} thls repert}. Next blow up these potats. Tlien the

central ftbre conststs of a number of irreductb!e components, namely,
 the smooth vartety iio obtaitrted by the blowtng ups of the ordlnary

doubie pclRts on ese .a. RG tl}e PS's {{}rresendlftg te eacli pclNt biowi} gp.

However this ls "ot yet a semt--stabie degeneration because the

multipitcity of each P3 ts two. So taking a sultable base change. one

bas a semt-stable degeneratlon. Tlits ts a typlcal example of

';l}eorem A•
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         The Construction of the Proof

   IR tkis repgrt, a Caiabi-Yau 3-fold meaRs a smeoth projective

3-foid with c2 pt O, q = O, K trtvial. Stnce c2 S O, those 3-folds

are excluded which are , up to etale covers, Abelian 3-folds or the

products of k3 surfaces and eiliptic curves. Here we wiil brieAy

review the Frledman's constructton of non-Kahier 3-foid with K ua e,

b2 = O. Assume that X is a smooth compact 3-fold with Kx trivial and

that mutually disjoint (-1,•-1)-curves Ci,..., Cn are given on X.

Kere a {-l,-l}-curve meaks a smgotk ratiokal curve P! whgse Rcrmal

bundle Npilx is ismorphic to epi{-1}e epi(-1). Then one can contract

these curves to points and one has a compact 3-fold X with ordtnary

dsuble poikts: rr: X ---ÅÄ X . For simplicity we wiH wr!te Pi ur ntC",

Z=U P, and C= ll C                       We have the foHowtng commuÅíative exact    il ii'
diagram:

 g - M{xsx} ----, gl{gx} - KO{RiKxgx} - g2{Rxex} . ti2{gx} e e

                                     ct O-Hl(TO ) --, Tt -- NO(T! ) .H2(TO ) - 'IF2 .0

ln the above dlagrara, the map ct is interpreted as foiiows:

First we have an tsomorphism S: HO(Ti )- H2(TO ) by using the exact
                                  x zx
sequence defined loca!!y at each Pi :

        g- Tc --'g                          -e - Tl .g.               N C41x x R
Here we note that (X, Pt) can be embedded into (C4,O) because Pt ls

an ordinary double potnt. By the isomorphtsm B, ct is identifted with

the netural map g2{Te } - K2{Te}. IR our case K is easily skowR
                zx x

                            -22-

3



that rtxex = T i.l . Next using the Leray spectral sequences:

 HzP(Rqn.ex) =), HPBq(gx) and HP(Rqrt.ex) =lÅr "P"q(ex), we have

 H2(Tj.l ) = H2c(ex) and H2(Tl.l ) = H2{ex), which implies that the above

map is identtfied with the foilowing maps:
        H3(ex) . H2(ex}

          ll ll
        H6(Qft) 9. H2(Rft).

where the vertical identifications come from the fact that Kx is

trivial. If the map e is surjective, then we have T2 = O. On the
                                                  x
other hand, HO(T jlt )c Hi(TR. )tE H6(RSi) are isomorphic to a

n-dimensional vector space tigIC , where each factor corresponds to Ct.

e is nothing but the map which associates each basis of the above

vector space to the fundamental class of C. in X. Summing up these
                                         t
results, we have the following fact(1.1):

 (1.1) Let X be a Catabt-Yau 3-fotd and Cl ...•, Cn mUtUattY

dtgJ'otnt (-1,-1)-curves on X. Ve emptoy the game notatton as above .

Then stnce H2(R3i)= H4(X, C)= ll2(X, C) by the Hodge deeomposttton and

the Potncare duaLtty, the map e can be tdenttfted wtth the map t. :
tSIH2(Ct, ÅqC) --. H2(X, C)• In parttcutar, tf tx ts sura'ecttve and

there ts an etement (at, .., an) G Ker t- gueh that at X O for att t,

 then X ts deformed to a gmooth compaet non-Kahter 3-fotd vtth

 K= O, b2= O and q= O.

 A typical example of (1.1) is a general quintic hypersurface X in

P" and two lines on it. In this case, since Ptc(X) = Z, it is rather

easy to check the conditions in (1.1). But in general it is very

difficult to find the curves satisfying the condition in (1.1) even
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tf a Calabi-Yau 3-fold X is given expllcitly. In another sense,

(1.1) tell us an interesting example where the ciass g is not stable

by smaH deformaticn. In fact, X is a Moishezon space, hence ts in
                     -iclass g. gut the noR--Kahier 3-fQld V ebtaiRed by a small deiermetioR

of X is net in ciass g. This is shown as foiiows. First one has

hO'2(V) = o, because hO'i(V) = O and Kv = O. If V is in class g,

                                       ttthen it is bimeromorphic to some compact Kahier manifold Y. Since

hO,2(v) = o, hO'2(Y) me O. In fact, by the desingularization theorem
[•+], we have a comptex manifold {7 which dominates both V and y,

birationally and proper}y. UsiRg spectral sequences and Chow lemma(S]

    N IVfer {V, V} aRd {V, Y}, we kave the resulÅí. Sut kO'2{Y} = g i$plies

thut Y is a projective manifold. Since the aiyebraic dimension of V

equals to O, this is a contradlction. So V is not ln class g. Since

K(X) = O, this is a counter•-example to a questton posed in [2].

  To return from the dtgresston, we will explain the construction of

the proof. First we deftne a Weierstrass model.

 (1.2) Defifiit•ion

 A Weierstrass model W(X,a,b) over a variety $ is a closed subvariety

in Ps(e e e2 e ZS) defined by the equation Y2Z ww X3 + aXZ2 + bZS,
where 2E Pic(s), aG uO(s, y-4), bE HO(s, 2-6) and

        Z: S -e$ y2 $ zs
        X: 22 - s $ sc2 $ s3

        Y: Åí3 --. ge x2 $ ÅíS

are naturai injections.
We denote by Z , the sectton of W(r,a,b)over S def!ned by, X = Z sc O,

and denote by n the natural projectton of W(sc,a,b) to S.
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Next let X be a Calabi-Yau 3-fold which has an elliptic fibration

with a rational section. Then by [g ](Tkeertwt 3•4 ), X is birational

equivalent to a Weierstrass model Y = Y{K$ , a, b} wlÅíh only

ca#oRical siRgularities, where $ ls eRe of tke follcwiRg: P2, X. {e s
                                                              t
ts 12}. Thls is a starting point of our proof. Since V has

stngularitles tn the Åëase S = X. (3 s t s 12) if we take a and b
                              t
generally, we must set up the following definition.

(1.3} Pefiftitieft

 Let V= Y{Xs , a, b} be a Weierstrass medei over S -- ZL {3 s ts l2}.

Then W is cai!ed generat if
(1) W has singularities only on F= { pEw ; pE rr'-1(Do), x = y -- o},

where Do is a negative section of S, and
(2) let mDo and nDo be the fixed components of IK{i41 and IKg6I,

respecttvely, then dtv(a) = G + mDo and dtv(b} : U + nDo, where G

{resp. K} intersects De transversely aRd G.DoAg.Do = ". gere G.ge

(resp. g.Pe } deRotes tke intersectiell ef be and C {resp. g }.

   We will emp!oy Definikions(1.2),(1.3). Let W ur W(2,a,b) be a

Weierstrass model over S. Then W is obtained as a double cover of

Ps(e $ S2} branched over B={ X3 + aXZ2 + bZe mg }. If v has

singularltles, theR we ca: use tke icUowing.

(1.4) Canonical Resolutions
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Let Y be a smooth vartety and B a reduced Cartter divisor on it.
              (B) = LQ2 for a line bundle L on y. Then we have aAssume that O            Y
double cover X of Y branched along B. To resolve the singularities

on X, we consider the foilowing process:

  Perform a succession of monoidal transformations vi (1 s i S m)

with smooth centres Dl c Bi c Yi (1 s i S m), where Yi = Y, Bi = B ,

yj+1 -V:l Yj and Bj+1 = v: Bj for each j, And if we write Bm =B+

k l 1"kEk , where B is a peoPe-rtransform of B by v := vmo..ovi and

Ek's  are v-exceptional divisors, then B +k, pil:odd Ek iS a SMOOth

divisor. If the above process is possible, then we have a double
                                                               -vcover branched along B + Z E. and obtatn a smooth variety X                       t, p.:odd t
                           t
which is a resolution of X. We call the above process a canonical

resolutton.

 Let V = V(Ks ,a,b) be a general Weierstrass model over

S = Z.(3 s t s12) in the sense of Definition(1.3). Then we can
     t
perform a canontcal resolution on W. In our case, it is easily
verified that sing(w) = { q E P ; q G p'1(D,), X = o y = o }, where

P = Ps(e $ Kg $ Kg) , Do : negative section, and that the

singularitles are locally trivial deformations of a rational double

points except for a fintte number of points which are so-called

dtsstdent points. So the problem ts how to overcome the

difficulties which arise at these dtssident points. For example,

consider the case where t = 5. ( In the case where t =3, 4, 6, 8, 12

there are no dissident points. ) Since C and H never vanish

simultaneously on a point q of Sing(W) in Definition(1.3), we may

consider two cases: (1) only G vanishes at q , and {2) only H
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vanishes at q. But it follows that q is disstdent

(2). So we may consider the sttuation where q =

Å~3 + t3Å~ + st4 in (x,y,s,t)-space(= C4). Then the

canonical resolution will be found in (Figure 1).

we have the followtng Proposition.

only in the case

(O,O,O,O}, V: y2 .

 process of a

  As a consequence,

 (1.5) Proposition

Let W = W(Ks, a, b) be a Weterstrass modeL over S, where S ts one of

the fottowtng: P2, Z. (O s ts 12). Then:
                    t
 (o) Kw = Ow

 (1) In the ease S = P2 or Zt (O s ts 2), a generat Weterstrass

modeL W ts smooth and Ptc(W) = rtXPtc(S) e Z[Z]. Moreover SV tg

stmpty-connected.

 (2) In the ease S = Z. (3 s t s l2), a generat Weterstrags modet W
                     t
hag eanontcat stngutarttteg such that Stng(W)C Pi and that they are

tocatty trtvtat deformattons of rattonat doubte potnts except for

fintte number of potnts. Moreover W has a canontcat resoLutton

p: V.W guch that a} W.S ts a ftat morphtsm tf 3s ts8 or
t =12 , b) tf we vtew W and W ag ftbre gpaees over Pi by mean3 of the

ruttng S- Pi, then , for a generat potnt tEPi, pt! Vt . Vt ts a

mtntmaL resotutton of a surface wtth rattonae doubte potnts, and c)

Kw = ew •

                                       jv Remark. In the ea3e where 9s ts 11, W ts not ftat over S. But we

                     N- -ean faettortze pt tnto V --År P - V, where W ts a normae vartety wtth

the gtngutarttteg whtch are LocaU/trtvtaL deformattong of a rattonaL

doubLe potnt of Ai-type atong Ct (1 s t S r), uhere Ct (1 s i s r)

denote mutuaLLy dtsg'otnt smooth rattonat curve3 on W. Moreover W ts

                                -or-
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                N--ftat over S, and W --, W ts a trtvtaL resotutton or the above

stnguLartttes. For detateg, gee (Figures 1,2).

 (3} Fer an arbttrary pbtnt tEPi except for a ceuatable number of
petntg, {7t Ls uatgralgy an et"pttc K3 guyfaee and itg gerdeeg yetg

greup t3 trtvtat.
 (4) Let Ej (1 s J' s m) be "-excepttonae dtvtsors. Then Ptc(Q) =

wtopt)'ptc(s) et21 Z[Ee']'

    N (5) W ts gtmpty-connected,

   Tkeerees A'
         NLet W and W be a generat Wetertgragg mcdet and ttg regotutton ag

above. Then ve havB:

(1) In the cage S = P2 or Xt (O s t s 2), there are mutuatty dtsJ'otnt
(-1,--1)-•curves Ci,., C4 on W such that tN :t$1"2(Ct, C) . H2(Sl, C) ts

surJeettve and that one ean obtatn, by the procedure of {1.!), a

smeeth eentpact n"e-ktautr3-fetd nttk X = g, b2 : e and q = g.

{2} IR the cage S = Xt {3 s is l2}, tkere are mutuagty dtg3'otRt
                                         dw(-1,-l}-curve3 Ci,..., Cn(t) on the vartety W' vhich ts obtatned fTom
W by the compogtte of ftops of (-1,-1)-curves . For Cl.s ,

tx : Y•SS)H2(CJ•t C) """bu, "2(W', C) tg sUrdective, and one can obtatn ,

by the procedure of (1.1), a gmooth compaet"e,t-kdAleh 3-foLd wtth K m O,

b2 = e and q = g.

  Example (without proof)

 Set S= Zo. Let p: S-P denote one of tts ruitng. Then

pon: W -, Pi ls a K3--fibratton. Let ti and t2 be mutually dtstinct
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fibre of p, and let Di and D2 be mutuaily disttnct section of p with

                            gL kt(D.)2 ww o. Note that rt-1(t.) - t. (t me 1,2 } and rrwwi{D.) - D. (t =

1,2 ) are elliptiÅë K3 wtth canontcal sections whiÅëh comes frorn X,

respectively. Let us consider the followlng four mutuaUy disjoint
                               t

         Ci : a section of gt with (Ci- Z)w =O

         C2 : asection of g2 with (C2. X)v =1

         C3 : a sectigR ef kl with {C3• Åí}v =g

         C4 : a section of h2 with CC4. Z)w =1.

 Then the condition tn (1.1) is satisfied.

   As for Theorem A' ( in particular Theorem A'(2) ), it is impossible

to give a proof in this report. Details will be found in "o].

 The aim of this report is to explatn how to derive Theorem A from

Theerera A'. Let X be a Calabi--Yau 3-ford which kas aR elliptic

flbration with a rational section. Then , as is mentioned before, X

is birational equtvalent to a Weierstrass model W with only canonical

singularities. But V ts not genera! ln the sense of Definition(1.3}.

Though Y kas oRly cangRicai siRguiarittes, its stkguiarlties are

possiblly worse than the ones described tn Definition(1.3}. Let us

consider the complete ltnear system l2I on Ps(e e Kj} e Kg), where e =

g?{l}x AXKg6 aRd ep"} is a tauteleglcai iiRe buRd!e of

P(O e Kg e Kg). Let A be a sublinear system of ISi which consists of

the elements of the followtng form :

                                -te-
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     rpIY2Z + ep2XS + epsxZ2 + ep4z3 = o ,

ljkere epl, ep2 E ge{S, $$}, eps G ge{s, Kg4} aRd ep4 E ge{s, Kg6}. Tkek

consider the universal family over 7' = P(A), g: r -- r. Assume that
g"i(to) rc w . if we choose a generai point t on T, then Tt = g-i(t)

has the preperty M Theorem A'. Let C be a curve M T passing

through to and t. Then we have a famliy of bieierstrass ptodeis over

C, which we denote again by g:T- C. In the case whereS=P2 or

Z. (O al t s 2), a general ftbre of g is smooth. But tn the case
 t
ljhere S m Zt {3 s t s l2}, a geReral flbre has siRggiarKies by

Proposttion (1.5)(2). In this case we have the following proposition.

(1.g} Prepositien

 Let S be a surfaae tsomorphte to Zt (3 K ts 12) an(t Ca curve.

Congrder the foLLovtng ftat famtLy of Wetergtragg modetg over S:

          ps(s $ Kg e Kg}x c

           U Xv
          w -, sxc
           gN /p! p2N"`
                  cs
                              , aE Ho(s Å~ c, p: Kg4 },     x: y2z = xS + axz2 + bzS
                                 bE HOÅqs Å~ c, p: Kg6 )

Asgume that Tt ts generat ror every t E C exeept for a ftntte number

of potnts {ti,..,tn}. 1'hen there tB a prodeettve resotutton
:.: i -År if suek that :-t: it --, gt beccptes tke regetutten in

proposttton(i.s) for every t k {ti,•••, tn}•
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                                    -VNSo we have a flat projective morphtsm g ; W -. C whose generai fibre
is smoeth. Fer a geReral point t E C, X'" t satlsfies Theerem A'{2},
that is, there is a sequence of fiops of (-1,-1}-curves DJ• c WY} :

      gSg2 -- wY' --. yS2' ........ - -- . gim'

aRd tkere are {--l,-1}--curves eR ii tc be contracted. Let gs coksider

the irreducible component ll of Httb i 1 c whtch contains [Do]. Note

that HLtb iF / c ts etale over C at [Do] because Do is a (-1,-1)-Åëurve
on gt. Hence U is determined unlgueiy, and g ls etaie over C at [Pe].

Taking a suitable finKe cover of C, we may asSUMe that gred iS

birational to C. Then we have the following diagram:

                          jv                scw
                  X/
                     c,

ptkere St ls a {-!,-l}-carve en I'V t fer every pcint t G CX: a Zariskl

                          --t At Nopen subset of C. Restrict g : W -, C to CX, and consider gX :

iN ----, cN. Then by [1](Corella7S.to), we can perform a flop of 9X

reiativeiy ever cX, and get gN(1}- : ff(Des --, cX. Here i(1}tt is in

geRerai net a scheme, but an algebraic space. we can compactify i{AX

by Ul] and have a proper surjective map gnv(1): i(1) . c. T'V(1) is

assumed to be smooth by [xl], and i(1) is btrational to T'V over c.

     Jv         ccRtain$ aR lrredgcible cempenent blratienal tg Y andsiRce r       to
both i and i(1}are smooth, it( g) also Åëontains an trreducible
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component blrationai to W. As a consequence, by repeating this

process,'we may assume from the ftrst that there are (-1,-1)-curves
to be contracted on it. In the case where S mu Xt(3 si is l2}, we

         -v ivcoRsider g : ! -. C whick ls ebtaiRed by repeating abcve prccess. And

in the case S = P2 or Xt{g s t s,2}, we consider the origiRal g : if

- C. Then we can use the following, if necessary, after a base
                                        'change by a finite cover of C:

(1.7) Proposition

Let h: g - C be a proper ftat morphtsm wtth conneated ftbres of an

trredticibge gmooth 4-dimengteuaS aSgebratc gpaee Y te a gmeoth curve

C. Let toE C be a fixed petnt and Y an irred#etbie cempeaent gf etct

Assuae that there ts a proper ftat famtty ef eurweg tn S :

            g. c v             t
          fiat N /
         proper c (1 si ts n)

gueh that fgy a generag peint t C g, {l} gt,t{1 s i s n} are ptutuatty

cttse'eint {-1,-1}-curves en St , {2} the3e cttrve sattgfy the cendetten
                                             -ttn (1.1), and (3) we can obtatn from gt a non-KahLer 3-fotd wtth

K me O, b2 =O and q me O by the proces3 tn (l.1). Then there ts a

proper surJ'eettve map of a 4-dtmenstonat eomptex mantfotd er to a

1-dtmengtonat dtgc A such that
1} f-1{t} ts a compaet non-Klihtey 3-foed with K m g, b2 = e and q me

g, fc7 tE Ax,

2} f-"1{e} = t i 1 Wt ts a nernae ereggsng dtvtsor of !, and

3) Wo ts btmeromorphta to W.
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13



Proof) Let CX be a suitable Zariski open subset in C. Then by

[i]{ Cereilayl6•ie}, we caR ccRtract g!. 's ek gX relatively ever CX, aRd

       -f                             -x         . We can compactify e and have proper flat rnap of a normalobtain g

algebraic space W to C. Then ig is birational to e over C. Consider

the function field K of g, and let v be a dlscrete valuatlon ring

which cerresponds to Y. Let L be a sultable Galois exteRsion of K,

then the normaltzations of Y and S tn L become schemes by the

argument of [ll](proposition 1). Denote them by 1 and S ,

respectlveiy. Then S {resp. M is tke qgotient gf es {resp. 1} by the

Galois group G rc CaL(LIK). Let vi,...., vk be the extension of v in

L. Then each element g E G induces a permutation of vt's. If g sends

vt to vJ• , then we wlll wrlte g'  '-' g{O. By [7]{els3}, for v! , there

is a variety S biratienai te S such that (1} S                                                  is prejevtive                                               vt              Vl

over er , (2) er ={zG er ;S is isomorphic to er at z }, and (3)
              Vl
lf yi demMates a peiBt y of itvi aftd a peint y' on er , then ey

dominates e . In thts case we may assume that S and S are                                               Vl           y
tsomorphic at every point exÅëept for points over to E C. We denote

%i by E! , and deflne itg for each geG by the foUowlng flbre

product:

                lv         Sl 'ww' Sg

          il
                N          S ,ur1 S •
                gx

On the other hand, vlewiRg itg 's as ti -- schemes, we have ;
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                      birat.
            it1 -" itgl -• '''''' -' sigt

                          ff c= ", gt,••, gt}•

Take a ciesure SN  ef the graph of,{x} ln g erg , and embed S lnto

rr g tn such a way that z ----, "z. Then the natural projectton from
rr it to " it induces a pojective morphism of i to it . Consider

the action of C to g tr deftned in such a way that g sends gt-th

factor it of g it to ggt-th factor it of g it and that thts map of it

to Kself ceincides with the natural g-actlon ef g . Clearly S ts

stable by tkis C-actioft, aRd tkls actigR ceMcldes witk the erigi"ai
C-action of st . So, the natural G-action ts induced on g. . If we

                        Ntake a normalizatton of er , then the action of G naturally extends.

                      tw NNSo we may assume that er is normal. Then the quot}ent Y of S by G ls

an algebraic space by [61(P.tSj t.8) [tS] , and we have a birational

            Nmorphism of g to g . This morphism ts an isomorphism over a generai
                                      NpoMtt C. But by the construction, gte contaMs aR irredgcible

compenent birat!onai to Y. Se, from the first, we may assume that

opto has an irreductble component btrational to V. Now let us

consider the Kuranishi space (U, uo) of orto , which is a complex

space and has versal property at every potnt u near uo [I3][t4].On the

other hand, et can be deformed to a non-Kahler 3-fold with K = O, b2

me g and q=g fgr every petnt t near tg, whlch impMes that ther ls
a fiat defcrmatioR f: sc - A sgch that f-l{g} m Sto akd

       -1         (t} is a non-Kh'hler 3-fold with K me O, b2 =O anq q = O•that f
Then the semi--stable reduction for f ts a destred one. Q. E. D.

                               -sc-
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