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Elliptic 3-folds and Non-Kahler 3-folds

by Yoshinori Namikawa ( Sophia university )

Introduction

The purpose of this report is to study the relationship between
Calabi-Yau 3-folds with elliptic fibrations and compact non-Kahler
3-folds with K = 0, b, = 0, ¢ = 0. The non-Kahler 3-folds referred to
here have firstly appeared in Friedman’s paper [ 3 1. |In this paper
he has shown that if there are sufficiently many ( mutually disjoint)
(-1,-1)-curves on a Calabi-Yau 3-fold, then one can contract these
curves and can deform the resulting variety to a smooth non-Kahler
3-fold with K,= 0, by, = 0, q = 0. For example, in the case of a
(general) quintic hypersurface in P4, one can do this procedure for
two lines on it. This phenomenon is analogous to the one for
(-2)-curves on a K3 surface. In fact a (-2)-curve on a K3 surface
often disappears in deformation, and this fact just says that one can
contract this (-2)-curve to a point and can deform the resulting
variety to a (smooth) K3 surface. By this phenomenon, we can explain
the varience of the Plcard number of K3 surface in deformation, and
it is well-known that a general point of the moduli space of K3
surfaces corresponds to a non-projective (but Kahler) K3 surface on
which there are no (-2)-curves. Taking such a non-projective
surface into consideration, one has a famous theorem that two
arbitrary K3 surfaces are connected by deformation. But there is a
difference between Calabi-Yau 3-folds and K3 surfaces, that is,
a (-1,-1)-curve never disappears like a (-2)-curve in deformation.

This is closely related to the fact that Calabi-Yau 3-folds have a



large repertory of topological Euler numbers. For the speculation
around this area, one may refer to the paper of M. Reld [ /2], The

main results of thls paper Is the following:

Theorem A,
Let X be a Calabi-Yau 3-fold which has an elliptic fibration with a
rational section. Then the bimeromorphic class of X is obtained as a
gsemi-gtable degeneration of a compact non-Kahler 3-fold with K = 0,
b, = 0 and q = 0, l.e. there i3 a surjective proper map f of a smooth
4-dimengsional variety ¥ to a 1-dimensional disc A such that
Y s a compact non-Kahler 3-fold with K = 0, b, = 0, q = 0

for t € A%,

-1 n
2y F Ry = T X
t =0

3) Xo L8 bimeromorphic to X.

¢ ig8 a normal crossing divisor of ¥, and

Here we will explain the motivation of the formulation in Theorem A.
1f there are sufficiently many (-1,~1)-curves on X in the Frledman's
sense explalned above, one has a flat morphism f of a complex
analytic varlety ¥ to a disc A whose central fibre is the varlety
obtained by contraction of these curves, and whose general fibre is a
non-Kahler 3-fold with X = 0, by = 0, @ = 0. In this si{tuation,

l(0) has a number of ordlnary double points, but one may

Xoi=
assume that the total space ¥ 1s smooth In a suitable condition

(e.g. (1.1) in this report). Next blow up these points. Then the
central fibre consists of a number of irreducible components, namely,
the smooth variety io obtalned by the blowing ups of the ordlnary
double points on X, and the P®'s corresondlng to each point blown up.
However this is not yet a semi-stable degeneration because the
mu;tlpllclty of each P? is two. So taking a suitable base change. one

has a semi-stable degeneration. This is a typical example of

Theorem A.



The Construction of the Proof

In this report, a Calabi-Yau 3-fold means a smooth projective
3-fold with ¢, # 0, @ = 0, K trivial. Since ¢, = 0, those 3-folds
are excluded which are , up to etale covers, Abelian 3-folds or the
products of k3 surfaces and elliptic curves. Here we will briefly
review the Friedman's construction of non-Kahler 3-fold with K = 0,
b, = 0. Assume that X is a smooth compact 3-fold with KX trivial and
that mutually disjoint (-1,-1)-curves C;,..., Cn are given on X.
Here a (-1,-1)-curve means a smooth rational curve P! whose normal
bundle Npl/x is ismorphic to OPI(-I)O OPI(-I). Then one can contract
these curves to points and one has a compact 3-fold X with ordinary
double points: n: X — X . For simplicity we will write Pi = n(Ci).

Z =1 Pi and C = I C We have the following commutative exact
i i

i
diagram:

i

0 — H‘(n*ex) — H‘(BX) — H°(R‘n*8x) — H"‘(n*ex) —_ H2(8x) — 0

T L

0 — HYW(T® ) — T! — HO(T!) —=HA(T2) — T2 — 0
X X X X

In the above diagram, the map a 1s interpreted as follows:

First we have an isomorphism 8: HO(T! ) — H2(T? ) by using the exact
X Z X

sequence defined locally at each Pi

0 — TO — 8cay. — 0 — T! — 0.
X X X X

Here we note that (X, Pl) can be embedded into (C%,0) because Pl is

an ordinary double point. By the isomorphism 8, « is identified with

the natural map H2(T; ) — H2(T?). In our case it is easily shown
Z X



that n*ex = T2 . Next using the Leray spectral sequences:
X

Hy(RIn 8 = #PL98,) and PRI, = #P*T(8,), we have

H%(TS ) = H?C(ex) and H2(T? ) = Hz(ex). which implies that the above
X X

map 1is identified with the following maps:

2 2
HC(GX) — H (Ox)

202 8 2¢(02
HC(QX) — H (Qx).

where the vertical identifications come from the fact that KX is

trivial. [If the map @ is surjective, then we have T2 = 0. On the

X
other hand, HO(T! )~ H2(TO )~ H2(R2) are isomorphic to a
T v c X
X Z X
n-dimensional vector space £§1C , where each factor corresponds to Ci'

0 is nothing but the map which associates each basis of the above
vector srace to the fundamental class of Ci in X. Summing up these

results, we have the follbwing fact(l.1):

(1.1) Let X be a Calabi-Yau 3-fold and Cl ey Cn nutually
digjoint (-1,-1)-curves on X. We employ the same notation as above .
Then since H2(Q§)= H*(X, €)= Hy(X, €) by the Hodge decomposition and
the Poincare duality, the map 9 can be identified with the map i,
£§1H2(C£. €) — HyX, ©. In particular, if i, i8 surjective and
there is an element (a;, .., an) € Ker i, such that a, # 0 for all i,

then X is deformed to a smooth compact non-Kahler 3-fold with

K =20, b= 0 and q = 0.

A typical example of (1.1) is a general quintic hypersurface X in
P4 and two lines on it. In this case, since Pic(X) = Z, it is rather
easy to check the conditions in (1.1). But in general it is very

difficult to find the curves satisfying the condition in (1.1) even



if a Calabi-Yau 3-fold X is given explicitly. In another sense,
(1.1) tell us an interesting example where the class 8 is not stable
by small deformation. In fact, X is a Moishezon space, hence is in
class 6. But the non-Kahler 3-fold V obtained by a small deformation
of X is not in class #. This is shown as follows. First one has
h©’2(vV) = 0, because h°’''(V) = 0 and kK, = 0. I1f V is in class 6,
then it is bimeromorphic to some compact Kahler manifold Y. Since
RO'2(V) = 0, R°’2(Y) = 0. In fact, by the desingularization theorem
{41, we have a complex manifold ; which dominates both V and Y,
birationally and properly. Using spectral sequences and Chow lemmal}]
for (V, V) and (V, Y), we have the result. But h°'2(Y) = 0 implies
that Y is a projective manifold. Since the algebraic dimension of V
equals to 0, this is a contradiction. So V is not in class #. Since
k(X) = 0, this is a counter-example to a question posed in [21.

To return from the digression, we will explain the construction of

the proof. First we define a Weierstrass model.

(1.2) Definition
A Veierstrass model W(Z,a,b) over a variety S is a closed subvariety

in PS(G ® 22 ® 29) defined by the equation Y2Z = X% + aXZ2 + bZS%,

4 6

where £€ Pic(S), a€ HO(S, £ ), be HO(S, £°7) and

Z: 06 — 00 22 @ g3
X: 22 — g ® £2 o g3

Y: 23 — 0 ® 22 @ g3
are natural injections.
We denote by £ , the section of W(¢,a,b)over S defined by X = Z = 0,

and denote by n the natural projection of W(2.,a,b) to S.



Next let X be a Calabi-Yau 3-fold which has an elliptic fibration
with a rational section. Then by [® 1(Therem 3.4 ), X is birational
equivalent to a Weierstrass model W = W(KS , @&, b) with only
canonical singularities, where S is one of the following: P?, Ei (0 <
i < 12). This is a starting point of our proof. Since W has
singularities in the case S = Ei (3 < {<12) if we take a and b

generally, we must set up the following definition.

(1.3) Definition

Let W = W(KS » a4, b) be a Weierstrass model over S = Ei (3 < i< 12).
Then W is called general if

(1) W has singularities only on F = { p € W ; pe n_l(Do). X =Y =0},
where Do 1s a negative section of S, and

(2) let mDy, and nD, be the fixed components of IK§4| and IKgsl,
respectively, then div(a) = G + mDoy and div(b) = H + nDy, where G
(resp. H) intersects Dy transversely and G.DgN H.Dy = ¢. Here G.Hg

(resp. H.Dy ) denotes the intersection of Dy and G (resp. H ).

We will employ Definitions(1.2),(1.3). Let W = W(£,a,b) be a
Weierstrass model over S. Then W is obtained as a double cover of
PS(G ® £2) branched over B = { X% + aXZ2 + bZ%3 = 0 }. If W has

singularities, then we can use the following.

(1.4) Canonical Resolutions



Let Y be a smooth variety and B a reduced Cartier divisor on it.

2 for a line bundle L on Y. Then we have a

Assume that GY(B) = L®
double cover X of Y branched along B. To resolve the singularities
on X, we consider the following process:

Perform a succession of monoidal transformations vy (1 i < m)

with smooth centres D1 c B1 c Y1 (1 <1<mnmn), whereY, =Y, B, = B,

B +

Y3 *
j41 Yj and BJ+I =V BJ for each J. And if we write B,

T wE, , where B is a proprtransform of B by v := v_o..0v, and
k =1

E,'s are v-exceptional divisors, then B + z E is a smooth
k k . k
, uk-odd

divisor. If the above process is possible, then we have a double

Y

cover branched along B + z E. and obtain a smooth variety X
i, p.:odd
i

which is a resolution of X. We call the above process a canonical

resolution.

Let W = W(Ks ,a,b) be a general Weierstrass model over
S = Zi(S < 1 £12) in the sense of Definition(1.3). Then we can
perform a canonical resolution on W. In our case, it is easily
verified that Sing(W) = ( q € P ; qe€ p '(D,), X=0 Y =0 ), where
P = Ps(o ® Kg @ Kg) , Do : negative section, and that the
singularities are locally trivial deformations of a rational double
points except for a finite number of points which are so-called
digssident points. So the problem is how to overcome the
difficulties which arise at these dissident points. For example,
consider the case where i = 5. ( In the case where i =3, 4, 6, 8, 12
there are no dissident points. ) Since G and H never vanish

simultaneously on a point q of Sing(W) in Definition(1.3), we may

consider two cases: (1) only G wvanishes at 4 , and (2) only H



vanishes at q. But it follows that q is dissident only in the case
(2). So we may consider the situation where q = (0,0,0,0), W: y? =
x3 + t3x + st in (x,y,s,t)-space(= C%). Then the process of a
canonical resolution will be found in (Figure 1). As a consequence,

we have the following Proposition.

(1.5) Proposition
Let W = w(KS, a, b) be a Weierstrass model over S, where S is one of
the following: P2, L, (0 < i< 12). Then:

0 K, = 0y

(1) In the case S = P? or Zi (0 £ i £ 2), a general Weierstrass
model W is smooth and Pic(W) = n Pic(S) ® Z[Z1. Moreover W is
simply—-connected.

(2) In the case S = Zi (3 < i< 12), a general Weierstirass model W
has canonical singularities such that Sing(W)=P! and that they are
locally trivial deformations of rational double points ezcept for
finite number of points. Moreover W has a canonical resolution
T W — W such that a) W — S is a flat morphism if 3 < i < 8 or
i =12 , b) if we view W and W as fibre spaces over P' by means of the
ruling S — P!, then , for a general point teP!, "t? W, = W, is a
minimal resolution of a surface with rational double points, and c)
Ky = 6y -

Remark. In the case where 9 < { < 11, g i3 not flat over S. But we
can factiorize p into Q — @ — W, uhere W is a normal variety with
the singularities which are LocaLytriviaL deformations of a rational
double point of A;~-type along Ci (1 < i <r), where Ci (1l <i<m

denote mutually disjoint smooth rational curves on W. Moreover W is



flat over S, and W — @ is a trivial resolution of the above
gingularities. For details, see (Figures 1,2),

(3) For an arbitrary point t<P! ezcept for a countable number of
points, Qt is naturally an elliptic K3 surface and its HMordell Weil
group is trivial.

(4) Let E, (1 £ § £ m) be p-exceptional divisors. Then Pic(ﬁ) =

J
¥* ...
(non) Pic(S) °i51 Z[Ej].

(5) W ig simply—~connected.

Theorem A’
Let W and V be a general Weiertsrass model and its resolution as
above. Then we have:
(1) In the case S = P? or Zi (0 < £ < 2), there are mutually disjoint
(-1,-1)-curves Cy,., C on W such that i, : 8 Hy(C,, © — H,(W, © is
surjective and that one can obtain, by the procedure of (1.1), a
smooth compact nen-Kithr3-fold with K = 0, b, = 0 and q = 0.
(3 <4ix<12), there are nutually disjoint

i
(‘10"1)‘0“7‘”38 Clo-.-c C

(2) In the case S = X
n(i) " the variety W’ which is obtained from
W by the composite of flops of (-1,-1)-curves . For C}s ,

i, * ?é?’Hz(Cj. C€) — Hz(g'. €) i3 surjective, and one can obtain ,
by the procedure of (1.1), a smooth compact nen-Kihkr 3-fold with K = 0,

b, = 0 and q@ = 0.

Example (without proof)
Set § = ¥,. Let p: S — P denote one of its ruling. Then

pon: W — P! is a K3-fibration. Let L, and L, be mutually distinct
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fibre of p, and let D, and D, be mutually distinct section of p with

g, h,

1 . -1 L
”’1’.) — Li (i = 1,2 ) and n (Di) —_ Di (i =

(D)% = 0. Note that n~
1,2 ) are elliptic K3 with canonical sections which comes from Z,
respectively. Let us consider thF following four mutually disjoint
(-1,~-1)-curves:

C, : a section of gy with (C;. ), = 0

C, : a section of g, with (C,. Z‘)w 1

Cs ¢ a section of hy with (Cy. X}

it
o

C, : a section of h, with (C4. ¥), = 1

Then the condition in (1.1) is satisfied.

As for Theorem A’( in particular Theorem A’(2) ), it is impossible

to give a proof in this report. Details will be found in {o]l.

The aim of this report 1is to explain how to derive Theorem A from
Theorem A’. Let X be a Calabi-Yau 3-fold which has an elliptic
fibration with a rational section. Then , as is mentioned before, X
is birational equivalent to a Weierstrass model W with only canonical
singularities. But W is not general in the sense of Definition(1.3).
Thoush W has only canonical singularities, its singularities are
possiblly worse than the ones described in Definition(1.3). Let us
consider the complete linear system |[£]| on P5(6 @ KZ ® K2), where £ =
opt1)® n*ng and Op(1) is a tautological line bundle of
Po e Kg ] Kg). Let A be a sublinear system of |2| which consists of

the elements of the following form :



@.Y2Z + 02X9 + @gXZ? + ¢42% = 0 ,
where ¢,., 9, € HO(S, 05). @9 € HO(S, K;4) and ¢4 € HO(S, K;S). Then
consider the universal family over T = P(A), g¢: ¥ — T. Assume that
g—l(tol = W . If we choose a general point ¢t on T, then ¥, = g'l(t)
has the property in Theorem A’. Let C be a curve in T passing
through t;, and t. Then we have a family of Weierstrass models over
C, which we denote again by g : ¥ — C. In the case where S = P2 or

Zi (0 £ i < 2), a general fibre of g is smooth. But in the case

where § = Zi (3 < { < 12), a general fibre has singularities by

Proposition (1.5)(2). In this case we have the following proposition.

(1.6) Proposition
Let S be a surface isomorphic to Zt (3 < i< 12) and C a curve.

Consider the following flat family of Weierstrass models over S:

PS(G ® K2 ® K)x C

5 ®Ks
v, AV
Y — SxC
4
9\‘ /P1 D2
c S
¥: Y2Z = X3 + aXZ? + bZ° , a € H°(S x C, p* K§4 ),

b € HO(GS x C, ps ng )

Assume that 't i3 generai for every t € C ezxcept for a finite number
of points {t,....tn}. Then there is a projective resolution
2: ; ~ ¥ such that Et: ;t — vt becomes the resolution in

Propogsition(1.5) for every ¢ % {tyseees tn}.

11



So we have a flat projective morphism ; : ; — C whose general fibre

is smooth. For a general point ¢ € C, ;t satisfies Theorem A’(2),

that is, there is a sequence of flops of (-1,-1)-curves Dj c t;j) :

q3)) (] (2) (m)
't - — 't - - 't ........ -—— rt
X 1
r, r

and there are (-1,~1)~curves on ;é to be contracted. Let us consider
the irreducible component # of Hilb ; / C which contains [Dy]. Note

that Hilb 3 is etale over C at (Dol because Dy is a (-1,-1)-curve

rscC
on 't' Hence H is determined uniquely, and H is etale over C at [Dg].
Taking a suitable finite cover of C, we may assume that Hred is

birational to C. Then we have the following diagram:

2 c T

\‘/

where Qt is a (~1,-1)-curve on 't for every point t € c®: a Zariski
open subset of C. Restrict 5 : ; — C to C*, and consider 5* :

;* — Cc*. Then by [1](Qndh7LW), we can perform a flop of 9*

relatively over c*, and get 5(1)* : ;(1)* — C*. Here ;(1)* is in
general not a scheme, but an algebraic space. We can compactify ;(1)*
by (|1 and have a proper surjective map 5(1): ;(1) — C. ;(l) is
assumed to be smooth by (41, and ;(1) is birational to ; over C.

Since ;to contains an irreducible component birational to W and

1) (1)

both ; and ;( are smooth, 'to also contains an irreducible

12
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component blirational to W. As a consequence, by repeating this
process, we may assume from the first that there are (-1,-1)-curves
to be contracted on ;t' In the case where S = Zi(s £ i< 12), we
consider ; : ; — C which is obtained by repeating above process. And
in the case S = P? or Z,(0 < i < 2), we consider the origlnal g : ¥
— C. Then we can use the following, if necessary, after a base
change by a finite cover of C:

(1.7) Proposition

Let h: ¥4 — C be a prober flat morphism with connected fibres of an
irreducible smooth 4-dimensional algebraic space ¥ to a smooth curve

C. Let toe C be a fizxed point and W an irreducible component of gto

Agssume that there is a proper flat family of ecurves in %

8. cC Y
1
flat v ¥
prorer . (1 €4ixn)

such that for a gemneral point t € €, (1) gtm(l £ i <n) are nutually
digjoint (-1,-1)-curves on ¥ 0 (2) these curve satisfy the condition
in (1.1), and (3) we can obtain from ¥; a non-Kahler 3~fold with
K=20, b, =0and q = 0 by the process in (1.1). Then there is a
proper surjective map of a 4-dimensional cdmpbez manifold 1 to a
l-dimensional disc A such that
DY) tsa compact non-Kahler 3-fold with K = 0, b, = 0 and q =
0, for t € &%,
2 Lo = 3 | W, is a normal crossing divisor of ¥, and

i =

3) Wy is bimeromorphic to W.



Proof) Let C* be a suitable Zariski open subset in C. Then by

3¢ Ca”““y‘Jﬂ). we can contract 9: 's on %" relatively over C*, and
obtain #%. We can compactify & and have proper flat map of a normal
algebraic space ¥ to C. Then ¥ is birational to % over C. Consider
the function field K of ¥, and let v be a discrete valuation ring
which corresponds to W. Let L be a suitable Galois extension of K,
then the normalizations of & and & in L become schemes by the
argument of [{l1]1(proposition 1). Denote them by % and Z ,
respectively. Then % (resp. §) is the quotient of Z (resp. %) by the
Galois group G = Gal(L/K). Let v;,...., Uy be the extension of v in
L. Then each element g € G induces a permutation of vi's. If g sends
v, to v, , then we will write § = g(i). By [71(pi53), for v, , there

i E)
is a variety iu, birational to 2 such that (1) iv, is projevtive

over T , (2) ﬁvl >S5 {z¢ & ; % is isomorphic to ¥ at z }, and (3)

if v, dominates a point y of ivl and a point ¥' on 2 , then Gy

dominates Gy . In this case we may assume that iul and % are

isomorphic at every point except for points over ty € C. We denote

ivl by 3, , and define ig for each g € G by the following fibre

product:
11 — 19
4 4
: -
g*

On the other hand, viewing ig 's as % - schemes, we have :

14
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i birat. _
I, — - gy = P - ﬂgt
() ~ e
g G = {1, gyv..r gy},
Take a closure I of the graph of (%) in I ig , and embed ¥ into
g # {in such a way that z — g Z . Then the natural projection from
I ig to 7 ¥ induces a pojective morphism of ¥ to ¥ . Consider

the action of G to g % defined in such a way that g sends gi—th
factor & of I I to gg,-th factor ¥ of I ¥ and that this map of ¥
to itself coincides with the natural g-action of ¥ . Clearly % is
stable by this G-action, and this action coincides with the original
G-action of @ . So, the natural G-action is induced on Z. . If we
take a normalization of § ,» then the action of G naturally extends.
So we may assume that 5 i{s normal. Then the quotient 5 of 5 by G is
an algebraic space by [ $1(P.183 |.#) [15§] , and we have a birational
morphism of g to ¥ . This morphism i{s an lsomorphism over a general

~

point ¢t C. But by the construction, gto contains an irreducible

component birational to W. So, from the first, we may assume that

@to has an irreducible component birational to W. Now let us
consider the Kuranishi space (4, uy) of gto » which is a complex

space and has versal property at every point u# near u, U[31{[4], On the
other hand, Qt can be deformed to a non-Kahler 3-fold with K = 0, b,

= 0 and q = 0 for every point t near ty, which implies that ther is

Loy = 3

to and

a flat deformation f: T — A such that f~

1

that f "(t) is a non-Kahler 3-fold with K = 0, b, = 0 and q = O.

Then the semi-stable reduction for f is a desired one. Q. E. D.
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