Elliptic 3-folds and Non-Kähler 3-folds by Yoshinori Namikawa (Sophia university)

## Introduction

The purpose of this report is to study the relationship between Calabi-Yau 3-folds with elliptic fibrations and compact non-Kahler 3-folds with K = 0,  $b_2 = 0$ , q = 0. The non-Kähler 3-folds referred to here have firstly appeared in Friedman's paper [3]. In this paper he has shown that if there are sufficiently many ( mutually disjoint) (-1,-1)-curves on a Calabi-Yau 3-fold, then one can contract these curves and can deform the resulting variety to a smooth non-Kähler 3-fold with  $K_2 = 0$ ,  $b_2 = 0$ , q = 0. For example, in the case of a (general) quintic hypersurface in  $\mathbb{P}^4$ , one can do this procedure for two lines on it. This phenomenon is analogous to the one for (-2)-curves on a K3 surface. In fact a (-2)-curve on a K3 surface often disappears in deformation, and this fact just says that one can contract this (-2)-curve to a point and can deform the resulting variety to a (smooth) K3 surface. By this phenomenon, we can explain the variance of the Picard number of K3 surface in deformation, and it is well-known that a general point of the moduli space of K3 surfaces corresponds to a non-projective (but Kähler) K3 surface on which there are no (-2)-curves. Taking such a non-projective surface into consideration, one has a famous theorem that two arbitrary K3 surfaces are connected by deformation. But there is a difference between Calabi-Yau 3-folds and K3 surfaces, that is, a (-1,-1)-curve never disappears like a (-2)-curve in deformation. This is closely related to the fact that Calabi-Yau 3-folds have a

-20 -

large repertory of topological Euler numbers. For the speculation around this area, one may refer to the paper of M. Reid [12]. The main results of this paper is the following:

## Theorem A.

Let X be a Calabi-Yau 3-fold which has an elliptic fibration with a rational section. Then the bimeromorphic class of X is obtained as a semi-stable degeneration of a compact non-Kähler 3-fold with K = 0,  $b_2 = 0$  and q = 0, i.e. there is a surjective proper map f of a smooth 4-dimensional variety X to a 1-dimensional disc  $\Delta$  such that

- 1)  $f^{-1}(t)$  is a compact non-Kähler 3-fold with  $K = 0, b_2 = 0, q = 0$ for  $t \in \Delta^*$ ,
- 2)  $f^{-1}(0) = \sum_{i=0}^{n} X_{i}$  is a normal crossing divisor of  $\mathfrak{X}$ , and 3)  $X_{0}$  is bimeromorphic to X.

Here we will explain the motivation of the formulation in Theorem A. If there are sufficiently many (-1,-1)-curves on X in the Friedman's sense explained above, one has a flat morphism f of a complex analytic variety  $\mathfrak{X}$  to a disc  $\Delta$  whose central fibre is the variety obtained by contraction of these curves, and whose general fibre is a non-Kahler 3-fold with K = 0,  $b_2 = 0$ , q = 0. In this situation,  $\mathfrak{X}_0 := f^{-1}(0)$  has a number of ordinary double points, but one may assume that the total space  $\mathbf{X}$  is smooth in a suitable condition (e.g. (1.1) in this report). Next blow up these points. Then the central fibre consists of a number of irreducible components, namely, the smooth variety  $\widetilde{\mathfrak{X}}_0$  obtained by the blowing ups of the ordinary double points on  $\mathfrak{X}_0$  and the  $P^s$ 's corresonding to each point blown up. However this is not yet a semi-stable degeneration because the multiplicity of each P<sup>3</sup> is two. So taking a suitable base change, one has a semi-stable degeneration. This is a typical example of Theorem A.

$$-21 -$$

# The Construction of the Proof

In this report, a Calabi-Yau 3-fold means a smooth projective 3-fold with  $c_2 \neq 0$ , q = 0, K trivial. Since  $c_2 \neq 0$ , those 3-folds are excluded which are , up to etale covers, Abelian 3-folds or the products of k3 surfaces and elliptic curves. Here we will briefly review the Friedman's construction of non-Kahler 3-fold with K = 0,  $b_2 = 0$ . Assume that X is a smooth compact 3-fold with  $K_X$  trivial and that mutually disjoint (-1,-1)-curves  $C_1, \ldots, C_n$  are given on X. Here a (-1,-1)-curve means a smooth rational curve P<sup>1</sup> whose normal bundle  $N_{\mathbb{P}^1/X}$  is ismorphic to  $\mathfrak{G}_{\mathbb{P}^1}(-1) \oplus \mathfrak{G}_{\mathbb{P}^1}(-1)$ . Then one can contract these curves to points and one has a compact 3-fold  $\bar{X}$  with ordinary double points:  $\pi: X \longrightarrow \bar{X}$ . For simplicity we will write  $P_1 = \pi(C_1)$ ,  $Z = \coprod_{i=1}^{n} P_i$  and  $C = \coprod_{i=1}^{n} C_i$ . We have the following commutative exact diagram:

In the above diagram, the map  $\alpha$  is interpreted as follows: First we have an isomorphism  $\beta: H^0(T^1) \to H^2(T^0)$  by using the exact  $\overline{X} \to Z = \overline{X}$ sequence defined locally at each  $P_i$ :

$$0 \longrightarrow T^{0}_{\overline{X}} \longrightarrow \theta_{\mathbb{C}^{4}|_{\overline{X}}} \longrightarrow \emptyset_{\overline{X}} \longrightarrow T^{1}_{\overline{X}} \longrightarrow 0.$$

Here we note that  $(X, P_i)$  can be embedded into  $(\mathbb{C}^4, 0)$  because  $P_i$  is an ordinary double point. By the isomorphism  $\beta$ ,  $\alpha$  is identified with the natural map  $H^2(\mathbb{T}^0) \longrightarrow H^2(\mathbb{T}^0)$ . In our case it is easily shown  $Z \ \overline{X} \qquad \overline{X}$  that  $\pi_{\mathbf{x}} \theta_{\mathbf{X}} = \mathbf{T}_{\mathbf{X}}^{0}$ . Next using the Leray spectral sequences:  $H_{Z}^{p}(\mathbf{R}^{q}\pi_{\mathbf{x}}\theta_{\mathbf{X}}) \Rightarrow H_{C}^{p+q}(\theta_{\mathbf{X}})$  and  $H^{p}(\mathbf{R}^{q}\pi_{\mathbf{x}}\theta_{\mathbf{X}}) \Rightarrow H^{p+q}(\theta_{\mathbf{X}})$ , we have  $H_{Z}^{2}(\mathbf{T}_{\mathbf{X}}^{0}) = H^{2}_{C}(\theta_{\mathbf{X}})$  and  $H^{2}(\mathbf{T}_{\mathbf{X}}^{0}) = H^{2}(\theta_{\mathbf{X}})$ , which implies that the above map is identified with the following maps:  $H_{C}^{2}(\theta_{\mathbf{X}}) \longrightarrow H^{2}(\theta_{\mathbf{X}})$   $\downarrow \downarrow \qquad \downarrow \downarrow$  $H_{C}^{2}(\Omega_{\mathbf{X}}^{2}) \xrightarrow{\theta} H^{2}(\Omega_{\mathbf{X}}^{2})$ ,

where the vertical identifications come from the fact that  $K_X$  is trivial. If the map  $\theta$  is surjective, then we have  $\mathbb{T}_X^2 = 0$ . On the other hand,  $H^0(\mathbb{T}_1^1) \cong H^2(\mathbb{T}_1^0) \cong H^2_C(\Omega_X^2)$  are isomorphic to a n-dimensional vector space  $\lim_{i \neq 1} \mathbb{C}$ , where each factor corresponds to  $C_i$ .  $\theta$  is nothing but the map which associates each basis of the above vector space to the fundamental class of  $C_i$  in X. Summing up these results, we have the following fact(1.1):

(1.1) Let X be a Calabi-Yau 3-fold and  $C_1 \ldots, C_n$  mutually disjoint (-1,-1)-curves on X. We employ the same notation as above. Then since  $H^2(\Omega_X^2) = H^4(X, \mathbb{C}) = H_2(X, \mathbb{C})$  by the Hodge decomposition and the Poincare duality, the map  $\theta$  can be identified with the map  $i_*$ :  $\prod_{i=1}^{n} H_2(C_i, \mathbb{C}) \longrightarrow H_2(X, \mathbb{C})$ . In particular, if  $i_*$  is surjective and there is an element  $(a_1, \ldots, a_n) \in \text{Ker } i_*$  such that  $a_i \neq 0$  for all i, then  $\overline{X}$  is deformed to a smooth compact non-Kähler 3-fold with  $K = 0, b_2 = 0$  and q = 0.

A typical example of (1.1) is a general quintic hypersurface X in  $\mathbb{P}^4$  and two lines on it. In this case, since  $Pic(X) = \mathbb{Z}$ , it is rather easy to check the conditions in (1.1). But in general it is very difficult to find the curves satisfying the condition in (1.1) even

-- 23 --

if a Calabi-Yau 3-fold X is given explicitly. In another sense, (1.1) tell us an interesting example where the class  $\mathcal{G}$  is not stable by small deformation. In fact,  $\overline{X}$  is a Moishezon space, hence is in class  $\mathcal{G}$ . But the non-Kähler 3-fold V obtained by a small deformation of  $\overline{X}$  is not in class  $\mathcal{G}$ . This is shown as follows. First one has  $h^{0,2}(V) = 0$ , because  $h^{0,1}(V) = 0$  and  $K_V = 0$ . If V is in class  $\mathcal{G}$ , then it is bimeromorphic to some compact Kähler manifold Y. Since  $h^{0,2}(V) = 0$ ,  $h^{0,2}(Y) = 0$ . In fact, by the desingularization theorem [4], we have a complex manifold  $\widetilde{V}$  which dominates both V and Y. birationally and properly. Using spectral sequences and Chow lemma[5] for  $(\widetilde{V}, V)$  and  $(\widetilde{V}, Y)$ , we have the result. But  $h^{0,2}(Y) = 0$  implies that Y is a projective manifold. Since the algebraic dimension of V equals to 0, this is a contradiction. So V is not in class  $\mathcal{G}$ . Since  $\kappa(\overline{X}) = 0$ , this is a counter-example to a question posed in [2].

To return from the digression, we will explain the construction of the proof. First we define a Weierstrass model.

## (1.2) Definition

A Weierstrass model  $W(\mathcal{I},a,b)$  over a variety S is a closed subvariety in  $\mathbb{P}_{S}(0 \oplus \mathcal{I}^{2} \oplus \mathcal{I}^{3})$  defined by the equation  $Y^{2}Z = X^{3} + aXZ^{2} + bZ^{3}$ , where  $\mathcal{I} \in \operatorname{Pic}(S)$ ,  $a \in H^{0}(S, \mathcal{I}^{-4})$ ,  $b \in H^{0}(S, \mathcal{I}^{-6})$  and  $Z: 0 \longrightarrow 0 \oplus \mathcal{I}^{2} \oplus \mathcal{I}^{3}$  $X: \mathcal{I}^{2} \longrightarrow 0 \oplus \mathcal{I}^{2} \oplus \mathcal{I}^{3}$  $Y: \mathcal{I}^{3} \longrightarrow 0 \oplus \mathcal{I}^{2} \oplus \mathcal{I}^{3}$ are natural injections. We denote by  $\Sigma$ , the section of  $W(\mathcal{I},a,b)$  over S defined by X = Z = 0, and denote by  $\pi$  the natural projection of  $W(\mathcal{I},a,b)$  to S.

-24-

Next let X be a Calabi-Yau 3-fold which has an elliptic fibration with a rational section. Then by [8](Theorem 3.4), X is birational equivalent to a Weierstrass model W = W( $K_S$ , a, b) with only canonical singularities, where S is one of the following: P<sup>2</sup>,  $\Sigma_i$  (0  $\leq$  $i \leq 12$ ). This is a starting point of our proof. Since W has singularities in the case S =  $\Sigma_i$  (3  $\leq i \leq 12$ ) if we take a and b generally, we must set up the following definition.

(1.3) Definition

Let  $W = W(K_S, a, b)$  be a Weierstrass model over  $S = \Sigma_i$  ( $3 \le i \le 12$ ). Then W is called general if (1) W has singularities only on  $F = \{ p \in W ; p \in \pi^{-1}(D_0), X = Y = 0 \}$ , where  $D_0$  is a negative section of S, and (2) let  $mD_0$  and  $nD_0$  be the fixed components of  $|K_S^{-4}|$  and  $|K_S^{-6}|$ , respectively, then  $div(a) = G + mD_0$  and  $div(b) = H + nD_0$ , where G (resp. H) intersects  $D_0$  transversely and  $G.D_0 \cap H.D_0 = \emptyset$ . Here  $G.H_0$ (resp.  $H.D_0$ ) denotes the intersection of  $D_0$  and G (resp. H).

We will employ Definitions(1.2),(1.3). Let  $W = W(\mathcal{L}, a, b)$  be a Weierstrass model over S. Then W is obtained as a double cover of  $\mathbb{P}_{S}(0 \oplus \mathcal{L}^{2})$  branched over  $B = \{X^{3} + aXZ^{2} + bZ^{3} = 0\}$ . If W has singularities, then we can use the following.

(1.4) Canonical Resolutions

Let Y be a smooth variety and B a reduced Cartier divisor on it. Assume that  $\mathcal{O}_Y(B) = L^{\otimes 2}$  for a line bundle L on Y. Then we have a double cover X of Y branched along B. To resolve the singularities on X, we consider the following process:

Perform a succession of monoidal transformations  $v_i$   $(1 \le i \le m)$ with smooth centres  $D_i \subset B_i \subset Y_i$   $(1 \le i \le m)$ , where  $Y_1 = Y$ ,  $B_1 = B$ ,  $Y_{j+1} \xrightarrow{v_j} Y_j$  and  $B_{j+1} = v_j^* B_j$  for each j. And if we write  $B_m = \overline{B} + \sum_{k=1}^{\infty} \mu_k E_k$ , where  $\overline{B}$  is a proper transform of B by  $v := v_m o..ov_1$  and  $E_k$ 's are v-exceptional divisors, then  $\overline{B} + \sum_{k, i \in A} E_k$  is a smooth divisor. If the above process is possible, then we have a double cover branched along  $\overline{B} + \sum_{i, \mu_i: \text{odd}} E_i$  and obtain a smooth variety  $\widetilde{X}$ which is a resolution of X. We call the above process a canonical resolution.

Let  $W = W(K_S, a, b)$  be a general Weierstrass model over  $S = \Sigma_i (3 \le i \le 12)$  in the sense of Definition(1.3). Then we can perform a canonical resolution on W. In our case, it is easily verified that  $Sing(W) = \{ q \in P ; q \in p^{-1}(D_o), X = 0 \ Y = 0 \}$ , where  $P = P_S(0 \oplus K_S^2 \oplus K_S^3)$ ,  $D_0$ : negative section, and that the singularities are locally trivial deformations of a rational double points except for a finite number of points which are so-called dissident points. So the problem is how to overcome the difficulties which arise at these dissident points. For example, consider the case where i = 5. (In the case where i = 3, 4, 6, 8, 12 there are no dissident points.) Since G and H never vanish simultaneously on a point q of Sing(W) in Definition(1.3), we may consider two cases: (1) only G vanishes at q , and (2) only H

-26-

vanishes at q. But it follows that q is dissident only in the case (2). So we may consider the situation where q = (0,0,0,0), W:  $y^2 = x^3 + t^3x + st^4$  in (x,y,s,t)-space(=  $\mathbb{C}^4$ ). Then the process of a canonical resolution will be found in (Figure 1). As a consequence, we have the following Proposition.

## (1.5) Proposition

Let  $W = W(K_S, a, b)$  be a Weierstrass model over S, where S is one of the following:  $\mathbb{P}^2$ ,  $\Sigma_i$  (0  $\leq i \leq 12$ ). Then:

 $(0) K_{u} = 0_{u}$ 

(1) In the case  $S = \mathbb{P}^2$  or  $\Sigma_i$  ( $0 \le i \le 2$ ), a general Weierstrass model W is smooth and  $Pic(W) = \pi^* Pic(S) \oplus \mathbb{Z}[\Sigma]$ . Moreover W is simply-connected.

(2) In the case  $S = \Sigma_i$  ( $3 \le i \le 12$ ), a general Weierstrass model W has canonical singularities such that  $Sing(W) \simeq \mathbb{P}^1$  and that they are locally trivial deformations of rational double points except for finite number of points. Moreover W has a canonical resolution  $\mu: \widetilde{W} \to W$  such that a)  $\widetilde{W} \to S$  is a flat morphism if  $3 \le i \le 8$  or i = 12, b) if we view  $\widetilde{W}$  and W as fibre spaces over  $\mathbb{P}^1$  by means of the ruling  $S \to \mathbb{P}^1$ , then, for a general point  $t \in \mathbb{P}^1$ ,  $\mu_t : \widetilde{W}_t \to W_t$  is a minimal resolution of a surface with rational double points, and c)  $K_{\widetilde{W}}^{\sim} = 0_{\widetilde{W}}^{\sim}$ .

Remark. In the case where  $9 \le i \le 11$ ,  $\tilde{W}$  is not flat over S. But we can factionize  $\mu$  into  $\tilde{W} \to \bar{W} \to W$ , where  $\bar{W}$  is a normal variety with the singularities which are locally trivial deformations of a rational double point of  $A_1$ -type along  $C_i$   $(1 \le i \le r)$ , where  $C_i$   $(1 \le i \le r)$  denote mutually disjoint smooth rational curves on  $\bar{W}$ . Moreover  $\bar{W}$  is

flat over S, and  $\widetilde{W} \rightarrow \overline{W}$  is a trivial resolution of the above singularities. For details, see (Figures 1,2).

(3) For an arbitrary point  $t \in \mathbb{P}^1$  except for a countable number of points,  $\widetilde{W}_t$  is naturally an elliptic K3 surface and its Mordell Weil group is trivial.

(4) Let  $E_j$   $(1 \le j \le m)$  be  $\mu$ -exceptional divisors. Then  $Pic(\widetilde{W}) = (\pi o \mu)^* Pic(S) \oplus_i \Sigma_j \mathbb{Z}[E_j]$ .

(5)  $\tilde{W}$  is simply-connected.

# Theorem A'

Let W and  $\widetilde{W}$  be a general Weiertsrass model and its resolution as above. Then we have:

(1) In the case  $S = P^2$  or  $\Sigma_i$  ( $0 \le i \le 2$ ), there are mutually disjoint (-1,-1)-curves  $C_1,.., C_4$  on W such that  $i_* : i = 1 H_2(C_i, \mathbb{C}) \longrightarrow H_2(W, \mathbb{C})$  is surjective and that one can obtain, by the procedure of (1.1), a smooth compact non-Kakka 3-fold with K = 0,  $b_2 = 0$  and q = 0. (2) In the case  $S = \Sigma_i$  ( $3 \le i \le 12$ ), there are mutually disjoint (-1,-1)-curves  $C_1,..., C_{n(i)}$  on the variety  $\widetilde{W}$  which is obtained from  $\widetilde{W}$  by the composite of flops of (-1,-1)-curves . For  $C_i$ 's,  $i_* : \frac{n(i)}{j=1} H_2(C_j, \mathbb{C}) \longrightarrow H_2(\widetilde{W}, \mathbb{C})$  is surjective, and one can obtain, by the procedure of (1.1), a smooth compact non-Kähler 3-fold with K = 0,  $b_2 = 0$  and q = 0.

# Example (without proof)

Set  $S = \Sigma_0$ . Let  $p: S \rightarrow \mathbb{P}$  denote one of its ruling. Then pom:  $W \rightarrow \mathbb{P}^1$  is a K3-fibration. Let  $l_1$  and  $l_2$  be mutually distinct

-28-

fibre of p, and let  $D_1$  and  $D_2$  be mutually distinct section of p with

 $(D_i)^2 = 0$ . Note that  $\pi^{-1}(l_i) \xrightarrow{\sigma_i} l_i$  (i = 1, 2) and  $\pi^{-1}(D_i) \xrightarrow{h_i} D_i$  (i = 1, 2) are elliptic K3 with canonical sections which comes from  $\Sigma$ , respectively. Let us consider the following four mutually disjoint (-1,-1)-curves:

 $C_1$ : a section of  $g_1$  with  $(C_1, \Sigma)_W = 0$   $C_2$ : a section of  $g_2$  with  $(C_2, \Sigma)_W = 1$   $C_3$ : a section of  $h_1$  with  $(C_3, \Sigma)_W = 0$   $C_4$ : a section of  $h_2$  with  $(C_4, \Sigma)_W = 1$ . Then the condition in (1.1) is satisfied.

As for Theorem A' ( in particular Theorem A'(2) ), it is impossible to give a proof in this report. Details will be found in [io].

The aim of this report is to explain how to derive **Theorem A** from **Theorem A'.** Let X be a Calabi-Yau 3-fold which has an elliptic fibration with a rational section. Then, as is mentioned before, X is birational equivalent to a Weierstrass model W with only canonical singularities. But W is not general in the sense of Definition(1.3). Though W has only canonical singularities, its singularities are possiblly worse than the ones described in Definition(1.3). Let us consider the complete linear system  $|\mathcal{Z}|$  on  $P_S(0 \oplus K_S^2 \oplus K_S^3)$ , where  $\mathcal{L} = 0_p(1) \oplus \pi^* K_S^{-6}$  and  $0_p(1)$  is a tautological line bundle of P( $0 \oplus K_S^2 \oplus K_S^3$ ). Let A be a sublinear system of  $|\mathcal{Z}|$  which consists of the elements of the following form :

- 29 -

 $\varphi_1 Y^2 Z + \varphi_2 X^3 + \varphi_3 X Z^2 + \varphi_4 Z^3 = 0 ,$ where  $\varphi_1$ ,  $\varphi_2 \in H^0(S, \mathscr{O}_S)$ ,  $\varphi_3 \in H^0(S, K_S^{-4})$  and  $\varphi_4 \in H^0(S, K_S^{-6})$ . Then consider the universal family over  $T = \mathbb{P}(\Lambda), g: \mathbf{f} \to T$ . Assume that  $g^{-1}(t_0) = W$ . If we choose a general point t on T, then  $W_t = g^{-1}(t)$ has the property in Theorem A'. Let C be a curve in T passing through  $t_0$  and t. Then we have a family of Weierstrass models over C, which we denote again by  $g : \mathbf{f} \to C$ . In the case where  $S = \mathbb{P}^2$  or  $\Sigma_i$  (0  $\leq i \leq$  2), a general fibre of g is smooth. But in the case where  $S = \Sigma_i$  (3  $\leq i \leq$  12), a general fibre has singularities by Proposition (1.5)(2). In this case we have the following proposition.

## (1.6) Proposition

Let S be a surface isomorphic to  $\Sigma_i$  (3  $\leq$  i  $\leq$  12) and C a curve. Consider the following flat family of Weierstrass models over S:

$$P_{S}(0 \oplus K_{S}^{2} \oplus K_{S}^{9}) \times C$$

$$W \longrightarrow S \times C$$

$$g^{\vee} \qquad \swarrow \qquad p_{1} \qquad p_{2}^{\vee}$$

$$G \longrightarrow S$$

$$W: Y^{2}Z = X^{9} + aXZ^{2} + bZ^{9} , \quad a \in H^{\circ}(S \times C, p_{2}^{*} K_{S}^{-4}),$$

$$b \in H^{\circ}(S \times C, p_{2}^{*} K_{S}^{-6})$$

Assume that  $\mathbf{W}_{t}$  is general for every  $t \in C$  except for a finite number of points  $\{t_1, \ldots, t_n\}$ . Then there is a projective resolution  $\Xi: \widetilde{\mathbf{W}} \to \mathbf{W}$  such that  $\Xi_t: \widetilde{\mathbf{W}}_t \to \mathbf{W}_t$  becomes the resolution in Proposition(1.5) for every  $t \notin \{t_1, \ldots, t_n\}$ .

11

So we have a flat projective morphism  $\tilde{g} : \tilde{\mathbf{W}} \to C$  whose general fibre is smooth. For a general point  $t \in C$ ,  $\tilde{\mathbf{W}}_t$  satisfies Theorem A'(2), that is, there is a sequence of flops of (-1,-1)-curves  $D_j \subset \mathbf{W}_t^{(j)}$ :

and there are (-1,-1)-curves on  $\tilde{\mathbf{w}}_t^*$  to be contracted. Let us consider the irreducible component H of Hilb  $\tilde{\mathbf{w}} / C$  which contains  $[D_0]$ . Note that Hilb  $\tilde{\mathbf{w}} / C$  is etale over C at  $[D_0]$  because  $D_0$  is a (-1,-1)-curve on  $\tilde{\mathbf{w}}_t$ . Hence H is determined uniquely, and H is etale over C at  $[D_0]$ . Taking a suitable finite cover of C, we may assume that  $H_{red}$  is birational to C. Then we have the following diagram:



where  $\mathfrak{D}_t$  is a (-1,-1)-curve on  $\widetilde{\mathfrak{T}}_t$  for every point  $t \in C^*$ : a Zariski open subset of C. Restrict  $\widetilde{g} : \widetilde{\mathfrak{T}} \to C$  to  $C^*$ , and consider  $\widetilde{g}^*$ :  $\widetilde{\mathfrak{T}}^* \to C^*$ . Then by [1](Corollar(6,10), we can perform a flop of  $\mathfrak{D}^*$ relatively over  $C^*$ , and get  $\widetilde{g}^{(1)*} : \widetilde{\mathfrak{T}}^{(1)*} \to C^*$ . Here  $\widetilde{\mathfrak{T}}^{(1)*}$  is in general not a scheme, but an algebraic space. We can compactify  $\widetilde{\mathfrak{T}}^{(1)*}$ by [1] and have a proper surjective map  $\widetilde{g}^{(1)} : \widetilde{\mathfrak{T}}^{(1)} \to C$ .  $\widetilde{\mathfrak{T}}^{(1)}$  is assumed to be smooth by [4], and  $\widetilde{\mathfrak{T}}^{(1)}$  is birational to  $\widetilde{\mathfrak{T}}$  over C. Since  $\widetilde{\mathfrak{T}}_{t_0}$  contains an irreducible component birational to W and both  $\widetilde{\mathfrak{T}}$  and  $\widetilde{\mathfrak{T}}^{(1)}$  are smooth,  $\widetilde{\mathfrak{T}}^{(1)}_{t_0}$  also contains an irreducible

- 31 -

component birational to W. As a consequence, by repeating this process, we may assume from the first that there are (-1,-1)-curves to be contracted on  $\tilde{\mathbf{r}}_t$ . In the case where  $S = \Sigma_i (3 \le i \le 12)$ , we consider  $\tilde{g} : \tilde{\mathbf{r}} \longrightarrow C$  which is obtained by repeating above process. And in the case  $S = \mathbb{P}^2$  or  $\Sigma_i (0 \le i \le 2)$ , we consider the original  $g : \mathbf{r}$  $\rightarrow C$ . Then we can use the following, if necessary, after a base change by a finite cover of C:

## (1.7) Proposition

Let h:  $\mathfrak{V} \to \mathbb{C}$  be a proper flat morphism with connected fibres of an irreducible smooth 4-dimensional algebraic space  $\mathfrak{V}$  to a smooth curve C. Let  $t_0 \in \mathbb{C}$  be a fixed point and W an irreducible component of  $\mathfrak{V}_{t_0}$ . Assume that there is a proper flat family of curves in  $\mathfrak{V}$ :

$$g_i \subset \mathfrak{Y}$$
  
flat  $\bigvee \mathcal{V}$   
proper  $C$   $(1 \le i \le n)$ 

such that for a general point  $t \in C$ , (1)  $\mathcal{B}_{i,t}(1 \leq i \leq n)$  are mutually disjoint (-1,-1)-curves on  $\mathfrak{V}_t$ , (2) these curve satisfy the condition in (1.1), and (3) we can obtain from  $\mathfrak{V}_t$  a non-Kähler 3-fold with K = 0,  $b_2 = 0$  and q = 0 by the process in (1.1). Then there is a proper surjective map of a 4-dimensional complex manifold  $\mathfrak{A}$  to a 1-dimensional disc  $\Delta$  such that 1)  $f^{-1}(t)$  is a compact non-Kähler 3-fold with K = 0,  $b_2 = 0$  and q =0, for  $t \in \Delta^*$ , 2)  $f^{-1}(0) = \sum_{i=1}^{\infty} W_i$  is a normal crossing divisor of  $\mathfrak{X}$ , and i = 13)  $W_0$  is bimeromorphic to W. *Proof*) Let  $C^*$  be a suitable Zariski open subset in C. Then by [1] ( Carollary 6.10), we can contract  $g_i^*$  's on  $\mathfrak{Y}^*$  relatively over  $\mathcal{C}^*$ , and obtain  $\overline{\mathfrak{G}}^*$ . We can compactify  $\overline{\mathfrak{G}}^*$  and have proper flat map of a normal algebraic space  $\bar{\vartheta}$  to C. Then  $\bar{\vartheta}$  is birational to  $\vartheta$  over C. Consider the function field K of  $\mathfrak{G}$ , and let v be a discrete valuation ring which corresponds to W. Let L be a suitable Galois extension of K. then the normalizations of  $\mathfrak{G}$  and  $\overline{\mathfrak{G}}$  in L become schemes by the argument of [1](proposition 1). Denote them by  $\mathfrak{I}$  and  $\overline{\mathfrak{I}}$ , respectively. Then  $\mathfrak{Y}$  (resp.  $\overline{\mathfrak{Y}}$ ) is the quotient of  $\mathfrak{I}$  (resp.  $\overline{\mathfrak{I}}$ ) by the Galois group G = Gal(L/K). Let  $v_1, \ldots, v_k$  be the extension of v in L. Then each element  $g \in G$  induces a permutation of  $v_j$ 's. If g sends  $v_i$  to  $v_j$ , then we will write j = g(i). By [7](P.153), for  $v_1$ , there is a variety  $\bar{I}_{v_1}$  birational to  $\bar{I}$  such that (1)  $\bar{I}_{v_1}$  is projective over  $\bar{\mathfrak{T}}$ , (2)  $\bar{\mathfrak{T}}_{v_1} \supset \{ z \in \bar{\mathfrak{T}} ; \bar{\mathfrak{T}} \text{ is isomorphic to } \mathfrak{T} \text{ at } z \}$ , and (3) if  $v_1$  dominates a point y of  $\bar{\mathcal{I}}_{v_1}$  and a point y' on  $\mathcal{I}$  , then  $\mathcal{O}_y$ dominates  $\mathcal{O}_{u}$ . In this case we may assume that  $\overline{\mathcal{I}}_{u}$ , and  $\overline{\mathcal{I}}$  are isomorphic at every point except for points over  $t_0 \in C$ . We denote  $\bar{\mathbf{I}}_{u_1}$  by  $\bar{\mathbf{I}}_1$ , and define  $\bar{\mathbf{I}}_{\alpha}$  for each  $g \in G$  by the following fibre product:

On the other hand, viewing  $\bar{\mathbf{I}}_{\alpha}$  's as  $\bar{\mathbf{I}}$  - schemes, we have :

Take a closure  $\tilde{\mathfrak{I}}$  of the graph of (\*) in  $\[ I g ] \tilde{\mathfrak{I}}_{g}$ , and embed  $\tilde{\mathfrak{I}}$  into  $rac{1}{2}$  in such a way that z 
ightarrow 
eal z . Then the natural projection from  $\vec{g} \quad \vec{x}_{g} \quad \text{to } \quad \vec{y} \quad \vec{x} \quad \text{induces a pojective morphism of } \quad \vec{x} \quad \text{to } \quad \vec{x} \quad \text{Consider}$ the action of G to  $\underline{r}$   $\underline{\tilde{x}}$  defined in such a way that g sends  $g_i$ -th factor  $\vec{x}$  of  $\vec{y}$   $\vec{x}$  to  $gg_i$ -th factor  $\vec{x}$  of  $\vec{y}$  and that this map of  $\vec{x}$ to itself coincides with the natural g-action of  ${f {f I}}$  . Clearly  ${f {f {f I}}}$  is stable by this G-action, and this action coincides with the original G-action of  $\mathbf{I}$ . So, the natural G-action is induced on  $\widetilde{\mathbf{I}}$ . . If we take a normalization of  $\widetilde{\mathfrak{T}}$  , then the action of G naturally extends. So we may assume that  $\widetilde{\mathfrak{I}}$  is normal. Then the quotient  $\widetilde{\mathfrak{I}}$  of  $\widetilde{\mathfrak{I}}$  by G is an algebraic space by [6](P, 183 | .8) [15], and we have a birational morphism of  $\tilde{\mathfrak{G}}$  to  $\bar{\mathfrak{G}}$  . This morphism is an isomorphism over a general point t C. But by the construction,  $\tilde{\Psi}_{t_0}$  contains an irreducible component birational to W. So, from the first, we may assume that  $\bar{\Psi}_{t_0}$  has an irreducible component birational to W. Now let us consider the Kuranishi space (4,  $u_0$ ) of  $\bar{\vartheta}_{t_0}$  , which is a complex space and has versal property at every point u near  $u_0$  [3][4]. On the other hand,  $\bar{\vartheta}_t$  can be deformed to a non-Kähler 3-fold with K = 0,  $b_2$ = 0 and q = 0 for every point t near  $t_0$ , which implies that ther is a flat deformation  $f: \mathfrak{A} \to \Delta$  such that  $f^{-1}(0) = \overline{\vartheta}_{t_0}$  and that  $f^{-1}(t)$  is a non-Kähler 3-fold with K = 0,  $b_2 = 0$  and q = 0. Then the semi-stable reduction for f is a desired one. Q. E. D.

15



E8-type



2 = 3 (A2 - 17pa)



i=5 (E1-type).





i=4 (Da-type)







$$\tilde{l} = .9, 10, 11.$$
 (Eg-type)  
There are 3, 2 or 1 dissident points sciending to  
whether  $\tilde{i} = 9, 10$  or 11.  
 $\tilde{W}$   
 $\tilde{$ 

$$i = 12$$
. (Es-type)  
=  $\sim$   
W = W

#### References

1. Artin, M : Algebraization of formal moduli II , Ann of Math (2)91 (1970)

- 2. Campana. F : The class  $\boldsymbol{g}$  is not stable by small deformations. Preprint
- 3. Friedman, R : Simmultaneous resolution of threefold double points, Math. Ann 274 (1986)
- Hironaka, H : Bimeromorphic smoothing of a complex analytic space, Math. Inst. Warwick Univ. 1971
- 5. ----- : Flattening theorem in complex analytic geometry, Am. J. Math, **97** (1975)
- Knutson, D : Algebraic spaces, Lecture Note in Math. 203
   (Springer)
- 7. Nagata, M , Miyanishi, M , Maruyama, M : Abstract algebraic geometry (in Japanese), (Kyoritsu)
- 10. Namikawa, Y : in preparation
- Raoult, J-C : Compactification des espaces algebriques normaux,
   C.R. Acad. Sc. Paris, t. 273 (1971)
- 12. Reid, M : The moduli space of 3-fold with K = 0 may neverthless be irreducible, Math. Ann 278
- 13. Grauert, H : Der satz von Kuranishi für Kompakte Komplexe Raume, Inv. Math 25 (1974)
- 14. Palamodov, V.P : Deformation of complex spaces, Russian Math.Surveys 31:3 (1976)

15. Cartan, H : Quotient d'un espace analytique par un groupe d'automorphismes, in Algebraic Geometry and Topology, Princeton Univ. Press (1957)

.