<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>E-3脂質を標的としたサル免疫システムの解明</td>
</tr>
<tr>
<td>著者</td>
<td>杉田 昌彦, 森田 大輔</td>
</tr>
<tr>
<td>引用</td>
<td>霊長類研究所年報 (2014), 44: 104-104</td>
</tr>
<tr>
<td>発行日</td>
<td>2014-12-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/214138</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
下、サル）が放射性物質に被ばくした。そこで、福島市のサルを対象として、被ばくによる健康影響を明らかにすることを目的として、今年度は胎仔の成長への影響を検討するための画像診断方法の検討を行った。また、今年度も採取した個体のセリウム測定、臓器及び遺伝子等の標本保存を行った。

【材料・方法】本研究に用いたのは、鳥取保護区に基づき実施された個体数調整により福島内で捕獲され、殺処分され

・【結果と考察】筋肉中セリウム濃度は、1,000Bq/kg 前後を推移したが、越冬期に濃度が高い現象は、2013 年度にも

一般の性格研究

E-1 類人猿の神経伝達関連遺伝子の多様性解析

村山美都（京都大・野生動物） 所対応者：今井啓雄

本研究では、ヒトで報告されている性格に関与する遺伝子の関連領域を類人猿で解析し、一般的な性格要因、個体の性格評価との関連解析を行って、個体差を理解するための手段を提供している。個別の性格評価の解析には多数の試料が必要で、GAIN を通じて類人猿類の試料を提供し、比較可能なデータの蓄積を目指している。

・E-2 ニホンザルを対象とした高解像度 CNV スクリーニング解析

尾崎緑夫、Aleksic Branko、久保慶（名古屋大・院・精神医学） 所対応者：今井啓雄

近年、自閉症スペクトラム症、統合失調症を含む精神疾患の発症に強い影響を及ぼす神経レポーキー変異（copy number variant; CNV）が多数同定されている。この研究では、妥当性の高い精神疾患の関連領域を不特定を目的としたゼロ CNV 解析を実施した。

ニホンザル 379 頭を対象に array CGH（comparative genomic hybridization）で高解像度の CNV 解析を行った。その結果、数 10kb 程度の小規模 CNV から数 Mb の大规模 CNV を含む多様な CNV を同定した。その結果、神経領域に関連する遺伝子に機能的影響を与えるものと同定した。

E-3 質を基準としたサル免疫システムの解明

杉田昌彦、森田大輔、（京都大・ウイルス研） 所対応者：鈴木樹理

本研究グループは、アカザルにおいて、サル免疫不全ウイルス由来のリポペプチドを特異的に認識する T 細胞の存

E-4 The genetic basis of blue eyes in primates

Molly Przeworski, Wynne Meyer (University of Chicago), 早川祥子，Sidi Zhang (Springer Japan)

所対応者：今井啓雄

多くの免疫学的分子を研究したが、pheochromocytoma 2 ミクロプロリンを特異的に認識することが判明した。以上の結果、リポペプチド抗原提示分子は MHC クラス 1 の分子であると結論付け、その同定に向け遺伝子ライブラリの構築を完了した。
E-5 藍眼類に変形性斜眼は見られるか？
清水大輔（京都大学・理学研究科）、海部啓介（国立科学博物館・人類研究部） 所内対応者：西村剛

ヒトはその脳サイズから予測されるよりは10ヶ月近く、未熟な状態の赤ん坊を産む。これは生理的早産と呼ばれる現象で、ヒトにおける脳進化と直接関連する重要なイベントである。われわれは生後に生じる変形性斜眼の高い場合に軽減した現象、DPと略す。ヒト特有の二次の発明の進化とともに誕生したという仮説で現象を研究している。

仮説が成り立つことは、変形のある構造の進化を示すも、生理的発育の進化を直面することができる。本課題では、この新しい仮説を検討するために、以下の3つの層に含まれるデータ収集を主目的として課題を遂行した。

1) ヒト以外の越梅類に見られるDPは存在しない。
2) DP以外の越梅類では、生後開始の斜眼の成長がヒトよりも進んでいない。
 これらが当たれば、仮説は条件付きで支持される。

日本科学センターに所蔵されているチンパンジーとオランウータンの胎児および新生児の全身皮膚標本計6標本を越梅類研究所所蔵のCTで撮影した。その結果、チンパンジーとオランウータンの新生児ではDPは観察されなかった。

E-6 藍眼類皮膚発現遺伝子の進化遺伝学的解析
嶋田葉子、川崎雄次（筑大先端研究） 所内対応者：今井啓雄

ヒトと越梅類の形態的の違いの一因として、皮膚の構造がある。体毛の有無を含めて、汗腺や、皮下脂肪の量、湿度感覚受容体、免疫系、水分調節など、さまざまな形態に関わる分子の分布がヒトと他の越梅類の間では異なることが予想される。そこで、皮膚でのこの形態に関わる遺伝子の発現とヒトと越梅類で比較し、ヒトの形態、生理学的な特性の獲得に関連する遺伝的基盤を明らかにすること。これまで、共同研究で提供いただいた、アガザール複数個体の皮膚についてRNAを抽出してマイクロアレイ解析による発現量の変化を比較調査を行ってきた。この結果をチンパンジーの例と比較したところ、ヒトと越梅類のモデルとチンパンジーの間では、ケラチン及びケラチン関連タンパク質の発現が大きく異なることがあることが明らかになった。提供いただいた各種越梅類（チンパンジー、ゴリラ、オランウータン）の冷蔵組織からRNAおよびDNAを抽出した。
現在は、これらのサンプルでのケラチン及びケラチン関連タンパク質のRNA発現量を定量化するためのRT-PCR用primerの設計を行っている段階である。また、その他にも、皮膚で発現する他人成長ホルモン（AOP）のゲノム配列決定も進めている。

E-9 野生チンパンジーのアルファ雄の肉分配に関する研究
保坂和彦（鎌倉女子大・児童） 所内対応者：Michael A. Huffman

昨年度に引き続き、マハレ山塊 M 集団のチンパンジーの長期資料を整理し、アルファ雄の行動や肉分配に関するデータベース作成を進めた。
1991年以降のべ8頭のアルファ雄が在位したが、アルファ雄が肉分配の役割を担うという傾向に変化はない。この役割はアルファ雄自身が主導して奪取するものなのか、それとも、周囲個体の肉の所有に対する抑制あるいは転役によるものなのか、この問いに答えるため、アルファ雄の政治的利益、分配者一貫分配の互性に基づく協力行動、3次異常者による分配者の社会的操業、という3つの仮説に照らして検討するための資料整理を行っている。
過去40年あまり多数の野生チンパンジー調査で進んだ肉分配の研究は、これらの仮説を対立的に捉え、一つの要因のみを主張しようとするらしいがなかった。しかし、Silk et al.(2013)が銅育下のチンパンジー対象の実験で示したように、チンパンジーはこれを理解する動機を追求しており、個体や状況によって重点の置き方が異なるのではないかかもしれない。このような柔軟な発想に基づく分析を可能にするため、とくに社会行動と肉分配との関係を明らかにする資料整理論と分析を今後の課題としていきたい。

E-10 生活習性と AMY1遺伝子多型との関連
鈴木良雄、鯨瀬絵里、築庭英輝、川端正孝、川田裕次郎（順大院・科学）、五十嵐洪、長岡功、松川岳久（順大院・医学）、中村明香（順大院・医学） 所内対応者：今井啓雄

近年、朝食欠食率の増加が問題視されているが、低年齢児童では、朝から無理なく朝食を摂取する児童もいるが、時間をかけても、なかなか摂取してくれない児童もある。そこで唾液アミラーゼ活性が出生時には発現しておらず、成長に伴い思春期までに発現されるとしている。また唾液アミラーゼ遺伝子（AMY1）には、サブコピー数多型もある。この AMY1のコピー数多型が、成長期の唾液アミラーゼ活性に影響し、その結果、朝食摂取における個人差が生じている可能性を検討している。
そこで、2013年1月に長野市内の保育園（4か所）の園児（4～6歳児・290名）を対象に、唾液・DNAの採取を行い、男性141名、女性141名より唾液を採取した。得られた500検体では園児の日齢と唾液アミラーゼ活性との相関係数は男性r=0.003、女性r=0.009であり、まったく関係は認められなかった。現在、DNAについてAMY1コピー数の解析を行っている。また、2014年には長野市内の小学生を対象に唾液・DNAの採取を行い、953検体の唾液・DNAを回収した。現在、この解析も進めている。

E-12 類人猿の生態関連ホルモン動態－野外におけるサンプル採取保存方法の開発

－105－
E-13 チンパンジーiPS細胞の樹立と神経・生殖細胞への分化誘導
今村公記，矢野真人，岡野ジェイムズ洋洋，西原浩司（慶應大・医・生理学） 所内対応者：今井啓雄

E-14 鎌形細胞の精子形成を支持する分子機序の解明と細胞培養
林輝明，中島龍介，日下部央里紗（慶應大・医・生理学） 所内対応者：今井啓雄

E-15 ニホンザルにおける心筋線維化の病理学的解析
平田聡大（岐阜大・生命科学総合研究支援センター・動物実験），加藤由隆，酒井洋樹，柳井徳朗（岐阜大・応用生物・獣医・獣医病理） 所内対応者：鈴木樹理

E-16 アカザルiPS細胞の樹立
塩田達雄，中山英美，田谷かほる（大阪大・薬研），金子新（京都大・iPS研） 所内対応者：明里宏文

後天性免疫不全症候群（AIDS）の原因ウイルスであるヒト免疫不全ウイルス1型（HIV-1）は宿主細胞に、ヒト以外に感染する動物はチンパンジーのみである。

我々は、アカザルの人工多能性細胞（iPS細胞）に遺伝子操作を加え、HIV-1が個体内で感染・増殖できる動物実験モデルアカザルを作出することを最終目標に、まずはアカザルのiPS細胞樹立を行い、CD4陽性T細胞への分化誘導方法を確立することを目指した。

アカザル末梢血からT細胞を分離し、Oct3/4、Sox2、Klf4、c-Mycのいわゆる山中4因子を発現する4種類のセンダイウイルスベクターを用いてiPS細胞の樹立を試み、しかし、得られた細胞をRT-PCRにおいて遺伝子解析した結果、センダイウイルスベクターの感染は確認できるものの、形態およびアルカリプロッターゼ活性により未分化性iPS細胞樹立とは同定できなかった。そこで山中4因子のうち1つのセンダイウイルスベクターにすべて発現しているものを用い、
E-17 チンベンジー-iPS 細胞分化に与える環境化学物質の影響
高田達之, 井本典美, 落合知美, 小野亜梨子, 谷口聡美, 山田純純（立命館大・薬学）, 棟垣彰吾（立命館大・グローバルイノベーション研究機構） 所内対応者：今井啓雄

チンベンジー-iPS 細胞分化に与える環境化学物質の影響を評価するにあたり、まず、その対照としてカニクイザル ES 細胞および iPS 細胞を用いた実験を行った。カニクイザル ES 細胞と iPS 細胞から胚様体（EB）を形成し、分化に伴う遺伝子発現の変化を調べた。その結果、数種類の ES 細胞・iPS 細胞において、分化に伴う TEKT1（基底細胞特異の遺伝子）発現の上昇が認められたことから、TEKT1 発現量の上昇は、ES 細胞・iPS 細胞分化において極めて共通的な現象であると考えられた。

そこで次に、TEKT1 の機能を詳細に解析するため、TEKT1 プロモーター制御下で Venus を発現させるカニクイザル ES 細胞を作成し、EB 形成実験を行った。その結果、分化に伴う Venus 発現細胞の出現、および特異的管状構造と活発な運動性を有する毛細管の形成が確認された。この Venus 発現細胞をセルソーターにより分取し、遺伝子発現解析を行った結果、生存細胞特異的遺伝子は検出していないものの、精巢内発現の高い TEKT3、FOXJ1 などの発現が認められたことから、本培養法により、ES 細胞と iPS 細胞は精巢と関連する組織へと分化している可能性が示唆された。

E-18 インターフェロンα遺伝子ファミリーの進化的解析
溝口雅也, 杉山真也（国立国際医療研究センター）、中川幸, 今西規（東海大）、石田貴文（東京大）、五條明雄（国立遺伝学研究所） 所内対応者：今井啓雄

本年度では、提供されたチンベンジー遺伝子（P.t.l, P.t.v のハイブリッド）を用いて、目的の領域である Interferon lambda (IFN-λ) 遺伝子ファミリーとコードされている領域に対して、ロング PCR による增幅とシーケンス解析を試みた。この領域は、類似性の高い 3 種類と 1 種類の仮想遺伝子が存在することがヒトで明らかとなっている。この領域を遺伝子ごとに分けて取得するための 6 つのプライマーを設計し、P.t.l とヒトで効率よく增幅することを確かめ、本解析では、特定のシーケンスが既に存在していたことを示唆する。さらに、この領域を進化の過程でどのように進化したのかを解析した。その結果、進化の過程で領域は主要に遺伝子ファミリー間ではなく、遺伝子が分かれたことを示唆する結果が得られた。

E-19 頭髪の形態から探るイルカの系統と音響機能の発達：霧島類との比較
丸山啓史, 松岡健司（京都大・地学）、安井謙介（豊橋市自然史博）、西村剛（京大・霧島研） 所内対応者：友永雅己

イルカ類は、鳴音コミュニケーションに基づき社会構造を形成する点で、霧島類と共通している。一方で、イルカ類の鳴音についての送信・受信システムは、霧島類と異なっているため、比較することで、各分類群のコミュニケーションの発達について示唆を与えることができる。本研究では、イルカ類固有の器官である「気泡」の鳴音の受信システムに与える役割を明らかにすることを目指した。ここでは、化石種のイルカ類も含めて比較可能にするため、「気泡」の形態変化を調べ、眉の X 線 CT スキャンによる構造を観察した。用いた種は、ホエッケールという鳴音を発するマイルカ科（ハングレピカ・カマイルカ）、ホエッケールを発生するネズミイルカ科（ネズミイルカ他 3 種）ラブラウイルカ科（ラブラウイルカ）で行った。その結果、従来のネズミイルカの「気泡」についての左右非対称性を裏打ちする結果となった。加えて、イルカ類中には存在する頭蓋の左右対称性について、新たな知見を得ることができ、霧島類や鳥類（アフロウ）と対照可能なものであった。今後は、構築する標本を増やすだけでなく、マイルカ科であるのにホエッケールを発生させるセラピアイルカ属（イロワイルカ）や、イルカ類その他の群ではあるアカボウクザラ科の標本も含め、包括的に取り組んでいく。

E-20 MC1R 遺伝子に着目したポノボの集団遺伝学的研究
本川靖（ポナウ化成工業） 所内対応者：川本芳

MC1R(melanocortin-1 receptor)は色素細胞表面に存在する色素産生に関与するレセプターである。ヒトにおいて MC1R 遺伝子は、多様性が高く人種特異的多型が存在するため、MC1R 多型情報は、ヒトの分岐過程を考察する際の有益な情報のひとつとなっている。私たちはヒト以外の霧島類においても、当遺伝子のデータが分岐過程を考察する上で有益な情報となると考えている。本研究では、ポノボの MC1R 遺伝子を解析し、すでに保有するヒト、チンベンジーなどの遺伝子データと併せて、当遺伝子の進化過程を比較解析することを最終目標としている。

本年度は、ワクチンとインピング計 20 例の聴力 DNA からダイレクトシーケンス法を用いた検討を行った。その結果、対象領域（MC1R コードリング、プロモーター領域）合計約 2000 塩基対がすべて解読できた数は 6 例、2/3 以上の範囲で解読できた数は 3 例、1/3 以上の範囲で解読できた数は 4 例、それ以下は 2 例であった。

以上の結果より、ワクチンの型と着色性の関係である SNPs が一定でできる観察であり、このデータもとに、ダイレクトシーケンス法での解読が困難な領域をカバーできる新たな手法（リアルタイム PCR 法による SNP 解析）の構築が可能になったと考える。

E-21 霧島類生殖細胞における小分子 RNA の解析

－107－
塩見春彦、平野孝昌、山中総一郎、岩崎由香、齋藤都暉（慶應大・医・分子生物）、関央央美（東大・理・生物化学）
所内対応者：今井啓雄

PIWI は昆虫からヒトまで広く保存されている、生殖幹細胞維持に必須の遺伝子である。PIWI タンパク質は PIWI-interacting RNA (piRNA) と呼ばれる小分子 RNA と結合し、piRNA の配列特異的に標的を認識することで遺伝子発現を制御する。遺伝子は、マウスに特有の 3 種類の PIWI に加え、4 種類目の PIWII (PIWII) が存在するが、遺伝子はマウスおよびヒトの PIWI と異なる RNA 種類を有するか、その詳細は明らかになっていない。我々は、PIWII を特異的に認識する抗体を作製し、コモン・マーカセットおよびアカゲザルにおいて PIWII についての解析を行った。その結果、コモン・マーカセット、アカゲザルの両種の遺伝子において精巣遺伝子および精巣細胞で PIWII が発現することを見出した。また、両種の PIWII と結び piRNA の誘導に成功した。さらに、コモン・マーカセット PIWII 結合 piRNA の解析を通じたところ、遺伝子変異領域およびトランスポンス由来の piRNA に加え、遺伝子変異領域や piRNA に由来であるマウスではほとんど見られない種類の piRNA が存在することを見出した。

E-22 ニホンザル視覚生理学的視覚情報処理回路の研究
佐藤宏道、内藤智之、澤井元、三好智満、七五三木聡（大阪大・医学系研究科）、末松尚史（大阪大・生命機能研究科）
所内対応者：高田昌彦

本共同研究においてはニホンザル研究所所蔵の研究試料「ニホンザル頭蓋骨」(P5850) を用い、研究に供している。技術的目的是ニホンザル全動物標本における網膜神経細胞活動記録実験のための脳電図固定装置の改良及び、網膜神経細胞の活動を微小電極により記録するための電極挿入位置及び角度の調整をこの標本を用いて行うことにある。この研究は将来に係る基礎研究における視覚情報処理回路を定量的に解析することがその目的であり、現時点（2014年3月末）では実験は準備段階であり、コラ(1)の網膜神経細胞-外側膝状体ニューロン間、2)外側膝状体ニューロン-一次視覚野ニューロン間の同時記録を行った。これにより、被験者の時空間構造を形成する結合ルールが明らかとなり、二つの視覚実験を行うための刺激-記録解析システムが構築された。以下の写真は、譲渡された頭蓋骨標本を脳電図固定装置に固定し、改良したアダプターによる眼球固定および網膜神経細胞記録のシミュレーションの様子。

E-23 サル類における聴覚神経細胞の記録
伊藤浩介（新潟大・脳研）

言語や他の高次脳機能と異なり、明らかに適応の意義の見当たらない音楽は、何故どのように進化したのだろうか。本研究は、従来の行動の記録の代わりに事象関連電位 (ERD) と併用して、音楽の神経発生を捉える試みである。すなわち、音楽やメロディーなどの様々な音楽刺激に対する ERD をあらわにすることにより、これらの音楽刺激の解凍の進化を明らかにすることを目的とする。数年来實験計画の初年度にあたる本年度は、マカクザルに電極を加え、無麻醉で頭皮から聴覚事象関連電位を記録するための方法論を確立することを目指した。ヒトを対象とする場合と同じように無侵襲で脳波記録を行うため、動物はチェアを用いて必要最低限の保全をしたと頭部を制毛する以外は、ヒト脳波記録用のコロニオ電極をヒトと同じ方法で、頭皮上9箇所（F3、F4、C3、C4、P3、P2、4、Cz、Pz）左右の前頭、左眼窩部に設置した。その上で、スピーカーから提示した和音や純音刺激に対して、聴覚事象関連電位が安定して記録できることを確認した。本課題は10月に採り掛け半年の研究期間で、次年度以降の研究に向け十分な準備を整えることができた。

E-24 遺伝子の性的二型とその多様性を制御する分子機構の解明に向けた基礎技術開発
太田博樹、勝村啓弘、松前於一（北里大・医学部・解剖学）

【目的】本研究では、未梢血管及び囊胞あるいは唾液などを材料とした mRNA で、血液中の性ホルモンの変動と同調する遺伝子変動のトレーニングを実施することを目指している。

【方法】遺伝子研究で、ホルモン分析を行うために採血されたマカクについて、そのホルモン分析で用いられた残り（血球成分）を分離し、血漿中のホルモンの情報と白血球中の遺伝子変異の情報を照合し、血中の性ホルモンの変動と同調で遺伝子変動が起こっている遺伝子をサーチする。

【進捗】(1)人種類遺伝子モデル研究室・岡本宗裕教授のもと、ニホンザル(メスの)の性周期を研究している印藤篤子研究員から定期的に採血した血液の分与を受けた。印藤研究員は当院で 7 週間での 4 週に 2 回のニホンザルから 3 回、心、血、精液、睾丸の採血を行った。約 1ml 分割、血漿はホルモン測定の分析に用いられた。残った血球成分（約 0.5ml）を RNAalter に公募、今井隆成教授が琵琶湖を保管し、採血を試みた採血を分割回をこすことを再検討の推奨する。今回の採血の数は 100 本を超えた。(2)北里大学医学部の本研究室では、本研究の研究協力者、勝村啓弘(博士研究員)の指導のもと、関口奎介(学生部)研究者が、(1)次第毎に採取したヒトの唾液から RNA を抽出し、(2)定量化 PCR を行い時計遺伝子の 1 つである PER2 遺伝子の変異変動をトレースできるか実験をおこなったことに成功した。

E-25 遺伝子の老化小脳で変化する遺伝子発現の解明
石川幸也（東京医科歯科大・医学部附属病院・神経内科学）

小脳の老化でどのように遺伝子発現の変化が起こり、それがどのような小脳機能の変化に関連しているのかは全く不明である。我々はヒトにおける小脳の老化の遺伝子変化を検索してきたが、ヒトでは様々な個体差や環境差による影響によって、2 次元遺伝子発現が影響される可能性がある。このため、ヒトの遺伝子発現を影響する要因を検討を行い、ヒトでの解析結果を比較することで、遺伝子発現の変化を観察することを目的として、本研究を行った。

平成 24 年度までで合計人齢ニホンザル 2 個(28 個、26 個、いずれも雄)とアカゲザル 1 個(5 個、雄)について、小脳をヒト
E-26 マカク類の比較ゲノミクス
藤山秋佐夫、豊田聡、野口英樹、辰本将司、福多賢太郎（国立遺伝研）　所内対応者：今井啓雄

我々の研究グループでは、ニホンザルをはじめ、アジア地域に生息するマカク類を対象に比較ゲノミクス解析を行っている。

本課題では、齢長類研究所が保有する中国産アカガエル及びタイワンザルについて下記の試料の提供を受けた。このうち、アカガエルメス、血液をタイワンザル試料から高分子DNAの抽出を行い、イルミナHiSeq2000/2500によって大规模シーケンシングにより、各ゲノム被覆度46倍及び56倍のベアワインド配列を得た。

得られた配列は、ニホンザル（4地域）、カニックイザル、アカガエル（インド）参照配列と比較ゲノミクス解析を行い、ニホンザルとアカガエル（中国）が最近縁であるタイワンザルはやや離れた系統になったことがわかった。本共同利用による成果の詳細については、26年度の齢長類学会で発表予定（福多）である。

E-27 齢長類のゲノム・トランスクリプトーム・エピゲノム研究
郷広康（自然科学研究所・新分野創成センター）、渡辺明昭（基礎生物学研究所・動植物生物学研究部門）、重信秀治（基礎生物学研究所・生物機能解析センター）　所内対応者：大石真生

平成25年度は100個体のマカクザルの血液から調整したDNAを用いて、遺伝子コーディング領域（全エキソン）の配列決定を行った。ヒトの精神・神経疾患関連遺伝子として同定されている遺伝子とマカクザルにおける相同遺伝子の変異解析を行った結果、2,580遺伝子において100個体中少なくとも1個体以上に遺伝子機能喪失変異を見た。ヒトにおける先行研究より12の精神・神経疾患に関与する遺伝子を図示する。見だした遺伝子には、神経細胞間の情報伝達の中心的役割を果たすドーパミンに関与する遺伝子やパーキンソン病の有力な遺伝子、セロトニン受容体、ヒストン脱アセチル化酵素関連遺伝子などがあり、それらの遺伝子に機能喪失変異を有する個体や家系を見いだすことによっ

E-28 アカガエル骨髄細胞からのiPS細胞樹立およびT細胞への分化
金子文、山谷かほる（京都大・iPS研）、塩田達雄、中山英美（大阪大・微研）　所内対応者：明里宏文

抗腫瘍特異的なヒトCD8T細胞から作成したiPS細胞をソースに、in vitroで分化誘導したCD8T細胞は抗腫瘍特異的な免疫能を発揮することが知られる。本研究では、骨髄性CD34陽性細胞からiPS細胞を樹立し、困難とされるT細胞への分化誘導法を確立することを目的とする。iPS細胞由来T細胞の自己移植によりヒト免疫不全症候群などによる破綻した免疫機能の再構築を免疫学的にヒトに近い腫瘍モデルで検討することを最終目的としている。本年度は先ずアカガエルのCD34陽性細胞由来のiPS細胞樹立を目指したが、アカガエルのiPS細胞はヒトやカニックイザルに比して樹立・維持が困難であること、骨髄穿刺には多大の程度の侵害を伴うことなどから、先ず採取の比較的容易なアカガエル末梢血細胞をソースとしてiPS細胞樹立・維持条件の最適化を試みた。

アカガエル末梢血から末梢血単核球を分離し、Oct3/4、Sox2、Klf4、c-Mycのいわゆる山中4因子を発現するセンダイウイルスベクターを用いてiPS細胞の樹立を試みた。いくつかの培養条件を最適化し、embryonic stem cell様の形態を示すコロニーを樹立・維持ができるようになった。今後は骨髄CD34陽性細胞をソースにしたiPS細胞の樹立に取り組む。

E-29 Metabolome and lipidome signatures of the human brain
Philipp Khaitovich (CAS-MPG Partner Institute for Computational Biology), Masahiro Sugimoto (Institute for Advanced Biosciences, Keio University), Yasuhiro Go (Center for Novel Science Initiatives, National Institute of Natural Sciences)
所内対応者：大石真生

In this project, we plan to obtain a lipidome and metabolome features of human brain as compared to the brain of closely related primate species. We plan to measure the metabolite and lipid concentration levels in eight different brain regions of humans and five non-human primate species (chimpanzee, gorilla, orangutan, gibbon, macaque). The comparison among these species will allow us to identify the human-specific metabolic features of the brain and detect functional changes that evolved on the human lineage. Further, the identified metabolome and lipidome composition differences among species and brain regions will provide us insights into general metabolic characteristics of human brain that underlie the unique human cognition, as well as make it susceptible to neurological disorders common in humans.

In 2013, we obtained one orangutan brain sample and dissected it into eight regions. We will perform lipidome and metabolome analysis of these samples at Institute for Advanced Biosciences, Keio University. We also aim to obtain more non-human primate brain samples in the next year.
E-30 コモノマーモセットを用いた加齢性記憶障害の研究
齊藤実、宮下知之（東京医科歯科大学） 所内対応者：中村克樹

将来コモノマーモセットを用いて加齢性記憶障害の行動薬理学・行動遺伝学的研究を行うことを計画している。こうした研究に必要な、コモノマーモセットの基礎的な行動実験の方法論を取得目的として、中村教授との共同研究を行った。

年度末から始まり在職期間が一ヶ月程と短かったが、中村教授が開発した学習装置を用いたマーモセットの訓練の仕方の習得を目指した。

先ずは、マーモットの体調管理を学んだあと、目的である基本的な学習記憶課題である視覚弁別課題の訓練の仕方を共同体で習った。付随して学習装置のセットアップ、報酬として用いるエサの作製法、脳脊髄液の採取方、脳波の測定方法について学んだ。

老齢体は一般的に運動能力やモチベーションが低いため、利用出来るタスクに工夫が必要なことが予測される。今回学んだ学習記憶課題を発展させることで老齢体での記憶評価に適した課題の開発を進める予定である。

E-31 外散スペクトル MRI を用いたチンパンジーの神経回路構造の解明
岡本栄之（慶應義塾大・医学部・生理学教室）、岡野ジュン洋尚（東京慈愛会医科大学・医学部・基礎・臨床講座・再生医学研究部）、足島啓吾、酒井朋子（慶應義塾大・医学部・生理学教室・公益財団法人実験動物中央研究所）
所内対応者：濱田穂

平成25年度の末に採用され、研究期間も非常に限られていたため、実際に難聴類の脳標本の撮像を行うまでに至らなかった。しかしながら、本研究の研究計画は、平成26年度の共同利用研究としても採択され、継続して実施する予定である。現在、我々は平成26年10月末までに和光の理化学研究所内に9テスラ以上で30cm以上のボアサイズを有する高磁場小動物用MRI装置を導入することを目標に、新規の超高磁場システムや高感度コイルの開発に取り組んでいる。この高磁場MRI装置が導入された後には、チンパンジーなどの単一類人猿を含めた全ての難聴類の脳標本の解剖細胞構造や細胞分布を高精度に30マイクロメートルの空間分解能で3次元元に再構築することが可能となる。そこで本年度において、我々は本研究の継続研究として、難聴研究所での脳標本の整理・運送を行うとともに、新規MRI装置を用いて、各難聴類の脳標本のサイズに対応した高磁場MRI撮像シーケンスを確立する予定である。

3. 平成25年度で終了した計画研究
該当なし

4. 共同利用研究会
第42回ホミニゼーション研究会「ワイルドライフ・サイエンス」
日時：2013年3月8日(土)・9日(日)
場所：国際高等研究所(参加人数：約50人)
世話人：松沢哲郎、平井啓久、古市剛史、湯本貴和、マイク・ハフマン、岡本宗裕

ホミニゼーション研究会は、研究所設立以来継続的に続いている。設立当時の志を引き継いで、継続することに意義があった。ただし継続システムを故意にしておらず、会の役目を3年をめどに順次に入れ替わってバトンをつなぐ制度を考えた。その枠組みの中で、研究所が主体的に取り組むテーマを広く共有することを会の目的とする。初回となる平成25年度には、「ワイルドライフサイエンス」を旗印にしたリーディング大学院を難聴研が主体となって始まった。そこで難聴類の進化の方向として、自然学・保全生物学、動物間・水族館・博物館・海外の研究基地をもとにした一国一市一観光地活動を視野に入れた、ワイルドライフに焦点を当てた研究会をめざした。難聴類がという枠を広げた話題提供をもとに、研究所のミッションを再考する契機にしたいと考えた。したがって、今回は3月6-9日に開催されたリーディング大学院のキックオフ・シンポジウムの中で組み立てて実施した。会場は国際高等研究所である。13か国から147名の出席があった。詳細については以下のサイトを参照されたい。http://www.wildlife-science.org/kokoro/index.html#Symposium

各日における話題提供者を列挙する。所属については京都大学のものは省略した。

3月6日（木）
山極寿一、Augustus Basabose (DRC)、Alfred Ngomanda (Gabon)、Sekou Keita (Guinea)、伊谷原一、杉浦秀樹、Fred Bercovitch、Cecile Garcia (France)、Zhang Peng (China)

3月7日（金）
友永雅之、渡辺茂（慶大）、山岸俊男（東大）、林美里、稲山薰（熊本大）、田中正之（京都市動物園）、Sanha Kim (Korea)、坂本龍太、杉山茂（静岡大）、堀川正彦（Malaysia）、阿形清和、岸田拓士、平井啓久、今井啓雄、村山美穂、西田真也（NTT）、坂上雅義（玉川大）、足立篤治、吉田正俊（生理研）、渡邊正孝（東京医科薬科大）

3月8日（土）
岡本宗裕、菊水健史（麻布大）、Michael Huffman、Andrew MacIntosh、古市剛史、湯本貴和、中川尚史、橋本千鶴、岡安直比 (WWF)、揚栄直樹（北大）、幸島司郎、David Hill、Anna Wong (Malaysia)、Sagarul Sah (Malaysia)、Charles Vairappan (Malaysia)、平田聰、服部裕子、山本真也（神戸大）、松林公哉

3月9日（日）