<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>E-1類人猿の神経伝達関連遺伝子の多様性解析</td>
</tr>
<tr>
<td>著者</td>
<td>村山 美穂</td>
</tr>
<tr>
<td>引用</td>
<td>霊長類研究所年報 (2014), 44: 104-104</td>
</tr>
<tr>
<td>発行日</td>
<td>2014-12-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/214140</td>
</tr>
<tr>
<td>ビボックス</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>リンク</td>
<td>京都大学</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
Kyoto University Research Information Repository

KURENAI
京都大学
KYOTO UNIVERSITY
下、サル）が放射性物質に被ばくした。そこで、福島市のサルを対象として、被ばくによる健康影響を明らかにすることを目的として、今年度は胎仔の成長への影響を検討するための画像診断方法の検討を行った。また、今年度も探検した個体のセクリオ測定、臓器及び遺伝子等の標準値を得た。

【材料・方法】本研究に用いたサルは、鳥獣保護法に基づき実施された個体数調整により福島市内で捕獲し、殺処分された個体である。今年度は111頭を回収し、解剖した。胎仔は2008年から現在までに回収され、ホルマリン固定されていった個体90頭を対象として、MRIおよびCTによる断層撮影を試みた。

【結果と考察】胎児中セクリオ値は、1,000kg/日 前後を推移したが、越冬期に濃度が上昇する現象は、2013年度にも確認された。MRIおよびCTによる胎仔の断層撮影では、いずれも鮮明な画像が得られ、胎児容積や骨長の成長等が計測可能であると判断された。装置の取り扱いや画像の解釈などを考慮すると、実験動物用小型CT装置を使用するのが最も適当と考えられ、次年度に新たな標本を加えながら計測を行う予定である。

(5) 随時募集研究

E-1 類人猿の神経伝達関連遺伝子の多様性解析

杉山美緒（京都大・野生動物） 所対応者：今井啓雄

本研究では、ヒトで報告されている性格に関与する遺伝子の古典領域を類人猿で解析し、種間の塩基配列比較や、個体の性格評定との関連解析を行って、個体や野生物に活用する情報を得ることを目指している。関連性の解析には、多数の試料が必要なため、GAINを通じて類人猿類の試料提供を依頼し、比較可能なデータの蓄積を目指している。25年度は、以降にGAINより提供を受けたニシローランドゴリラを含む動物園飼育の14個体、およびガボンの野生8個体の性格評定値と遺伝子型の関連を解析した。ヒトの性格、特に不安や攻撃性との関与が報告されている神経伝達およびホルモン伝達関連の遺伝子（パロセリン、モノアミンオキシダーゼA、モノアミンオキシダーゼB、セロトニントランスポーター、アンドロゲン受容体）の型の選択を行った。22個体の選択結果も更に、54項目はDominance、Dependence、Neuroticism、Openness、Vigilanceの5特性に分類された。個体個体で、モノアミンオキシダーゼの遺伝子型とOpennessおよびDominanceに強い関連が見られた。今後は個体数、候補遺伝子数を増やし、性格の客観的な評定のためのストレスホルモン測定も行い、性格のマーカーとなる遺伝子探索の予定である。

E-2 ニホンザルを対象とした高解像度 CNV スクリーニング解析

尾崎樹夫、Aleksic Branko、久保周（名古屋大・院・精神医学） 所対応者：今井啓雄

近年、自閉症スペクトラム障害、統合失調症を含む精神疾病の発症に強い影響を及ぼす潜在的な遺伝子の多様性比較(copy number variant; CNV)が多数決定されている。本研究では、発症型の高い精神疾患の変異が考えられることを企図して、平成24年度に引き続き、ニホンザルを対象とした全ゲノム CNV解析を実施した。

ニホンザル379頭を対象にarray CGH (comparative genomic hybridization)で高解像度のCNV解析を行った。その結果、数10kb程度の小規模CNVから数千Mbpの大规模CNVを含む多様なCNVを同定した。その中には神経発達に関連する遺伝子に機能的影響を与えるものが含まれていた。例として、NGF欠発、BDNF重複、14番染色体の4Mbp以上の重複を同定した。この他、22q11.23の相同領域で重複を見出した。この領域はヒトで発達障害・統合失調症との関連が示唆されている。

これらCNVを有する個体は精神疾患の変異類型モデルとなる可能性があり、表現型を含めた詳細な検討を行う予定である。

E-3 質額を標的としたサル免疫システムの解明

杉田昌彦、森太文雄（京都大・ウイルス研） 所対応者：鈴木樹理

本研究グループは、アカザルにおいて、サル免疫不全ウイルス由来のリポペプチドを特异的に認識するT細胞の存在を明らかにしてきた。しかしながら免疫応答の分子機序は不明である。そこでアカザル未熟血球核細胞に反応するモノクロナル抗体を多数作製し、そのなかからリポペプチド特異的T細胞株の抗原認識を阻害する2種の抗体を選択した。

得られた阻害抗体の生化学的解析から、それらはアカザルMHCクラス1分子の部分を持つことを確認した。そこでアカザル未熟血球より種々のMHCクラス1あるいはMHCクラス1関連遺伝子を単離し、ホストレクサクションにより転写された遺伝子を検出し、決定した。この解析により分離した遺伝子を毒化細胞に処理し、その活性を確認した。さらにこの遺伝子を検出する細胞を用いた免疫応答の解析から、阻害抗体のひとつは、古典的MHCクラス1遺伝子産物に非古典的MHCクラス1遺伝子産物に対して反応性を示すことが明らかとなった。またそのひとつは、リコンピュータープラグジェクションを用いたELISAの実験から、MHCクラス1重鎖と非共有的に結合するベータ2ミクロプロリンを特異的に認識することが判明した。以上の結果から、リポペプチド抗原提示分子はMHCクラス1分子の一部であると結論付け、その同定に向け遺伝子ライブラリの構築を完了した。

E-4 The genetic basis of blue eyes in primates

Molly Przeworski, Wynne Meyer（University of Chicago）, 早川祥子, Sidi Zhang（Springer Japan）
所対応者：今井啓雄

How many distinct molecular pathways lead to the same phenotype? One approach to this question has been to examine the genetic basis of convergent traits, which likely evolved repeatedly under a shared selective pressure. We investigated the convergent phenotype of blue iris pigmentation, which has arisen independently in four primate lineages: humans, blue-eyed black lemurs, Japanese macaques, and spider monkeys. Characterizing the phenotype across these species, we found that the variation within the blue-eyed subsets of each species occupies strongly overlapping regions of CIE L*a*b* color space. Yet whereas Japanese macaques
ヒトと霊長類の形態的な違いの一つとして、皮膚の構造がある。毛の有無を含め、汗腺や、皮下脂肪の量、温度感覚感受体、免疫系、水分調節など、さまざまな形質に関わる分子の分布がヒトと他の霊長類の間では異なることが予想される。そこで、皮膚でのこれら形質に関わる遺伝子の発現量をヒトと霊長類で比較し、ヒトの形態・生理学的な特性の獲得に関連する遺伝的基盤を明らかにすること。これまで、共同研究で提供いただいた、アカゲザル複数個体の皮膚についてRNAを抽出してマイクロアレイ解析による発現量の定量比較を行ってきた。この結果をチンパンジーの例と比較したところ、ヒトと他の霊長類(チンパンジー)の間では、ケラチン及びケラチン関連タンパク質の発現が大きく異なることが明らかになった。提供いただいた各種霊長類(チンパンジー、ゴリラ、オラウータン)の皮膚組織からRNAおよびDNAを抽出した。現在は、これらのサンプルでのケラチン及びケラチン関連タンパク質のRNA発現量を定量化するためのRT–PCR用プライマーの設計を行っている段階である。また、その他にも、皮膚で発現する水チャネルAQPs(Aクエンホイド)のゲノム配列決定も進めていく。

E-9 野生チンパンジーのアルファ雄の肉分配に関する研究
保坂和彦（鎌倉女子大・児童） 所内対応者：Michael A. Huffman

昨年度に引き続き、マレーマウスM集団のチンパンジーの長期資料を整理し、アルファ雄の行動や肉分配に関するデータベース作成を進めた。1991年以降の8頭のアルファ雄が在位したが、アルファ雄が肉分配の役割を担うという傾向に変化はない。この役割はアルファ雄自身が主導して凌駕するものなのか、それとも、周囲個体の肉の所有に対する抑制あるいは妥協によるものなのか、この問いに答えるため、①アルファ雄の政治的利得、②分配者・非分配者間の互恵性に基づく協力行動、③被分配者による被分配者の社会的挑発、という3つの仮説に基づいて検証するための資料整理を行っている。過去20年あまり複数の野生チンパンジー調査地で進んだ肉分配の研究は、これらの仮説を確立的に捉え、一つの要因のみを主張しようとするきらいがあった。しかし、Silk et al.(2013)が飼育下のチンパンジー対しが実験で示したように、チンパンジーはこれらすべての動機を追究しており、個体や状況によって重点の置き方が異なるかあるいはないかかもしれない。このような複雑な発信に基づく分析を可能にするため、とくに社会行動と肉分配との関係を明らかにする資料整理と分析を今後課題としていきたい。

E-10 生活習慣とAMY1遺伝子の多型との関連
鈴木良美，鵜飼公里，室廻幸雄，川田裕次郎（順大院・システム科学）、五十嵐猛，長岡功，松川和仁，松川岳久（順大院・医），門屋隆香（順大・スポ） 所内対応者：今井啓雄

近年、朝食欠食率の増加が問題視されているが、低年齢の児童では、朝から無理なく朝食を摂取する児童もいるが、時間を作ること、なかなか摂取してくれない児童もある。そこで唾液アミラーゼ活性は出生時には発現しておらず、成長に伴い思春期までに発現すると言われている。また唾液アミラーゼ遺伝子(AMY1)にはヒト数種多型がある。このAMY1のコピー数多型が、成長期の唾液アミラーゼ活性に影響し、その結果、朝食摂取における個人差が生じている可能性を検討している。そこで、2013年1月に長野市内の保育園(4か所)の園児(4歳児・290名)を対象に、唾液・DNAの採取を行い、男子131名、女子119名より唾液を採取した。得られた250検体では園児の年齢と唾液アミラーゼ活性との相関係数は男子r=-0.003、女子r=0.009であり、まったたく関係は認められなかった。現在、DNAについてAMY1コピー数の解析を行っている。また、2014年には長野市内の小学生を対象に唾液・DNAの採取を行い、953検体の唾液・DNAを回収した。現在、この解析も進んでいる。

E-12 類人猿の生殖関連ホルモン動態-野外におけるサンプル採取保存方法の開発
E-13 チンパンジー-IPS 細胞の樹立と神経・生殖細胞への分化誘導
今村紀公, 矢野真, 中野ジェイムス洋洋, 西原浩司（慶應大・医・生物学） 所内対応者：今井啓雄

E-14 霊長類の精子形成を支持する分子機構の解明と細胞培養
林鷹鴻, 中嶋龍介, 日下部央里（慶應大・医・生理学） 所内対応者：今井啓雄

E-15 ニホンザルにおける心筋線維化の病理学的解析
平田昭大（岐阜大・生命科学総合研究支援センター・動物実験）、加藤由隆、酒井洋樹、柳井徳麿（岐阜大・応用生物・獣医・獣医病理） 所内対応者：鈴木樹理

E-16 アカザグサ IPS 細胞の樹立
塩田達雄, 中山英美, 田谷かほる（大阪大・微研）、金子新（京都大・IPS 研） 所内対応者：明里宏文
E-17 チンパンジー-iPS 細胞分化に与える環境化学物質の影響
高田達之，白井恵美，島田愛美，小野寺梨子，谷口聡美，山田毎純（立命館大・薬学），桜垣俊吾（立命館大・グローバルイノベーション研究機構）

チンパンジー-iPS 細胞分化に与える環境化学物質の影響を評価するにあたり、まず、その対照としてカニクイザル ES 細胞および iPS 細胞を用いた実験を行った。カニクイザル ES 細胞と iPS 細胞から胚様体（EB）形成し、分化に伴う遺伝子発現の変化を調べた。その結果、2 種類の ES 細胞・iPS 細胞において、分化に伴う TEK1（細胞分裂期の遺伝子）発現量の上昇が認められたことから、TEK1 発現量の上昇は、ES 細胞・iPS 細胞分化において極めて共通な現象であると考えられた。

そこで次に、TEK1 の機能を詳細に解析するため、TEK1 プロモーター制御下で Venus を発現するカニクイザル ES 細胞を造作し、EB 形成実験を行った。その結果、分化に伴う Venus 発現細胞の出現、および特徴的管腔構造と発現型を有する繊毛の形成が確認された。この Venus 発現細胞をセルソーターにより分取し、遺伝子発現解析を行った結果、生産細胞特異的遺伝子は検出していないものの、隠蔽で発現の高い TEK3、FOXJ1 などの発現が認められたことから、培養条件により、ES 細胞と iPS 細胞は異質と関連する組織への分化している可能性が示唆された。

E-18 インタフェロンα腸炎症遺伝子ファミリーの進化学的解析
溝上雅史，杉山真也（国立国際医療研究センター）、中川至，今西規（東海大）、石田貴文（東京大）、五條駿孝（国立遺伝学研究所）

本年度では、提供されたチンパンジーゲノム（P.t.t.とP.t.vのハイブリッド）を用いて、目的の領域である Interferon lambda(IFN-λ)遺伝子ファミリーがコードされている領域に対して、ロング PCR による增幅とシークエンス解析を試みた。

この領域は、類似性の高い 3 遺伝子と 1 の偽遺伝子が存在することがヒトで明らかとなっている。この領域を遺伝子ごとに分けて取得するための 6 つのプライマーを設計し、P.t.v とヒトで効率よく增幅することを確認したが、本検体ではゲノムの断片化が強いためロング PCR は困難であった。そこで、短い PCR 領域に変更したプライマーを新たに中間し、ヒトと P.t.v で検証を行った。来年度では、本検体での增幅が可能であった、サンプル調製と次世代シークエンス解析の試みを行う。既に、ヒト、チンパンジー（P.t.v）、ボゴロ、ゴリラ、ラテアザルについて、それぞれ複数検体のシークエンスデータを得ているので、それらの配列について比較解析を行う。本検体のシークエンスデータが得られた段階で、これらの比較データに加えて種差が能動種間の IFN-λ の進化の過程を解析する。

E-19 頭骨の形態から探るイリカの系統と音響機能の発達：重長類との比較
丸山啓志，松岡敏雄（京大・理・地球），安井謙介（豊橋市自然史博），西村耕（京大・重長研）

所内対応者：友永雅己

イリカ類は、鳴音コミュニケーションに基づく社会構造形成する点で、疑惑と共通している。その一方で、イリカ類の鳴音についての造音・受音システムは、疑惑類と異なっているため、比較することで、各類別のコミュニケーションの発達について示唆を与えることができる。本研究では、イリカ類固有の器官である「気穴」の鳴音の受信システムにおける役割を明らかにするために、イリカの形態・音響の要求を求めることを目指した。ここでは、化石種のイリカ類も含めて比較可能にするため、「気穴」の形態・音響を求めるために、頭骨の X 縦 CT スキャンによる撮像を行った。用いた種は、ホイッスルという鳴音を発するマイルカ料（ハドドイルカ・カマイルカ）、ホイッスルを発さないネズミイルカ科（ネズミイルカ他 3 種）・ラプラタイルカイルカ料（ラプラタイルカ）であった。その結果、従来のネズミイルカ科の「気穴」についての左右非対称性を裏打ちする結果となった。加えて、イリカ類に見られる頭骨の左右非対称性について、新たな知見を得ることができ、疑惑類や鳥類（アフリカ）と対比可能なものであった。今後は、観察する標本を増やすだけでなく、マイルカ科であるのにホイッスルを発さないセパライルカ属（イロウウェイルカ）や、イリカ類の外群であるアポウクジラ科の標本も扱い、包括的に取り組んでいく。

E-20 MCIR 遺伝子に着目したポノボの集団遺伝学的研究
本州啓紀（ポラ化成工業）

所内対応者：川本芳

MCIR(melanocortin-1 receptor)は色素細胞表面に存在する色素産生に関与するレセプターである。ヒトにおいてMCIR遺伝子は、多発性に高頻度の欠失型が存在するため、MCIR 多型情報は、ヒトの分岐過程を考察する際に有益な情報をひととつとなっている。私のヒト以外の疑惑類においても、当遺伝子のデータは分岐過程を考察する上で有益な情報となると考えている。本研究ではポノボの遺伝子を解析し、すでに保有するヒト、チンパンジーなどの遺伝子データと併せて、当遺伝子の進化過程を比較解析することを最終目的としている。

本年度は、ワパンとイオン池合計 20 例の塩抽出 DNA からダイレクトシークエンス法を用いた検討を行った。その結果、対象領域(MCIR コーディング、プロモーター領域合計 2000 塩基配列がすべて解読できた数は 6 例、2/3 以上の範囲で解読できた数は 3 例、1/3 以上の範囲で解読できた数は 4 例、それは以下は 7 例であった。

以下の結果より、ワパンとイオン池のコンポーネント配列および SNP が同定できる見込みであり、このデータをもとに、ダイレクトシークエンス法での解読が困難な領域をカバーできる新たな手法(リアルタイム PCR 法による SNP 解析)の構築が可能になったと考える。

E-21 頭骨細胞性細胞における小分子 RNA の解析

ー107ー
PIWIは昆虫からヒトまで広く保存されている、生殖細胞維持に必須の遺伝子である。PIWIタンパク質はPIWI-interacting RNA （piRNA）と呼ばれる小分子RNAと結合し、piRNAの配列特異的に標的を認識することで遺伝子発現を制御する。遺伝子レベルでは、マウスに保有する3種類のPIWIに加え、4種類目のPIWI（PIWI3）が存在するので、遺伝子レベルではマウスとは異なるPIWI-piRNA機構を有すると考えられるが、その詳細は明らかになっていない。我々は、PIWIとPIWI3を特異的に認識する抗体を作製し、コモノマーとマノマー及びアカゲザルにおいてPIWI1についての解析を行った。その結果、コモノマー・マノマー・アカゲザルの三酵素において精卵細胞及び精卵細胞でPIWI1が発現することを検出した。また、両酵素のPIWI1に結合するpiRNAの浮遊も成功した。さらに、コモノマー・マノマー・PIWI1结合piRNAの解析を進めたところ、遺伝子関連領域及びトランスポジン由来のpiRNAに加え、仮遺伝子領域やリネアクライのマウスではほとんど見られない種類のpiRNAが存在することを見出した。

E-22 ニホンザル視覚特性の知覚情報処理回路の研究
佐藤宏道、内藤智之、澤井元、三好智雄、七五三木聡（大阪大・医学系研究科）、末松尚史（大阪大・生命機能研究科）

本研究は、ニホンザルの情報処理における機能性の違いを解析することを目的としたものである。特に、視覚情報の処理においては、ニホンザルとヒトの間で違いが見られることが知られている。そこで、本研究では、ニホンザルの視覚特性を解析することを目的としている。

E-23 サル類における聴覚特異関連電位の記録
伊藤浩介（新潟大・脳研）

聴覚についても同様に研究されているが、サル類の聴覚特異関連電位の記録方法について検討する。特に、音に対する反応の特性とその変化についての研究が重要である。

E-24 青児類の性の二型とその多様性を制御する分子機構の解明に向けた基礎技術開発
太田博樹、勝村啓史、松木ひろみ（北里大・医学部・解剖学）

異なる性の二型を持つ青児類の生物学的な特徴を理解するための基礎技術の開発を行う。特に、性ホルモンの機能的な異なりについての検討が進められている。

E-25 青筋類の老化小脳で変化する遺伝子発現の解明
石川靖也（東京医科歯科大・神経内科）

小脳の老化でどのような遺伝子発現の変化が起き、それがどのように小脳機能の変化に関連しているかを明らかにする。特に、青筋類の小脳における遺伝子発現の変化についての解明が期待されている。
と同様3か所ずつ採取した。今年度はさらに4検体を追加集積できた。本年度併せてヒトの健常者および疾患患者小脳組織での遺伝子発現解析を実施した。その結果、老化での遺伝子発現の量的変化は軽微であるのに対し、疾患によって健常者の2〜3倍以上もしくは半分以下に変動する遺伝子を30程度発見した。この結果を受けて、小脳類小脳において、老化ではヒトと同様にこれらの遺伝子の発現には大きな変化がないことを確認することにし、平成25年度末にその解析を進めた。

E-26 マカク類の比較ゲノミクス
藤山秋佐夫、豊田豊、野口英樹、辰本将司、福多賢太郎（国立遺伝研） 所内対応者：今井啓雄

我々の研究グループでは、ニホンザルをはじめ、アジア地域に生息するマカク類を対象に比較ゲノミクス解析を行っている。

本課題では、霊長類研究所が保有する中国産アガザル及びタイワンザルについて下記の試料の提供を受けた。このうち、アガザル（メス、血液）とタイワンザル試料から高分子DNAの抽出を行い、イルミナHiSeq2000/2500による大规模シークエンシングにより、各ゲノム被覆度46倍及び56倍のペアエンド配列を得た。

タイワンザル	10020155 メス	心房、凍結保存
中国アガザル	1747(6) 101014 オス	心室、凍結保存
中国アガザル	1765(7) 101005 オス	心室、凍結保存
中国アガザル	Mm1846 メス 08年生	血液（ヘパリン血）

得られた配列は、ニホンザル（4地域）、カニクイザル、アガザル(インド)参照配列と比較ゲノミクス解析を行い、ニホンザルとアガザル(中国)が最近縁でありタイワンザルはやや離れた系統になることがわかった。本共同利用による成果の詳細については、26年度の霊長類学会で発表予定（福多）である。

E-27 霊長類のゲノム・トランスクリプトーム・エピゲノム研究
篠康孝（自然科学研究所・新分野開創センター）、渡邉茂昭哉（基礎生物科学研究所・脳生理学研究部門）、重信秀治（基礎生物科学研究所・生物機能解析センター） 所内対応者：大石高生

平成25年度末100個体のマカク類の血液から調製したDNAを用いて、遺伝子コーディング領域（全エキソン）の配列決定を行った。ヒトの精神・神経疾患関連遺伝子として同定されている遺伝子とマカク類における相同遺伝子の変異解析を行った結果、5,280遺伝子において100個体中数々もの1個体以上に異常遺伝子機能喪失変異を認めた。ヒトにおける先行研究により12の精神・神経疾患に何らかの関連があると報告されている4,082遺伝子における遺伝子機能喪失変異を探索した結果、701個の遺伝子に変異が生じていることが明らかになった。このうち精神・神経疾患に関与する代表的遺伝子を図に示す。見だした遺伝子には、神経細胞間の情報伝達の中心的役割を果たすドーパミンに関連する遺伝子やパーキンソン病の有力な遺伝子、レトロノン感受性、ヒストン脱アセチル化酵素関連遺伝子などがあり、それぞれの遺伝子が機能喪失変異を有する個体や家族を見い出すことに成功した。

E-28 アガザル骨髄細胞からのiPS細胞樹立およびT細胞への分化
金子新、田中かほる（京都大・iPS研）、塩田達雄、中山英美（大阪大・微研） 所内対応者：明里宏文

抗原特異的なヒトCD8T T細胞から作成したiPS細胞をソースに、in vitroで分化誘導したCD8T細胞は抗原特異的な免疫能を発揮することが知られている。本研究では、骨髄性CD34陽性細胞からiPS細胞を樹立し、困難とされるT細胞への分化誘導方法を確立するとともに、iPS細胞由来T細胞の自家移植によりヒト免疫不全症候群などによる破壊した免疫機構の再構築を免疫学的に希釈近接の霊長類を用いて検討することを最終目的としている。本年度は先ずアガザルのCD34陽性細胞由来のiPS細胞樹立を目指したが、アガザルのiPS細胞はヒトやカニクイザルに比較し樹立・維持が困難であることが、骨髄刺入にはどの程度の開発伴うことなどから、先ずは採取の比較的容易なアガザル未梢血細胞をソースとしてiPS細胞樹立・維持条件の最適化を試みた。

アガザル末梢血から未梢血単核球を分離し、Oct3/4、Sox2、Klf4、c-Mycのいわゆる山中4因子を発現するセンダイウイルスペクターを用いてiPS細胞の樹立を試みた。いくつかの培養条件を最適化し、embryonic stem cell様の形態を示すコロニーを樹立・維持ができるようになった。今後は骨髄CD34陽性細胞をソースにしたiPS細胞の樹立に取り組む。

E-29 Metabolome and lipidome signatures of the human brain
Philipp Khaitovich（CAS-MPG Partner Institute for Computational Biology）、Masahiro Sugimoto（Institute for Advanced Biosciences, Keio University）、Yasuhiro Go（Center for Novel Science Initiatives, National Institute of Natural Sciences） 所内対応者：大石高生

In this project, we plan to obtain a lipidome and metabolome features of human brain as compared to the brain of closely related primate species. We plan to measure the metabolite and lipid concentration levels in eight different brain regions of humans and five non-human primate species (chimpanzee, gorilla, orangutan, gibbon, macaque). The comparison among these species will allow us to identify the human-specific metabolic features of the brain and detect functional changes that evolved on the human lineage. Furthermore, the identified metabolome and lipidome composition differences among species and brain regions will provide us insights into general metabolic characteristics of human brain that underlie the unique human cognition, as well as make it susceptible to neurological disorders common in humans.

In 2013, we obtained one orangutan brain sample and dissected it into eight regions. We will perform lipidome and metabolome analysis of these samples at Institute for Advanced Biosciences, Keio University. We also aim to obtain more non-human primate brain samples in the next year.

—109—
E-30 コモンマーモセットを用いた加齢性記憶障害の研究
齊藤英、岩下知之（東京都立医学研究所）所内対応者：中村克樹

将来コモンマーモセットを用いて加齢性的記憶障害の行動薬理学・行動遺伝学的研究を行うことを計画している。こうした研究に必要な、コモンマーモセットの基礎的な行動実験の方法論の検討を行うとともに、中村教授との共同研究を行った。年度末から始まり在職期間が1ヶ月程と短かったが、中村教授が開発した学習装置を用いたマーモセットの訓練の仕方の習得を目指した。

先ずは、マーモセットの体調管理を学んだあと、目的である基本的な学習記憶課題における視覚的別課題の訓練の仕方を学んだ。次に、学習装置のセットアップ、報酬として用いるエサの作製・貯蔵方法、脳波測定の採取方法を学んだ。

老齢体は一般的に運動能力やモチベーションが低いため、利用出来るタスクに工夫が必要なことが予測される。今回学んだ学習記憶課題の作成のうえで老齢体での記憶評価を適応した課題の開発を進める予定である。

E-31 抜散スペクトラルMRIを用いたチンパンジーの神経回路構造の解明
岡野将之（慶應義塾大・医学部・生理学教室）、岡野ジュ・慶尚（東京都立医科大学・基礎・臨床講座・再生医学研究所）、足立啓吾、高井朋子（慶應義塾大・医学部・生理学教室・公益財団法人実験動物中央研究所）

所内対応者：篠田樋

平成25年度の年度末に採用され、研究期間も非常に限られていたため、実際に齢類の脳標本の撮影を行うまでに至らなかった。しかしその際、本研究に関する研究計画は、平成26年度の共同利用研究としても採択され、継続して実施する予定である。現在、我々は平成26年10月末までに和光の理化学研究所内に9メガピクセル以上の高画質あずき有する高磁場小動物用MRI装置を導入することを目標に、新規の超高磁場システムや高感度コイルの開発に取り組んでいる。

この高磁場MRI装置が導入された時点で、チンパンジーなどの大型類人猿を含めた全ての齢類の脳標本の神経縁構造や機能分析に至るまで、MRI、CT、SPECT等の画像解析法を用いることにより高解像度の3D画像を構築することが可能になる。そこで本年度において、我々は本研究の継続研究として、齢類研究における記録、撮像を行い、とともに、新規MRI装置を用いて、各齢類の脳標本のサイズに対応した高磁場MRI撮像シーケンスを確立する予定である。

3. 平成25年度で終了した計画研究

該当なし

4. 共同利用研究会

第42回ヒトフィジオロジー研究会「ワイルドライフ・サイエンス」

日時：2013年3月8日（土）、9日（日）
場所：会場（eut主教場所）（参加人数：約50人）

世話人：松沢哲郎、平井哲夫、古市剛史、津田明、マイク・ハフマン、岡本宗裕

ホビオロジー研究会は、研究機関を設立以来連続的に続けている。設立当初の志を引き継いで、継続することに意義がある。ただし、継続システム自体についての反省から、会の設立時に3年をめどに順次に入れ替わってバトンをつないむ制度を考えた。その枠組みの中で、研究機関の名を再考するテーマを広く共有することを会の目的とする。初回となる平成25年度には、「ワイルドライフ・サイエンス」を契機にしたリーディング大学院を齢類学が主体となって始まった。そこで齢類学の発展の方向として、自然学・保全生物学、動物園・水族館・博物館、海外の研究基地をもとにした一国一市一動物一観察一活動一観察のポイントに焦点を当てる研究をめざした。齢類学という枠を広げた終回提供をもとに、研究機関のミッションを再考する契機にしたいと考えた。したがって、今回は3月6-9日に開催されたリーディング大学院のキックオフ・シンポジウムの上に組み込んで実施した。会場は国際高等研究所である。13か国から147名の出席があった。詳細については以下のサイトを参照された。http://www.wildlife-science.org/kokoro/index.html#Symposium

各日における参加者数を列挙する。所属については京都大学のものを使っている。